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Data Increasingly Massive & High-Dimensional...

Data representation is critical for modern machine learning methods.

image representations

audio representations



Unsupervised Learning

• Learning sparsely-used dictionaries:
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• Learning sparsely-used dictionaries:



Unsupervised Learning

• Learning convolutional dictionaries:

Ø Translation invariant, can be viewed as one layer of ConvNets
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One-hot vectors inData in the input space

Neural network



Supervised (Deep) Learning
Deep learning has attained superior performances for many tasks in practice:

Gameplay

“Cat”

(Alex et al., 2012)



Training Deep Neural Networks

weights bias



Training Deep Neural Networks

i-th input in the k-th class One-hot vector for the k-th class



Nonconvex Problems in Representation Learning
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Optimizing Nonconvex Problems Globally
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Nonconvex Problems with Benign Landscape
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• Generalized Phase Retrieval [Sun’18]
• Low-rank Matrix Recovery [Ma’16, Jin’17, Chi’19]
• Sparse Dictionary Learning [Sun’16, Qu’20]
• (Orthogonal) Tensor Decomposition [Ge’15]
• Sparse Blind Deconvolution [Zhang’17, Li’18, Kuo’19]
• Deep Linear Network [Kawaguchi’16]
• ...



Nonconvex Problems with Benign Landscape
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• Q. Qu (*), Z. Zhu (*), X. Li, M. C. Tsakiris, J. Wright, R. Vidal, Finding the 
Sparsest Vectors in a Subspace: Theory, Algorithms, and Applications, In 
Submission, 2020.

• Y. Zhang, Q. Qu, J. Wright, Symmetry and Geometry in Nonconvex Optimization, 
In Submission, 2020.



Outline of this Talk
• Learning Shallow Representations:

(Convolutional) Dictionary Learning

• Learning Deep Representations:
Deep Neural Collapse

• Conclusion & Discussion



• Provide the first global nonconvex landscape analysis for 
convolutional/overcomplete dictionary learning problems.

• Efficient nonconvex optimization methods to global solutions
with applications in imaging.

Landscape Analysis of Dictionary Learning

1. Q. Qu, Y. Zhai, X. Li, Y. Zhang, Z. Zhu, Analysis of optimization 
landscapes for overcomplete learning, ICLR’20, (oral, top 1.9%)

2. Y. Lau (*), Q. Qu(*), H. Kuo, P. Zhou, Y. Zhang, J. Wright, Short-and-
sparse Deconvolution – A Geometric Approach, ICLR’20



Convolutional Dictionary Learning (DL)
Given multiple measurements of circulant convolution

can we learn all and simultaneously?



Convolutional Dictionary Learning (DL)



Convolutional DL vs. Overcomplete DL
For each , we can equivalently rewrite in the
matrix form as:

where a circulant matrix



Convolutional DL vs. Overcomplete DL
For each sample

equivalently,



Convolutional DL vs. Overcomplete DL



Relationship to Dictionary Learning

The underlying reasoning is that, in expectation



Relationship to Dictionary Learning



Global Landscape of Overcomplete DL



Assumptions on A (Near Orthogonal) 

• Row orthogonal: unit norm tight frame (UNTF)

• Incoherence of the columns (near orthogonal)



Overcomplete Dictionary Learning



From Overcomplete DL to Convolutional DL

Find one shift of the kernel via



Convolutional Dictionary Learning

Find one shift of the kernel via

• Preconditioning matrix:

• Effective dictionary is tight frame (but not necessarily unit norm)



Convolutional Dictionary Learning

Find one shift of the kernel via

• Preconditioning matrix:

• Effective dictionary is tight frame (but not necessarily unit norm)



• We show the result over a local level-set

• We can cook up smart yet simple initializations, with all future
iterations stay in the region.

Local Landscape of Convolutional DL



Learning Random Filters



• Recovering one filter:

• Finding all filters via Bilinear Lasso formulation:

From Theory to Practical Methods



• Finding all filters via Bilinear Lasso formulation:

• Optimization. Alternating descent method

with few extra caveats.

From Theory to Practical Methods



• :

• Optimization. Alternating descent method

with few extra caveats.

