
The Hidden Convex Optimization Landscape of Deep

Neural Networks

Mert Pilanci

Workshop on Seeking Low-dimensionality in Deep Neural Networks

November 23, 2021

Electrical Engineering

Stanford University

History of Artificial Neural Networks

1

Deep learning revolution

2

The Impact of Deep Learning

Y. LeCun, Y. Bengio, G. Hinton (2015)
3

The Impact of Deep Learning

these are not real people

◦ Generative Adversarial Networks, Goodfellow et al. (2014), Karras et al. (2018) 4

Outline

◦ Challenges in neural networks

◦ ReLU neural networks are convex models

◦ Role of the architecture

◦ Generative Adversarial Networks

◦ Deeper ReLU networks

5

Deep Neural Networks

◦ non-convex (stochastic) gradient descent

◦ extremely high-dimensional problems

152 layer ResNet-152: 60.2 Million parameters (2015)

GPT1-3 language model: 175 Billion parameters (May 2020)

BAAI2 multi-modal model: 1.75 Trillion parameters (June 2021)
1OpenAI General Purpose Transformer
2The Beijing Academy of Artificial Intelligence

6

deep learning models

◦ often provide the best performance due to their large capacity

→ challenging to train

GPT-3 is estimated to cost $12 Million for a single training run

requires large non-public datasets

◦ are complex black-box systems based on non-convex optimization

→ hard to interpret what the model is actually learning

7

deep learning models

◦ often provide the best performance due to their large capacity

→ challenging to train

◦ are complex black-box systems based on non-convex optimization

→ hard to interpret what the model is actually learning

7

deep learning models

◦ often provide the best performance due to their large capacity

→ challenging to train

◦ are complex black-box systems based on non-convex optimization

→ hard to interpret what the model is actually learning

7

deep learning models

◦ often provide the best performance due to their large capacity

→ challenging to train

◦ are complex black-box systems based on non-convex optimization

→ hard to interpret what the model is actually learning

one year later, another paper

logistic regression performs just as good as the 6 layer NN

7

Interpretability is important

8

Adversarial examples

◦ adversarial examples, Szegedy et al., 2014, Goodfellow et al., 2015

◦ stop sign recognized as speed limit sign, Evtimov et al, 2017

9

Questions

◦ What are neural networks actually doing?

◦ Are they automatically finding the ’best’ features?

◦ Is it possible to establish optimality?

◦ Is there a more efficient way?

deep convnet (2012), transformer (2017), fully connected mixer (May 2021), ...?

10

How neural networks work?

11

How neural networks work?

◦ least-squares, logistic regression, support vector machines etc. are

understood extremely well

◦ the choice of the solver does not matter

◦ insightful theorems for neural networks?
12

Least Squares

min
x
‖Ax− b‖22

convex optimality condition: ATAx = AT b

efficient solvers: conjugate gradient (CG), preconditioned CG, QR, Cholesky...

13

Least Squares with L1 Regularization

min
x
‖Ax− y‖22 + λ‖x‖1

Lasso

◦ L1 norm ‖x‖1 =
∑d

i=1 |xi| encourages sparsity in the solution x∗

R. Tibshirani (1996), E.J. Candes & T. Tao (2005), D.L. Donoho (2006)
14

Least Squares with Group L1 regularization

min
x
‖

k∑
i=1

Aixi − y‖22 + λ
k∑
i=1

‖xi‖2

Group Lasso

◦ encourages group sparsity in the solution x∗, i.e., most blocks xi are zero

◦ convex optimization and convex regularization methods are well understood

Yuan & Lin (2007)

15

Two-Layer Neural Networks with Rectified Linear Unit (ReLU) activation

pnon-convex := minimize L (φ(XW1)W2, y) + λ
(
‖W1‖2F + ‖W2‖2F

)
W1 ∈ Rd×m

W2 ∈ Rm×1

where φ(u) = ReLU(u) = (u)+

16

Neural Networks are Convex Regularizers

pnon-convex := minimize L (φ(XW1)W2, y) + λ
(
‖W1‖2F + ‖W2‖2F

)
W1 ∈ Rd×m

W2 ∈ Rm×1

pconvex := minimize L (Z, y) + λ R(Z)︸ ︷︷ ︸
convex regularization

Z ∈ K ⊆ Rd×p

17

pnon-convex := minimize L (φ(XW1)W2, y) + λ
(
‖W1‖2F + ‖W2‖2F

)
W1 ∈ Rd×m

W2 ∈ Rm×1

pconvex := minimize L (Z, y) + λR(Z)

Z ∈ K ⊆ Rd×p

Theorem pnon-convex = pconvex, and an optimal solution to pnon-convex

can be obtained from an optimal solution to pconvex.

