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Data Increasingly Massive & High-Dimensional...

e '
hyperspectral imaging

Dictionary of bases §, learned for speech

Sparse coding
é

A || ||!|||I
V /

audio representations

social network healthcare

Data representation is eritical for modern machine learning methods.
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Unsupervised Learning

 Learning sparsely-used dictionaries:

Given Y € R™"*P jointly find overcomplete
dictionary A € R™"*™ and sparse X € R"*P,
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Unsupervised Learning
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 Learning sparsely-used dictionaries:

min _ f(Y,A-X) + X g(X)
AEM, X (data fidelity regularizer
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Unsupervised Learning

=

o i

X

Yi ~ Z a, @ T ki

k
 Learning convolutional dictionaries:
Given {y;},, jointly learn convolutional dictionaries {a;},

and sparse coefficients {x;}. , .
» Translation invariant, can be viewed as one layer of ConvNets
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Image Restoration

Super Resolution Image Half-toning

- Image courtesy of Julien Mairal et al.
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Supervised (Deep) Learning

Deep learning has attained superior performances for many tasks in practice:

T
e i
e

Natural language processing Gameplay Protein modeling
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(i(’&"glex et al., 2012)
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Training Deep Neural Networks

Input Hidden layer 1 Hidden layer L-1 Output

weights bias
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~~th input in the k-th class One-hot vector for the k-th class
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Nonconvex Problems in Representation Learning

Nonconvex landscape

min f(x), s.t. x € R"

T

Convex landscape

9/7/21

10
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(General Nonconvex Problems

-

—
Minimizer Saddle Maximizer
Vips>=0 Amin V@ < 0 Vip =<0
Amax V2o > 0
Noncritical Point (V¢ # 0) Critical Points (Vi = 0)
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(General Nonconvex Problems

min f(x), s.t. x € R"

T

“bad” local minimizers “flat” saddle points

,

v v ’
local mlnlma

global minima “Aat” vSngdle
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(General Nonconvex Problems

min f(x), s.t. x € R"

In the worst case, even finding a local minimizer is NP-hard
(Murty et al. 1987)
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Optimizing Nonconvex Problems Globally

¥ v v
all local minima are

global minima “Nat” saddle

equally good

Benign nonconvex landscapes enable efficient
global optimization!
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Nonconvex Problems with Benign Landscape

* Generalized Phase Retrieval [Sun’18§]

* Low-rank Matrix Recovery [Ma’16, Jin’17, Chi’19|

« Sparse Dictionary Learning [Sun’16, Qu’20]

* (Orthogonal) Tensor Decomposition [Ge’15]

« Sparse Blind Deconvolution [Zhang’17, Li’18, Kuo’19]
* Deep Linear Network [Kawaguchi’16]
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Nonconvex Problems with Benign Landscape

* Q. Qu (*), Z. Zhu (*), X. Li, M. C. Tsakiris, J. Wright, R. Vidal, Finding the
Sparsest Vectors in a Subspace: Theory, Algorithms, and Applications, In
Submission, 2020.

* Y. Zhang, Q. Qu, J. Wright, Symmetry and Geometry in Nonconvex Optimization,
In Submission, 2020.
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Outline of this Talk

* Learning Shallow Representations:
(Convolutional) Dictionary Learning

* Learning Deep Representations:
Deep Neural Collapse

e Conclusion & Discussion
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Landscape Analysis of Dictionary Learning

1. Q. Qu, Y. Zhai, X. Li, Y. Zhang, Z. Zhu, Analysis of optimization
landscapes for overcomplete learning, ICLR’20, (oral, top 1.9%)
2. Y. Lau (*), Q. Qu(*), H. Kuo, P. Zhou, Y. Zhang, J. Wright, Short-and-

sparse Deconvolution — A Geometric Approach, ICLR’20

* Provide the first global nonconvex landscape analysis for
convolutional /overcomplete dictionary learning problems.

« Efficient nonconvex optimization methods to global solutions
with applications in imaging.
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Convolutional Dictionary Learning (DL)

Given multiple measurements {¥y;}. of circulant convolution
K
Yi = Zak ® Tri, (1<i<p)
k=1

can we learn all {ay}, and {@k;}, ; simultaneously?