From Theory to Practical Methods



Spike Sorting



Defects Detection in Scan Tunneling Microscopy



Outline of this Talk
• Learning Shallow Representations:
(Convolutional) Dictionary Learning

• Learning Deep Representations:
Deep Neural Collapse

• Conclusion & Discussion



• Analyzes the global landscape of the training loss 
based on the unconstrained feature model

• Explains the ubiquity of Neural Collapse of the 
learned representations of the network

Understanding Deep Neural Networks

Z. Zhu, T. Ding, J. Zhou, X. Li, C. You, J. Sulam, and Q. Qu, A 
Geometric Analysis of Neural Collapse with Unconstrained Features, 
arXiv Preprint arXiv:2105.02375, May 2021.

https://arxiv.org/abs/2105.02375


Understanding Deep Neural Networks

weights bias



Terminology for Classification
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• Labels: k = 1 ,…, K
ØK = 10 classes (MNIST, CIFAR10, etc.)
ØK = 1000 classes (ImageNet)

One-hot vectors inData in the input space

Neural network



Understanding Deep Neural Networks

i-th input in the k-th class One-hot vector for the k-th class



Mysteries in Deep Learning
• Architecture design (before training):

Ø Feature dimensionality
ØNetwork width and depth
ØActivation functions

• Optimization (during training):
ØChoices of loss functions
ØOptimization algorithms, normalization

• Properties of learned network

(after training):
ØGeneralization
ØRobustness

Goodfellow et al ICLR’15

Goodfellow et al ICLR’15

[Zhang et al ICLR’17]



Fundamental Challenges: Optimization

Landscape of Modern Deep Neural Networks 
Credited to [Li’17]

Landscape in Classical Optimization
(abundant algorithms & theory)



Optimization: Existing Results

Existing analysis are based on various simplifications:
• Go Linear: deep linear networks [Kawaguchi’16], deep 

matrix factorizations [Arora’19], etc.
• Go Shallow: Two-layer neural networks [Safran’18, 

Liang’18], etc.
• Go Wide: Neural tangent kernels [Jacot’18, Allen-Zhu’18, 

Du’19], mean-field analysis [Mei’19, Sirignano’19], etc.

Most of results hardly provide much insights for practical
neural networks.



Features – What NNs (Conceptually) 
Designed to Learn

Wishful Design: NNs learn rich feature representations 
across different levels?



Neural Collapse in Classification

Neural Collapse
in the Feature Space

Data in the Input Space

Last-layer classifier Last-layer feature

Simplex Equiangular Tight 
Frames (Simplex ETF)



Neural Collapse in Classification 



Neural Collapse in Classification 

• Reveals common outcome of network training across a variety of
architectures (ResNet, VGG) and dataset (CIFAR, ImageNet)

• Precise mathematical structures within the features and classifier

Image credited to Han et al. “Neural 
Collapse Under MSE Loss: Proximity to and 
Dynamics on the Central Path”



Neural Collapse: Symmetry and Structures

Neural Collapse (NC) means that
1) Within-ClassVariability Collapse on H: features of each class 

collapse to class-mean with zero variability;

2) Convergence to Simplex ETF on H: the class means are 
linearly separable, and maximally distant;



Neural Collapse: Symmetry and Structures

Neural Collapse (NC) means that

3) Convergence to Self-Duality (W,H): the last-layer classifiers 
are perfected matched with the class-means of features.

4) Simple Decision Rule via Nearest Class-Center decision.



Simplification: Unconstrained Features

Last-layer classifier Last-layer feature

Treat                                 as a free optimization variable
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Simplification: Unconstrained Features

Last-layer classifier Last-layer feature

Treat                                 as a free optimization variable

• Validity: Modern network are highly overparameterized, that can 
approximate any point in the feature space [Shaham’18];

• State-of-the-Art: also called Layer-Peeled Model [Fang’21], existing work 
[E’20, Lu’20, Mixon’20, Fang’21] only studied global optimality conditions.