M. Pilanci, T. Ergen Neural Networks are Convex Regularizers: Exact

Polynomial-time Convex Optimization Formulations for Two-Layer Networks,

ICML 2020 18

Squared Loss: ReLU Neural Networks are Convex Group Lasso Models

data matrix X ∈ Rn×d and label vector y ∈ Rn

X =

 xT1
...

xTn

 , y =

 y1
...

yn


pnon-convex = minimizeW1,W2

∥∥∥ m∑
j=1

φ(XW1j)W2j − y
∥∥∥2
2

+ λ
(
‖W1‖2F + ‖W2‖2F

)
pconvex = minimizeu1,v1...up,vp∈K

∥∥∥ p∑
i=1

DiX(ui − vi)− y
∥∥∥2
2

+ λ

(
p∑
i=1

‖ui‖2 + ‖vi‖2

)
D1, ..., Dp are fixed diagonal matrices

Theorem pnon-convex = pconvex, and an optimal solution to pnon-convex can be

recovered from optimal non-zero u∗i , v
∗
i , i = 1, ..., p as

W ∗1i =
u∗i√
‖u∗i ‖2

, W2i =
√
‖u∗i ‖2 or W ∗1i =

v∗i√
‖v∗i ‖2

, W2i = −
√
‖v∗i ‖2 . 19

Regularization Path

pconvex = minimizeu1,v1...up,vp∈K

∥∥∥ p∑
i=1

DiX(ui − vi)− y
∥∥∥2
2

+ λ

(
p∑
i=1

‖ui‖2 + ‖vi‖2

)

◦ As λ ∈ (0,∞) increases, the number of non-zeros in the solution decreases

Corollary

Optimal solutions of pconvex generates the entire set of optimal architectures

f(x) = W2φ(W1x) with m neurons for m = 1, 2, ...,

where W1 ∈ Rd×m, W2 ∈ Rm×1

◦ non-convex NN models correspond to regularized convex models

20

n = 3 samples in Rd, d = 2 X =

 xT1
xT2
xT3

 =

 2 2

3 3

1 0

 , y =

 y1

y2

y3



hyperplane
(2,2)

(3,3)

(1,0)

x

y

D1X =

 1 0 0

0 1 0

0 0 1

X =

 2 2

3 3

1 0



21

n = 3 samples in Rd, d = 2 X =

 xT1
xT2
xT3

 =

 2 2

3 3

1 0

 , y =

 y1

y2

y3



hyperplane

(2,2)
(3,3)

(1,0)

x

y

D1X =

 1 0 0

0 1 0

0 0 1

X =

 2 2

3 3

1 0


D2X =

 1 0 0

0 1 0

0 0 0

X =

 2 2

3 3

0 0



22

n = 3 samples in Rd, d = 2 X =

 xT1
xT2
xT3

 =

 2 2

3 3

1 0

 , y =

 y1

y2

y3


hy

pe
rp

la
ne

(2,2)
(3,3)

(1,0)

x

y

D1X =

 1 0 0

0 1 0

0 0 1

X =

 2 2

3 3

1 0


D2X =

 1 0 0

0 1 0

0 0 0

X =

 2 2

3 3

0 0


D3X =

 0 0 0

0 0 0

0 0 0

X =

 0 0

0 0

0 0


23

n = 3 samples in Rd, d = 2 X =

 xT1
xT2
xT3

 =

 2 2

3 3

1 0

 , y =

 y1

y2

y3



hyperplane

(2,2)
(3,3)

(1,0)

x

y

D1X =

 1 0 0

0 1 0

0 0 1

X =

 2 2

3 3

1 0


D2X =

 1 0 0

0 1 0

0 0 0

X =

 2 2

3 3

0 0


D4X =

 0 0 0

0 0 0

0 0 1

X =

 0 0

0 0

1 0


24

Example: Convex Program for n = 3, d = 2

n = 3 samples X =

 xT1
xT2
xT3

 , y =

 y1

y2

y3



min

∥∥∥∥∥∥∥
 xT1
xT2
xT3

 (u1 − v1) +

 xT1
xT2
0

 (u2 − v2) +

 0

0

xT3

 (u3 − v3)− y

∥∥∥∥∥∥∥
2

2

subject to + λ
(3∑
i=1

‖ui‖2 + ‖vi‖2
)

D1Xu1 ≥ 0, D1Xv1 ≥ 0

D2Xu2 ≥ 0, D2Xv2 ≥ 0

D4Xu3 ≥ 0, D4Xv3 ≥ 0

equivalent to the non-convex two-layer NN problem 25

Neural Networks as High-dimensional Variable Selectors

X =

 xT1
...

xTn

 ∈ Rn×d neural−−−−→
network

X̄ = [D1X, ...,DpX] ∈ Rn×p

neural network = convex regularization applied to X̄

26

Computational Complexity

Learning two-layer ReLU neural networks with m neurons

f(x) =
∑m

j=1W2jφ(Wj1x)