2

Yi &= Z ar & Tki
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Convolutional Dictionary Learning (DL)

two-photon calcium image Y

activation map X (k= 1,2)

reconstruction
Yi=Ar® Xy (k=1,2)
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Convolutional DL vs. Overcomplete DL

For each y¥; = a ® x; , we can equivalently rewrite in the
matrix form as:

C, =

where a circulant matrix

6 Ran

sila] s2la]l ---  splal
NG <
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Convolutional DL vs. Overcomplete DL

For each sample X
Yi = Zak &® Ty,

. k=1
equivalently, C:c
¢, = |Cq Coy| - o
| Cy

overcomplete Aj

K1

N’

sparse X;
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Convolutional DL vs. Overcomplete DL

Given Y = Ag- Xy, learn overcomplete Ay and sparse X7

=

= 2

[Cyl Cpr=[Ca1 CCLKJ [ X, e Xp]
data Y dictionary A, sparse X
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Relationship to Dictionary Learning

We can find one column of Ay via

min fpr(q) = —~[Y7ql;, st lal, =1,

The underlying reasoning is that, in expectation

Ex |[[Y7al;] = Ex |[|XTAJql,| = e [Adal]; +e

for X following some sparse zero-mean distributions
(e.g., Bernoulli-Gaussian)
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Relationship to Dictionary Learning

Given Ay = [al e am} c Rx™

min — [[AJqll,. st lqll, =1

e When m < n, and {a;}, , are orthogonal, existing result [Ge’15]
has shown that the function is a strict saddle function with benign
optimization landscape, all global solutions are approximately {+a;}; ;.

e The analysis of orthogonal case cannot be generalized to overcomplete
settings.
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Global Landscape of Overcomplete DL

min fpr(q) = —[[Y7ql,, st lal, =1,

Theorem (Informal) Suppose that (i) K = m/n is a constant,
(ii) Ag is near orthogonal, and (iii) p > Q(poly(n)). Then with
high probability every critical point of f(q) is either

e a strict saddle point exhibits negative curvature;

e or close to a target solution: one column a; of A.
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Assumptions on A (Near Orthogonal)

* Row orthogonal: unit norm tight frame (UNTF)

/2
w/—AAT:I A, = 1.
m 041 9 Ha’HQ

* Incoherence of the columns (near orthogonal)

max [(a;, a;)| < p.
1]
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Overcomplete Dictionary Learning

Given' Y = Ag- Xy, learn overcomplete Ay and sparse X7

nxm
A AO E R
[Sun, Qu, Wright’16]
Global [Sun, Qu, Wright'16] - Ouwur Result
[Li et al.’18| !

Initialization Required
[Arora et al.’14&15]
[Agarwal et al.’16]
[Chatterji et al.’17]
[Awasthi et al.’18]

[Qu, Sun, Wright’16]
Local [Zhai et al.’19]

>

Complete n =m  Overcomplete m > n
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From Overcomplete DL to Convolutional DL

Find one shift of the kernel a; via

4
. St qge St

= N

min fopr(q) = —|q"Y

P N

= 2

[Cyl Cyp]:[cal CGKJ : X]. Xp 3
data Y dictionary A, sparse X
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Convolutional Dictionary Learning

Find one shift of the kernel a; via

mqin fepr(q) = —HqTPYHi, st. qe St

* Preconditioning matrix:

P = (0nk)'yY ") % & (4,40) "7

+ Effective dictionary is tight frame (but not necessarily unit norm)

PY = (AoA(—)r)_l/2A0 .XO — AX()

\ &

VY a

A

JMI UNIVERSITY OF MICHIGAN



Convolutional Dictionary Learning

Find one shift of the kernel a; via

min — |l¢" AX,|;, st gqeS!
q

* Preconditioning matrix:

P = (0nk)'yY ") % & (4,40) "7

+ Effective dictionary is tight frame (but not necessarily unit norm)

PY = (AoA(—)r)_l/QAQ XO — AX()

\

~

A
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Local Landscape of Convolutional DL

Theorem (Informal) Suppose that (i) K = m/n is a constant,
(i1) A is near orthogonal, and (iii) p > Q(poly(n)). Locally,

every critical point of fopr(q) is either
e a strict saddle point exhibits negative curvature,
e or close to a target solution: a precond. shift of a;.

e We show the result over a local level-set

RcpL = {q e S" ' | Ex [fepr(q)] < —CHATCIH§ }7

 We can cook up smart yet simple initializations, with all future
iterations stay in the region.
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Learning Random Filters

mqin fepr(q) = —HqTPYHj, st. qeS!