Prior Work on Unconstrained Features
• [Lu et al’20] studies the following one-example-per class model

• [E et al’20] considers

• [Fang et al’21] studies

• These work show that any global solution has NC, but
⁃ What about local minima?
⁃ The constrain formulation are not aligned with practice

• [Mixon et al’21, Han et al’21] studies NC under the MSE loss
J. Lu and S. Steinerberger, Neural collapse with cross-entropy loss, 2020
W. E and S. Wojtowytsch, On the emergence of tetrahedral symmetry in the final and penultimate layers of neural network classifiers, 2020
D. Mixon, H. Parshall, J. Pi. Neural collapse with unconstrained features, 2020
C. Fang, H. He, Q. Long, W. Su, Layer-peeled model: Toward understanding well-trained deep neural networks, 2021
X. Han, V. Papyan, D. Donoho, Neural Collapse Under MSE Loss: Proximity to and Dynamics on the Central Path, 2021



Our Main Theoretical Results

• (Global Optimality) Any global solution
satisfies the NC properties (1-4).

• (Benign Global Landscape) The function has no
spurious local minimizer and is a strict saddle function,
with negative curvature for non-global critical point.



Our Main Theoretical Results

• (Global Optimality) Any global solution
satisfies the NC properties (1-4).

• (Benign Global Landscape) The function has no
spurious local minimizer and is a strict saddle function,
with negative curvature for nonglobal critical point.

Message: deep networks always learn Neural Collapse 
features and classifiers, provably



Interpretations of Our Results

• A Feature Learning Perspective. 
Ø Top down: unconstrained feature model, representation learning,
but no input information.
Ø Bottom up: shallow network, strong assumptions, far from practice.

• Connections to Empirical Phenomena.



Interpretations of Our Results

• Closely relates to low-rank matrix factorization problems [Burer et al’03,
Bhojanapalli et al’16, Ge et al’16, Zhu et al’18,Li et al’19, Chi et al’19]
Ø Difference in tasks: classification training vs recovery
Ø Difference in global solutions.
Ø Difference in loss functions, statistical properties: cross-entropy vs

least-squares; randomness or statistical properties of the sensing matrices



Experiment: NC is Algorithm Independent

CIFAR-10 Dataset, ResNet18, with different training algorithms

Measure of Within-Class Variability Measure of Between-Class Separation Measure of Self-Duality Collapse



Generalization is Algorithm dependent

MINST

CIFAR-10



Experiment: NC Occurs for Random Labels

CIFAR-10 Dataset, MLP, random labels with varying network width

Validity of Unconstrained Feature Model: Learned last-layer features and 
classifiers seems to be independent of input!

Measure of Within-Class Variability Measure of Self-Duality Collapse Training Error



Experiment: NC with Different Weight Decays
CIFAR-10 Dataset, ResNet18, different weight decay

• Test Accuracy: 99.57% vs. 99.60% (MINST); 77.92% vs. 78.42% (CIFAR-10)
• Weight decay on the parameters (implicitly) regularizes the features

Measure of Within-Class Variability Measure of Between-Class Separation Measure of Self-Duality Collapse



Implications for Practical Network Training

Observation: For NC features, when
the best classifier is given by the Simplex ETF



Implications for Practical Network Training

Observation: For NC features, when
the best classifier is given by the Simplex ETF

• Implication 1: No need to learn the classifier
q Just fix them as a Simplex ETF
q Save 8%, 12%, and 53% parameters for 

ResNet50, DenseNet169, and ShuffleNet!



Implications for Practical Network Training

Observation: For NC features, when
the best classifier is given by the Simplex ETF

• Implication 1: No need to learn the classifier
q Just fix them as a Simplex ETF
q Save 8%, 12%, and 53% parameters for 

ResNet50, DenseNet169, and ShuffleNet!
• Implication 2: No need of large feature dimension d

q Just use feature dim d = #class K (e.g., d=10 for CIFAR10)
q Further saves 21% and 4.5% parameters for ResNet18 and ResNet50!



Experiment: Fixed Classifier with d = K
ResNet50, CIFAR10, Comparison of Learned vs. Fixed Classifiers of W

Measure of Between-Class Separation Testing AccuracyTraining Accuracy

Training with fixed last-layer classifiers achieves on-par performance 
with learned classifiers.



• Through landscape analysis under unconstrained feature 
model, we provide a complete characterization of 
learned representation of deep networks.

• The understandings of learned representations could 
shed lights on generalization, robustness, and 
transferability.