Previous result: ◦ Combinatorial O(2mndm) (Arora et al., ICLR 2018)

Convex program O((nr)r) where r = rank(X)

n : number of samples, d : dimension

(i) polynomial in n and m for fixed rank r

(ii) exponential in d for full rank data r = d. This can not be improved

unless P = NP even for m = 1.
27

Computational Complexity

Learning two-layer ReLU neural networks with m neurons

f(x) =
∑m

j=1W2jφ(Wj1x)

Previous result: ◦ Combinatorial O(2mndm) (Arora et al., ICLR 2018)

Convex program O((nr)r) where r = rank(X)

n : number of samples, d : dimension

(i) polynomial in n and m for fixed rank r

(ii) exponential in d for full rank data r = d. This can not be improved

unless P = NP even for m = 1.
28

Hyperplane Arrangements

Let X ∈ Rn×d

{sign(Xw) : w ∈ Rd}

at most 2
∑r−1

k=0

(
n
k

)
≤ O

(
(nr)r

)
patterns where r = rank(X).

29

Convolutional Hyperplane Arrangements

Let X ∈ Rn×d be partitioned into patch matrices X = [X1, ..., XK] where

Xk ∈ Rn×h

{sign(Xkw) : w ∈ Rh}Kk=1

at most O
(
(nKh)h

)
patterns where h is the filter size.

30

Convolutional Neural Networks can be optimized in fully polynomial time

◦ f(x) = W2φ(W1x), W1 ∈ Rd×m, W2 ∈ Rm×1

m filters (neurons), h filter size

typical example: 1024 filters of size 3× 3 (m = 1024, h = 9)

convex optimization complexity: polynomial in all parameters n, m and d

M. Pilanci, T. Ergen Implicit Convex Regularizers of CNN Architectures,

ICLR 2021
31

Approximating the Convex Program

pconvex = minimizeu1,v1...up,vp∈K

∥∥∥ p∑
i=1

DiX(ui − vi)− y
∥∥∥2
2

+ λ
(p∑
i=1

‖ui‖2 + ‖vi‖2
)

◦ Sample D1, ..., Dp as Diag(Xu ≥ 0) where u ∼ N(0, I)

◦ Low rank approximation of X ≈ Xr where ‖X −Xr‖2 ≤ σr+1

(1 + σr+1

λ) approximation in O
(
(nr)r

)
complexity

◦ Backpropagation (gradient descent) on the non-convex loss

is a heuristic for the convex program

32

An Exact Characterization of All Optimal Solutions

pnon-convex := minimize L (φ(XW1)W2, y) + λ
(
‖W1‖2F + ‖W2‖2F

)
W1 ∈ Rd×m

W2 ∈ Rm×1

pconvex := minimize L (Z, y) + λR(Z)

Z ∈ K ⊆ Rd×p

Theorem All optimal solutions of pnon-convex can be found from the optimal solutions of

pconvex up to permutation and neuron splitting. Hence, the optimal set of pnon-convex

is convex up to equivalence.

Y. Wang, J. Lacotte, M. Pilanci, The Hidden Convex Optimization Landscape of

Two-Layer ReLU Neural Networks, arXiv 2021.

Numerical Experiment: Two-Layer Fully Connected ReLU

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Iteration

10-3

10-2

10-1

100
O

b
je

c
ti
v
e

 V
a

lu
e Trial #1

Trial #2

Trial #3

Trial #4

Trial #5

Trial #6

Trial #7

Trial #8

Trial #9

Trial #10

Optimal

m = 8

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Iteration

10-3

10-2

10-1

100

O
b

je
c
ti
v
e

 V
a

lu
e

Trial #1

Trial #2

Trial #3

Trial #4

Trial #5

Trial #6

Trial #7

Trial #8

Trial #9

Trial #10

Optimal

m = 15

Training cost of a two-layer ReLU network trained with SGD (10 initialization trials)

and the convex program on a toy dataset (d = 2) 34

Numerical Experiment: Two-Layer Convolutional Network on CIFAR

0 200 400 600 800 1000 1200 1400 1600
Time(s)

10-2

10-1

100

O
bj

ec
tiv

e
Va

lu
e

Trial #1
Trial #2
Trial #3
Trial #4
Trial #5
Convex Opt
(global min)

training error

0 200 400 600 800 1000 1200 1400 1600
Time(s)

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Te
st

 A
cc

ur
ac

y

Trial #1
Trial #2
Trial #3
Trial #4
Trial #5
Convex Opt
(global min)

test accuracy

binary classification on a subset of the CIFAR Dataset
35

SGD for the Convex Program vs SGD for the Non-convex Problem

training accuracy test accuracy

10-class classification on the CIFAR Dataset (n = 50, 000, d = 3072) with randomly

sampled arrangement patterns for the convex program
36

Plan for the rest of the talk

◦ Are all neural network problems convex? What is the role of the network

architecture? What does gradient descent with no regularization do?

