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Application: Scanning Tunneling Microscopy
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Scanning tunneling spectroscopy:
Interrogate material at different points in

space X energy

Space x Voltage
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Defects in the Crystal Lattice

Defects in the crystal lattice encode electronic /

material properties:

Defects have a characteristic signature (motif):

Can we determine the basic motifs and their locations?
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Current Approach: Fourier Transform STS

LDoS Real FT Imaginary FT Magnitude FT

NaFeAs: N = 250

N=70

L
gw) = D exp{—j(wz)} x a(w). (1)
i=1 Defect signature (Fourier)
Frequency-variant “phase noise”
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Short and Sparse Convolution

® ay is short;

e x( has a sparse and random support.
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Other Scientific Data

e Neural Spike Sorting

e Astrophysical Data (LIGO)
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Image Deblurring

Natural images are sparse in the gradient domain:

Observation Kernel Ao Natural Image
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Problem Formulation

Short and Sparse Blind Deconvolution
Given observation
Yy = a ® xo € Rmv

can we recover both unknown signals ag € R* and zy € R™?

e ag is short: k << m;

e x( has a sparse and random support.
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The major difficulty comes from the symmetric solutions!
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The major difficulty comes from the symmetric solutions!

e Scale and Sign Symmetry

1
a=*taag, x==F—x A N I
Q@
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The major difficulty comes from the symmetric solutions!

e Scale and Sign Symmetry

1
a=*taag, x==F—x A N I
«

e Shift Symmetry

a=srla), z=s [z AL~ H
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Nonconvexity in Sparse Blind Deconvolution

Each symmetric solution creates a local optima.
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Nonconvex Formulation

minge 3 [ly —a® |5+ Xz,
data fidelity sparsity

st. acR¥ |a|p=1

a € Sk—1
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Microscopy Image Analysis - Synthetic

min 1y —a®z|+ M|z, st acsk!
a,r

Truth Data Measurement Y BDA Recovery
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Figure 1: Synthetic Microscopy Data
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Microscopy Image Analysis - Real Data |

min Llly —a®z|i+ x|, st aecst!
a,r

(b)

Ye|

N Recovered
NaFeAs @ T=26K Real FT of Observation Activation Map X Recovered Kernel A Real FT of A

Figure 2: Real Microscopy Data
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Microscopy Image Analysis - Real Data Il
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Figure 3: Multiple Defects Patterns
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Local Optima are Good — Geometry

pla) =min 3y —a®a|; + A,

Local minima are near signed shift-truncations.
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Microscopy — easy vs. hard problems

Real FTof A

QL
A

Empirical observation: Whenever the target x is sufficiently long
and sparse, recover ag up to signed shift truncation.

Theory question: When and why does this occur?
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Main Result

Guaranteed SHORT-AND-SPARSE deconvolution w.h.p., when

C

== (\/E—Ful/%) logkz7

m > poly (k)

x| =

with shift-incoherence 1 = max; |(ao, s; [ao])|.
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Main Result

Guaranteed SHORT-AND-SPARSE deconvolution w.h.p., when

C

== (\/E—Ful/%) logkz7

m > poly (k)

x| =

with shift-incoherence 1 = max; |(ao, s; [ao])|.
Comment on rates: For ag ~ uni(S*~!), success w.h.p. when:

[ —
~ Ek3/4polylog(k)

~ k'/* “copies” of ag in each length-k window: “
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Optimization Landscape

: 2
pla) =min 5y —a®z|p+ Az,

There is no closed form expression for T ¢s0-
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Objective Function — Approximations

. 2
pla) = mﬂ;n%\ly—a®wHF+AHwH1

= min § |yl —(@@z,y)+ 3 |a© |} + 2|,

constant
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Objective Function — Approximations

. 2
pla) = mﬂ;n%\ly—a®wHF+AHwH1

= min § |yl —(@@z,y)+ 3 |a© |} + 2|,

constant

A

Figure 4: C, € R"™*™

a®x = Cgux

la® x| = 2'CLC.x
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Objective Function — Approximations

. 2
pla) = mﬂ;n%\ly—a®wHF+AHwH1

= min § |yl —(@@z,y)+ 3 |a© |} + 2|,

constant

wu a®x = Cgux

la® x| = 2'CLC.x

diag(CgCa) =1
CaCalij) = (sila],s;lal)

Figure 4: C, € R"™*™
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Objective Function — Approximations

. 2
pla) =min{ 3 Jla®x—ylp+2 ||zl
——

data fidelity sparsity

~@la) =min{ 3 |z —(@a®@.y) + 3 |ylE+ ) |z,
s N——

approximating C;Ca =~ T sparsity
Simplified Lasso:

min p(a) s.t. |a|p=1.
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Objective Function — Near One Shift

-

PN {a eS| |la - siaolllz < r}

Objective function is strongly convex near a shift sy[ag] of the
ground truth.

22/43



Objective Function — Linear Span of Two Shifts

/) se, [ao]

Subspace SngQ = {0451851 [ao] + a, Se, [ao] | Qyy, Oy € R} .
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Objective Function — Linear Span of Two Shifts

S{fl 0o} nsp—1

Local minimizers are near signed shifts £s,[a].

Negative curvature between two shifts sy, [ao], se,[ao).
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Objective Function — Multiple Shifts

i %[ao]// ‘%[ad

St 2053 NSP!