= ground-truth = ground-truth
= recovered

= goround-truth
= recovered

= recovered

l.() 2.0 3.() 4‘() 5IO 6‘0 1.() 2.0 3.0 -1l0 5.0 6IO . l.() 2.0 3‘0 4l0 Sl() 6.0
Filter 1 Filter 2 Filter 3

Learning 3 random filters by the proposed approach.
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From Theory to Practical Methods

* Recovering one filter:

min fepr(g) = ~[l¢" PY|,, st qes

* Finding all filters via Bilinear Lasso formulation:

2

N
+AD laklly, st flax] = 1.
k=1

JMI UNIVERSITY OF MICHIGAN
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From Theory to Practical Methods

* Finding all filters via Bilinear Lasso formulation:

2 N

N

1

min = ly = Y apr @zl +AY |zl st [lag]| =1.
k=1

A, T e—1

* Optimization. Alternating descent method

x < prox(x —7-VzepL(a,x))
a < Psn-1(a—t-grad, peL(a,x)),

with few extra caveats.
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From Theory to Practical Methods

0 ‘ -0.4 — :
. |« iADM

0.6 o iADM-homotopy| |
iPALM

ADMM

-0.8
-1
L & #=
-1.2}
- R 1.4 x . J
0 500 1000 1500 2000 0 500 1000 1500 2000

FFT operations FFT operations
all-pass filter low-pass filter

Comparison of convergence (time).
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~—— Estimation
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- https://vis.caltech.edu/~rodri/Wave_clus/Wave_clus_home.htm
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Defects Detection in Scan Tunneling Microscopy
STM image Y

activation map Xy, (k =1,2)

reconstruction
Yi. = AI;:®XI<: (k = 1,2)

kernel Ay (kK =1,2)
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Outline of this Talk

* Learning Shallow Representations:
(Convolutional) Dictionary Learning

* Learning Deep Representations:
Deep Neural Collapse

e Conclusion & Discussion
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Understanding Deep Neural Networks

Z. Zhu, T. Ding, J. Zhou, X. Li, C. You, J. Sulam, and Q. Qu, A
Geometric Analysis of Neural Collapse with Unconstrained Features,
arXiww Preprint arXiw:2105.02375, May 2021.

* Analyzes the global landscape of the training loss
based on the unconstrained feature model

* Explains the ubiquity of Neural Collapse of the
learned representations of the network
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https://arxiv.org/abs/2105.02375

Understanding Deep Neural Networks

Input Hidden layer 1 Hidden layer L-1 Output

L . L
© = {W,,bi},_; o(-): nonlinear activations
A \
weights bias
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Terminology for Classification

e Labels: k= 1,..., K
» K = 10 classes (MNIST, CIFARI10, etc.)
» K = 1000 classes (ImageNet)

171 [O] 0]
0] |1 0
0] LOJ 1.
Data in the input space One-hot vectors in RK
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Understanding Deep Neural Networks

Input Hidden layer 1 Hidden layer L-1 Output

~~th input in the k-th class One-hot vector for the k-th class
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N
w

° ° ® I—I trué Iabells
Mysteries in Deep Learning [\ Yo rnomeoes|
A #=x shuffled pixels
215 : — random pixels |
 Architecture design (before training): S oy | S
» Feature dimensionality : osl\]
» Network width and depth oo

. . . 10 15 20 25
> Activation functions thousand steps

imi i : L Zhang et al ICLR'17
* Optimization (during training): [Zhang et a |

» Choices of loss functions

+.007 x

» Optimization algorithms, normalization

 Properties of learned network

x +

P - sign(VzJ(6, z,y)) esign(V,.J (6,2, y))
(aftel" tralnlng): “panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

> Generalization
» Robustness

IME UNIVERSITY OF MICHIGAN
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Fundamental Challenges: Optimization

Landscape in Optimization Landscape of Deep Neural Networks
(abundant algorithms & theory) Credited to [Li’17]
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Optimization: Existing Results

Existing analysis are based on various simplifications:

* Go Linear: deep linear networks |[Kawaguchi’16|, deep
matrix factorizations |Arora’19|, etc.

e Go Shallow: Two-layer neural networks [Safran’18,
Liang’18|, etc.