Summary and Discussion
Z. Zhu, T. Ding, J. Zhou, X. Li, C. You, J. Sulam, and Q. Qu, A 
Geometric Analysis of Neural Collapse with Unconstrained Features, 
arXiv Preprint arXiv:2105.02375, May 2021.

https://arxiv.org/abs/2105.02375


Outline of this Talk
• Learning Shallow Representations:
(Convolutional) Dictionary Learning

• Learning Deep Representations:
Deep Neural Collapse

• Conclusion & Discussion



Summary and Discussion

1. Q. Qu, Y. Zhai, X. Li, Y. Zhang, Z. Zhu, Analysis of optimization 
landscapes for overcomplete learning, ICLR’20, (oral, top 1.9%)

2. Y. Lau (*), Q. Qu(*), H. Kuo, P. Zhou, Y. Zhang, J. Wright, Short-and-
sparse Deconvolution – A Geometric Approach, ICLR’20

3. Z. Zhu, T. Ding, J. Zhou, X. Li, C. You, J. Sulam, and Q. Qu, A 
Geometric Analysis of Neural Collapse with Unconstrained Features, 
arXiv Preprint arXiv:2105.02375, May 2021.

https://arxiv.org/abs/2105.02375


• Study Deeper Networks
• Fix the last layer classifier W as the Simplex ETF, and

conduct NTK analysis for the learning dynamics of features H?
• Recursively study the features of each layer from output?

Future Directions: Beyond Last-layer Features

[Paypan’19]

Vardan Papyan. Traces of class/cross-class structure pervade deep learning spectra, JMLR’19.



Future Directions: Is NC a Blessing or Curse?
• Study generalization through the representation?

• Study tradeoff between accuracy and robustness via NC?

: training data
X: testing data

H. Zhang, Y. Yu, J. Jiao, E. Xing, L. Ghaoui, M. Jordan, Theoretically principled trade-off between robustness and accuracy, ICML2019.



Adaptive to the Intrinsic Data Structures

• Can we learn diverse features that are adaptive to the intrinsic data structures?

MCR2

Cross-
entropy
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Thank You!



Relationship to Dictionary Learning



Experiment: NC Occurs for Random Labels

CIFAR-10 Dataset, ResNet18, random labels with varying network width

Measure of Within-Class Variability Measure of Self-Duality Collapse

Validity of Unconstrained Feature Model: Learned last-layer features and 
classifiers seems to be independent of input!

Training Error



• [Yu et al, NeurIPS’20] learns not only discriminative but also diverse
representations via maximizing the difference between the coding rate
of all features and the average rate of features in the classes:

Y. Yu, K. Chan, C. You, C. Song, Y. Ma, Learning diverse and discriminative representations via the principle of maximal coding rate reduction, NeurIPS 20.
K. Chan, Y. Yu, C. You, H. Qi, J.Wright, and Y. Ma, ReduNet: A White-box Deep Network from the Principle of Maximizing Rate Reduction, 2021.

• For balanced data, learned features Hk span an entire 𝑑/𝐾
subspace, and the subspaces are orthogonal to each other.

Comparisons to MCR2



Comparisons to MCR2

• [Yu et al, NeurIPS’20] learns not only discriminative but also diverse
representations via maximizing the difference between the coding rate of all
features and the average rate of features in the classes:

Y. Yu, K. Chan, C. You, C. Song, Y. Ma, Learning diverse and discriminative representations via the principle of maximal coding rate reduction, NeurIPS 20.
K. Chan, Y. Yu, C. You, H. Qi, J.Wright, and Y. Ma, ReduNet: A White-box Deep Network from the Principle of Maximizing Rate Reduction, 2021.

Cross-
entropy

MCR2



Comparisons to MCR2

• [Yu et al, NeurIPS’20] learns not only discriminative but also diverse
representations via maximizing the difference between the coding rate of all
features and the average rate of features in the classes:

Y. Yu, K. Chan, C. You, C. Song, Y. Ma, Learning diverse and discriminative representations via the principle of maximal coding rate reduction, NeurIPS 20.
K. Chan, Y. Yu, C. You, H. Qi, J.Wright, and Y. Ma, ReduNet: A White-box Deep Network from the Principle of Maximizing Rate Reduction, 2021.

MCR2

Cross-
entropy