Objective @ over the linear span Sy, ¢, ¢, = {Z?Zl ay, sy, [ao]}

Local minimizers are near signed shifts +sy, [a].
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Objective function — Three Regions

Nonzero gradient
Strong convexity

\

The function ¢ is strict saddle. At every point in the space, there
is either a negative curvature, strong gradient, or strong
convexity in the vicinity of a minimizer.

— a variety of methods efficiently find minimizers.
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Objective Function — on a Union of Subspaces

Objective ¢, is “benign” over every subspace S; spanned by just a
few shifts 7.
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Objective Function — on a Union of Subspaces

Theorem When m > Ck*5logk and

1
<0<

C
(VE + kpt/?)log k’

with high probability every local minimizer of p, over Yy, Is
within distance Cuv/1 + kp x 62k3/% of some “s¢[ag).
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Visually

On each S

29 /43



Globalization

Results characterize @(a) near a union of subspaces S;:

Can globalize in the “dilute limit” 6 \ 0.
[Zhang, Lau, Kuo, Cheung, Pasupathy, Wright '17].

Main challenge for larger 0:
order-chaos boundary.
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Algorithmic Implications | — easy to start near a few shifts

Good gedmetry Data are a few shifts

near a few shifts
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Algorithmic Implications | — easy to start near a few shifts

Good gedmetry Data are a few shifts

near a few shifts

Initialization: @init = Ps(y;, Yi 1, »Yirr_1]" IS a superposition
of about 26k shifts of ag.

Zero pad to length K = 3k — 2, set @init = —Psx-1 VP (Ginit)-
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Algorithmic Implications Il — easy to stay near a few shifts

g ™

Objective @ grows away from S-.

= Small stepping descent methods stay near this set.
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Main Algorithmic Result (sketch)

Data-driven initialization:
a(O) - PSV(:O\(PS[O, v 7O7y07 e 7yk:—17 07 v 70])

Minimization: of ¢ over S3*~2 starting from a(“) using

small-stepping curvilinear search.

Rounding: to an exact solution (@, ) by locally minimizing

2
(a,x) = gllaxz —yl;+ Al

Theorem (sketch) When Ck*5logk < m < cexp(0k) and

l<0< ¢
k (VE + kp)logk’

with high probability (a,x) = +(s¢lao], s_¢[xo]) for some L.
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Sphere vs. Simplex Constraint

Imposing a sphere constraint for ag leads to
benign global geometry:
local minima are near signed shift truncations.
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Sphere vs. Simplex Constraint

Imposing a sphere constraint for ag leads to
benign global geometry:
local minima are near signed shift truncations.

In image deblurring, a simplex constraint for ag is natural model for

g o

34/43

the blurring process due to camera shake.

mina,:c ||y—a®:r:||F+)\H:BH1

s. t. a20,||aH1:1

. but has spurious minimizers at spikes a =
e.g. Levin, Gribonval, Wipf.



Image Deblurring

Sparsity + benign geometry = surprisingly competitive performance.

ol .
007 009 011 013 015 017 0.19 021 023

Kernel Recovery (real)

—Ours

Krishnan
= =Sun
Liu

-

Error

Surprisingly competitive performance with a relatively simple idea —

optimize over the sphere, tailor the algorithm to the geometry.
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General Formulation

1
. - . p
ming p(a) = min_ |y~ a ® |} + A,

st Jaf, =1
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General Formulation

. o1
ming p(a) = min_ |y~ a ® |} + A,

s.t. |lall, =1

Objective ¢(a) e
v

If p = q > 2, shift truncations of

ag persist as local minimizers. e e
S~ S~
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In certain region of the sphere,

e all local optima are near shift truncations of the ground truth;

e there exist reliable and efficient algorithms recovering the
ground truth.

37/43



References i

38,43



Geometry Inspired Algorithm

Phase | finds one local minimizer by solving

a,’ =arg min ¢, (a)
lallp=1

e with a random or sample-based initialization;

e with a reasonably large Ay to encourage sparsity.
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Geometry Inspired Algorithm

Phase Il tries to recover the global minimizer from the local
minimizer generated via phase I:

e Zero-pad aSP) to afkl);

a

e Continuation: Repeat solving aikﬂ) = argmingy,_,(a)

with M1 = A/ and initialization a® until Ay < Aeng.

40 /43



Geometry Inspired Algorithm

N
y_zafn@wn
n=1

S. t. a, € skt

2 N
. . o1
minp(a) = min 3" M,
F n=1

T -

Local minima a are near signed shift-truncations of ag.
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Comparison with the (Recent) Deconvolution Literature

42 /43



Comparison with the (Recent) Deconvolution Literature

Random subspace model: -
ala [Ahmed, Recht, Romberg '12] =1 e

s 1
g

Sign symmetry, no shift symmetry.

Topologically ~ generalized phase retrieval.
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Comparison with the (Recent) Deconvolution Literature

Random subspace model: -

ala [Ahmed, Recht, Romberg '12] y = =] e (7w
Sign symmetry, no shift symmetry. E oE
a xr

Topologically ~ generalized phase retrieval.

Challenges for SHORT-AND-SPARSE:

Simultaneous structures: natural SDP relaxations break down.
Can’t Avoid Symmetry: objective topology more complicated.

But ... very natural model for motif finding, image deblurring, ...
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