* Go Wide: Neural tangent kernels [Jacot’18, Allen-Zhu’18,
Du’19|, mean-field analysis [Mei’19, Sirignano’19], etc.

Most of results provide much insights for practical
neural networks.
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Features — What NNs (Conceptually)
Designed to Learn

Low Level Features Mid Level Features ngh Level Features

SAnE = s C T
--- e E-E
N- =h 3

=i

Lines & Edges Eyes, nose, ears Facial structure

Input Output

Wishful Design: NNs learn rich feature representations
across different levels?
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Neural Collapse in Classification
Ve (x) Z/WLg (Wr—1---oc(Wiz +by) + bL—1Z+bL

Last-layer classifier do(x)=:h +—0_ Last-layer feature

H3

-
W, = [ - px|
Simplex Equiangular Tight
Frames (Simplex ETF)

M

Data in the Input Space Neural Collapse

in the Feature Space
JMI UNIVERSITY OF MICHIGAN



Neural Collapse in Classification

Prevalence of neural collapse during the terminal
phase of deep learning training

Vardan Papyan, {2 X. Y. Han, and David L. Donoho
+ See all authors and affiliations

PNAS October 6, 2020 117 (40) 24652-24663; first published September 21, 2020;
https://doi.org/10.1073/pnas.2015509117

Contributed by David L. Donoho, August 18, 2020 (sent for review July 22, 2020; reviewed by Helmut Boelsckei and N\ <
Stéphane Mallat)
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Neural Collapse in Classification

| class 1 simplex ETF vertex

“ class 1 classifier

Image credited to Han et al. “Neural

\
class 2 classifier p O Collapse Under MSE Loss: Proximity to and
Dynamics on the Central Path”

| class 3 simplex ETF vertex I

* Reveals common outcome of network training across a variety of
architectures (ResNet, VGG) and dataset (CIFAR, ImageNet)

e Precise mathematical structures within the features and classifier
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Neural Collapse: Symmetry and Structures

Balanced training dataset with n =ny =n9 =--- = ng, and

W = WL, H = [h171 hK,n] .
Neural Collapse (NC) means that

1) Within-Class Variability Collapse on H: features of each class
collapse to class-mean with zero variability;

hp; — hy, Vke[K], i€ [n].

2) Convergence to Simplex ETF on H: the class means are
, and ;
K 1

JMI UNIVERSITY OF MICHIGAN



Neural Collapse: Symmetry and Structures

Balanced training dataset with n =ny =ng9 =--- = ng, and
W = WL, H = [hl,l hK,n] .

Neural Collapse (NC) means that

3) Convergence to Self-Duality (W,H): the last-layer classifiers
are with the class-means of features.

w® = Bhy, VEkeK]

4) Simple Decision Rule via Nearest Class-Center decision.

JMI UNIVERSITY OF MICHIGAN



Simplification: Unconstrained Features
Ve (x) Z/WLg (Wr_1---o(Wix +b1) +br 1) +br

Last-layer classifier ¢o(x)=:h +<—_ Last-layer feature

Treat H = [hl,l hK,n} as a optimization variable

JMI UNIVERSITY OF MICHIGAN



Simplification: Unconstrained Features
Ve (x) Z/WLg (Wr_1---o(Wix +b1) +br 1) +br

Last-layer classifier ¢o(xr)=:h <—_ Last-layer feature
Treat H = [hl,l .-+ h K,n} as a optimization variable

S QLS Aw 2 >\H b
V‘;{l}%bK—nl;i_Zliw(th,ﬂrb,yk)Jr - W%+ |H|7 + ||b||2
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Simplification: Unconstrained Features
Ve (x) Z/WLg (Wr_1---o(Wix +b1) +br 1) +br

Last-layer classifier ¢o(x)=:h +<—_ Last-layer feature
Treat H = [h1,1 hK,n} as a optimization variable

Aw A
min —ZzseCE (Whies +b.yi) + 22 W+ 22 H 2+ 22 b

W.H.b Kn
k=1 1=1

 Validity: Modern network are highly overparameterized, that can
approximate any point in the feature space |Shaham’18|;

« State-of-the-Art: also called Layer-Peeled Model [Fang’21|, existing work
|E’20, Lu’20, Mixon’20, Fang’21| studied global optimality conditions.
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Prior Work on Unconstrained Features

|Lu et al’20| studies the following one-example-per class model
K

1
min > Lew(hi, v

N—

, s.t. Jhgllo =1

k=1 K n
1
° Y 3 3 . .
|E et al’20]| considers min —— kg_l 2 Leg(Whiisyr), st Wz < 1 Jlhgillz <1
K n
: .1
* [Fang et al’21] studies  min 73 >  Low(Whei ), st [WIE < Cw, |H|F < Cu

n -
k=1 1=1

These work show that any global solution has NC, but
- What about local minima?

- The constrain formulation are not aligned with practice

* [Mixon et al’21, Han et al’21| studies NC under the MSE loss

J. Lu and S. Steinerberger, Neural collapse with cross-entropy loss, 2020

W. E and S. Wojtowytsch, On the emergence of tetrahedral symmetry in the final and penultimate layers of neural network classifiers, 2020
D. Mixon, H. Parshall, J. Pi. Neural collapse with unconstrained features, 2020

C. Fang, H. He, Q. Long, W. Su, Layer-peeled model: Toward understanding well-trained deep neural networks, 2021

X. Han, V. Papyan, D. Donoho, Neural Collapse Under MSE Loss: Proximity to and Dynamics on the Central Path, 2021
JMI UNIVERSITY OF MICHIGAN



Our Main Theoretical Results

Theorem (Informal) Consider the nonconvex loss with
unconstrained feature model with K < d and balanced data

)\ A
min —ZZ%CE (Why; +b,yr) + — ||WHF + — HHHF + 71) HbH;

W.H,b Kn
k=1 1=1

* (Global Optimality) Any global solution (W, H,)

satisfies the NC' properties (1-4).
* (Benign Global Landscape) The function has no
spurious local minimizer and is a strict saddle function,

with negative curvature for non-global critical point.

JMI UNIVERSITY OF MICHIGAN



Our Main Theoretical Results

Theorem (Informal) Consider the nonconvex loss with
unconstrained feature model with K < d and balanced data

* (Global Optimality) Any global solution (W, H,)

satisfies the NC' properties (1-4).

(Benign Global Landscape) The function has no
spurious local minimizer and is a strict saddle function,
with negative curvature for nonglobal critical point.

Message: deep networks always learn Neural Collapse
features and classifiers, provably
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Interpretations of Our Results

/' strict saddle

v s v .
All local minima are equally good Negative curvature

e A Feature Learning Perspective.

» Top down: unconstrained feature model, representation learning,
but no input information.

» Bottom up: shallow network, strong assumptions, far from practice.
 Connections to Empirical Phenomena.
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Interpretations of Our Results

Aw )\H Ab 02
v‘;ngle—nI;z;§£CE (Why; + b, yk)—l'—HWHF |H |7+ ||b||2

Closely relates to low-rank matrix factorization problems |Burer et al’03,

Bhojanapalli et al’16, Ge et al’16, Zhu et al’18,Li et al’19, Chi et al’19]

» Difference in tasks: classification training vs recovery

» Difference in global solutions.

» Difference in loss functions, statistical properties: cross-entropy vs
least-squares; randomness or statistical properties of the sensing matrices

JMI UNIVERSITY OF MICHIGAN



Experiment: NC is Algorithm Independent

CIFAR-10 Dataset, ResNet18, with

6 0.8 1.0
—¥— SGD —%— SGD —¥— SGD
—e— Adam —e— Adam 0.8 —e— Adam
4 —#— LBFGS 0.6 —&— LBFGS —#— LBFGS
— o m0.6
E 30 E
5 0.4
0.2
0.2
0 0.0 0.0
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Epoch Epoch Epoch

Measure of Within-Class Variability = Measure of Between-Class Separation =~ Measure of Self-Duality Collapse
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Generalization is Algorithm dependent

100 100
2 2
c o
O 98 S 98
9 o
© ©
MINST 2 o
‘= 96 € 96
C —%— SGD i} —%— SGD
= =
e —@— Adam () —e— Adam
— —e— LBFGS = —=— |LBFGS
4 50 100 150 200 94 50 100 150 200
Epoch Epoch
100 100
>
) 2 90
O
c o
O 80 S 80
CIFAR-10 ® O
@ 70
2 o
"= 60 € 60
C —%— SGD i} —%— SGD
= =
e y —&— Adam v g —e— Adam
— —e— LBFGS = —=— |LBFGS
40 40,
0 50 100 150 200 0 50 100 150 200
Epoch Epoch
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Experiment: NC Occurs for Random Labels

CIFAR-10 Dataset, MLP,

1.2

IOP @®— width =8 F ®— width = 8 width = 8
U 8 width = 16 1.0% et width = 16 width = 16
o | width = 32 #— width = 32 width = 32
O ¢ A vl 0.8 ; . -
n width = 64 " —— width = 64 width = 64
o 4 width = 128 O 0.61% #— width = 128 width = 128 |
S 4\’= o = SR T ekl .
= & width = 256 4— width = 256 2 width = 256
5 2 . width =512 - 04 width =512 | =230/ |\ L width = 512
Z o ¢ : f 9 —4— width = 1024 0.2 \—S(. 4— width = 1024 ‘o207 L& T 4— width = 1024 7

5 » width = 2048 - width = 2048 1 =10\, | " width = 2048
— L s e — T e A L T G T . G
0 100 200 300 400 500 %% 100 200 300 400 500 99 100 200 300 400 500
Epoch Epoch Epoch
Measure of Within-Class Variability Measure of Self-Duality Collapse Training Error

Validity of Unconstrained Feature Model: Learned last-layer features and
classifiers seems to be independent of input!
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Experiment: NC with Different Weight Decays

CIFAR-10 Dataset, ResNet18,

12 1.0 1.2
®— decayonHand W ®— decay on Hand W ®— decayon Hand W
10 decay on © 0.8 decay on © 1.0 decay on ©
8 0e! 0.8}
— o m
o 6 ) )
0.6\
)
'2 4 '20.4 \ '2
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Measure of Within-Class Variability = Measure of Between-Class Separation =~ Measure of Self-Duality Collapse

Test Accuracy: 99.57% vs. 99.60% (MINST); 77.92% vs. 78.42% (CIFAR-10)
Weight decay on the parameters (implicitly) regularizes the features
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Implications for Practical Network Training

Observation: For NC features, when K < d
the best classifier is given by the Simplex ETF
}T

H3

/\./1
i
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Implications for Practical Network Training

Observation: For NC features, when K < d
the best classifier is given by the Simplex ETF
}T

H3

W, = [p1 - px

 Implication 1: No need to learn the classifier
/\./l

0 Just fix them as a Simplex ETF
d Save 8%, 12%, and 53% parameters for
ResNet50, DenseNet169, and ShuffleNet! at
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Implications for Practical Network Training

Observation: For NC features, when K < d
the best classifier is given by the Simplex ETF
}T

H3

W, = [p1 - px

 Implication 1: No need to learn the classifier
/\./l

0 Just fix them as a Simplex ETF
d Save 8%, 12%, and 53% parameters for
ResNet50, DenseNet169, and ShuffleNet! at

 Implication 2: No need of large feature dimension d

O Just use feature dim d = #class K (e.g., d=10 for CIFAR10)
O  Further saves 21% and 4.5% parameters for ResNet18 and ResNet50!
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Experiment: Fixed Classifier with d = K

ResNet50, CIFAR10, Comparison of
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Training with fixed last-layer classifiers achieves
with learned classifiers.

Testing accuracy
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Summary and Discussion

Z. Zhu, T. Ding, J. Zhou, X. Li, C. You, J. Sulam, and Q. Qu, A
Geometric Analysis of Neural Collapse with Unconstrained Features,
arXiv Preprint arXiw:2105.02375, May 2021.

* Through landscape analysis under unconstrained feature
model, we provide a complete characterization of
learned representation of deep networks.

* The understandings of learned representations could
shed lights on
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https://arxiv.org/abs/2105.02375

Outline of this Talk

* Learning Shallow Representations:
(Convolutional) Dictionary Learning

* Learning Deep Representations:
Deep Neural Collapse

e Conclusion & Discussion
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Summary and Discussion

saddle
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1. Q Qu Y. Zhai, X. Li, Y Zhang, Z.. Zhu, Analysis of optlmlzatlon
landscapes for overcomplete learning, ICLR’20, (oral, top 1.9%)

2. Y. Lau (*), Q. Qu(*), H. Kuo, P. Zhou, Y. Zhang, J. Wright, Short-and-
sparse Deconvolution — A Geometric Approach, ICLR’20

3. 7. Zhu, T. Ding, J. Zhou, X. Li, C. You, J. Sulam, and Q. Qu, A
Geometric Analysis of Neural Collapse with Unconstrained Features,

arXw Preprint arXww:2105.02375, May 2021.
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Future Directions: Beyond Last-layer Features

 Study Deeper Networks

Fix the last layer classifier W as the Simplex ETF, and
conduct NTK analysis for the learning dynamics of features H?

Recursively study the features of each layer from output?

ayer

3 b, o o ® °
©
2 . " e, @ e = |[Paypan’19]
o g * O
. ®
.‘n ~ \
5 0 5101520 |0 5 1015 J'V") | 10 15 0 5 10 15 0 H 'VT ’ :‘l‘ 15 20 1 i 7’3 10 ',7?
Index Index Index Index Index Index Index Index

Vardan Papyan. Traces of class/cross-class structure pervade deep learning spectra, JMLR’19.
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Future Directions: Is NC a Blessing or Curse?

* Study generalization through the representation?

e : trainin g data f: 3" "x Adversarialy_— Adversarial training
) . R 3 accuracy
X: testing data (robustness)
k3 xx
_— N. % Standard
Qbo() % % 0 115 training
%, %/%
X @ Natural accuracy

23
* Study tradeoff between accuracy and robustness via NC?

100 1.0 350, 5007 . r
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—=— Adversarial Training 0.8 ~— Adversarial Training 2 40-)'\‘ = 400+ —e— Adversarial Training
E l‘a ! ] ‘ ﬁ 30] —=— Standard Training _f 300+
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= d 0.41 20 =<
560 i < = 200}
| o =z
] s )
z 0.2 N 1N 1014 A
\_AL_ O | ekt 100}
405 50 100 150 200 0.9 50 100 150 200 & O ) 100 180 3200 |
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H. Zhang, Y. Yu, J. Jiao, E. Xing, L. Ghaoui, M. Jordan, Theoretically principled trade-off between robustness and accuracy, ICML2019.
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Adaptive to the Intrinsic Data Structures

R Siyo

V / < Sy  em
S 2

' M3 ’
Cross- \ 00000
entropy

ooooo

 Can we learn diverse features that are adaptive to the intrinsic data structures?
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Relationship to Dictionary Learning

55 1F *—o
5 Eos}
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Experiment: NC Occurs for Random Labels

CIFAR-10 Dataset, ResNet18,
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Validity of Unconstrained Feature Model: Learned last-layer features and
classifiers seems to be independent of input!
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Comparisons to MCR?

* [Yu et al, NeurIPS’20]| learns not only discriminative but also diverse
representations via maximizing the difference between the coding rate
of all features and the average rate of features in the classes:

K
1 d
AR(H,¢) = ;logdet(I+ —) — Z—;j; log det (T +

ne2
N ~" - k=1
N

R e
« R: expand all features H as large as possible.

H.H,)

nkEQ

o

« R°: compress all each class H; as small as possible.

« For balanced data, learned features H span an entire d/K
subspace, and the subspaces are orthogonal to each other.

Y. Yu, K. Chan, C. You, C. Song, Y. Ma, Learning diverse and discriminative representations via the principle of maximal coding rate reduction, NeurIPS 20.
K. Chan, Y. Yu, C. You, H. Qi, J.Wright, and Y. Ma, ReduNet: A White-box Deep Network from the Principle of Maximizing Rate Reduction, 2021.
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Comparisons to MCR?

[Yu et al, NeurIPS’20| learns not only discriminative but also diverse
representations via maximizing the difference between the coding rate of all
features and the average rate of features in the classes:
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Comparisons to MCR?

[Yu et al, NeurIPS’20| learns not only discriminative but also diverse
representations via maximizing the difference between the coding rate of all

features and the average rate of features in the classeS'
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Y. Yu, K. Chan, C. You, C. Song, Y. Ma, Learning diverse and discriminative representations via the principle of maximal coding rate reduction, NeurIPS 20
K. Chan, Y. Yu, C. You, H. Qi, J.Wright, and Y. Ma, ReduNet: A White-box Deep Network from the Principle of Maximizing Rate Reduction, 2021.
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