vector output networks, e.g., autoencoders

batch normalization layers

gradient flow

Generative Adversarial Networks (GANs)

deeper networks

◦ Numerical results

convex vs non-convex neural networks

convex GANs

37

Vector Output Two-layer ReLU Networks: Nuclear Norm Regularization

pconvex = min
U1,V1...Up,Vp∈K

∥∥∥ p∑
i=1

DiX(Ui − Vi)− y
∥∥∥2
2

+ λ

(
p∑
i=1

‖Ui‖∗ + ‖Vi‖∗

)
Theorem pnon-convex = pconvex, and an optimal solution to pnon-convex can be

recovered from optimal non-zero U∗i , V
∗
i , i = 1, ..., p.

A. Sahiner, T. Ergen, J. Pauly, M. Pilanci Vector-output ReLU Neural

Network Problems are Copositive Programs, ICLR 2021 38

ReLU Networks with Batch Normalization (BN)

◦ BN transforms a batch of data to zero mean and standard deviation one, and has

two trainable parameters α, γ

BNα,γ(x) =
(I − 1

n11
T)x

‖(I − 1
n11

T)x‖2
γ + α

pnon-convex = minimizeW1,W2,α,γ

∥∥∥BNα,γ(φ(XW1))W2 − y
∥∥∥2
2

+ λ
(
‖W1‖2F + ‖W2‖2F

)

=
=

pconvex = minimizew1,v1...wp,vp∈K

∥∥∥ p∑
i=1

Ui(wi − vi)− y
∥∥∥2
2

+ λ

(
p∑
i=1

‖wi‖2 + ‖vi‖2

)
where UiΣiV

T
i = DiX is the SVD of DXi, i.e., BatchNorm whitens local data

T. Ergen, A. Sahiner, B. Ozturkler, J. Pauly, M. Mardani, M. Pilanci

Demystifying Batch Normalization in ReLU Networks, arXiv 2021 39

Unregularized Gradient Flow Converges to the Optimum of the Convex Program

Consider the unregularized problem

min
θ
L(θ) = min

θ={w11,w21...,w1p,w2p}
`
(m∑
j=1

(Xw1j)+w2j , y
)

and corresponding non-convex gradient flow

d

dt
θ(t) ∈ −∂L(θ(t))

Theorem: Suppose that X is linearly separable, and ` is log loss. Then, θ(t)

converges to the solution of the convex program

minimizeu1,v1...up,vp∈K

p∑
i=1

‖ui‖2 + ‖vi‖2 s.t. Diag(y)

p∑
i=1

DiX(ui − vi) ≥ 1

Y. Wang, M. Pilanci, The Convex Geometry of Backpropagation: Neural Network

Gradient Flows Converge to Extreme Points of the Dual Convex Program, arXiv

2021. 40

Other Activations: Two-Layer Polynomial Activation Networks

◦ polynomial activation function

σ(t) = at2 + bt+ c

pconvex := minimizeZ L (Z, y) + λ R(Z)︸ ︷︷ ︸
convex regularization

Theorem: pconvex = pnon-convex and can be solved via a convex semidefinite

program in polynomial-time with respect to (n, d,m).

◦ R(Z) = ‖Z‖∗ (nuclear norm) when σ(t) = t2

B. Bartan, M. Pilanci Neural Spectrahedra and Semidefinite Lifts, arXiv,

2021.
41

Polynomial Activation Networks for Binary Classification

42

Layer-Wise Learning Deep Networks

CIFAR-10 Imagenet

16 Layer NN (VGG16) (Simonyan et al. 2015) 92% 90.9%

Layerwise (2-Layer×15) (Belilovsky et al. 2019) 90.4% 88.7%

43

Convex Generative Adversarial Networks (GANs)

◦ Wasserstein GAN parameterized with neural networks

p∗ = min
θg

max
D: 1-Lipschitz

Ex∼px [D(x)]− Ez∼pz [D(Gθg(z))]

∼= min
θg

max
θd

Ex∼px [Dθd(x)]− Ez∼pz [Dθd(Gθg(z))]

Theorem Two layer generator two layer discriminator WGAN problems are

convex-concave games. 44

◦ two-layer ReLU-activation generator Gθg(Z) = (ZW1)+W2

◦ two-layer quadratic activation discriminator Dθd(X) = (XV1)
2V2

Wasserstein GAN problem is equivalent to a convex-concave game, which can be

solved via convex optimization

G∗ =argminG ‖G‖2F s.t. ‖X>X −G>G‖2 ≤ λ

W ∗1 ,W
∗
2 =argminW1,W2

‖W1‖2F + ‖W2‖2F s.t. G∗ = (ZW1)+W2,

◦ the first problem can be solved via singular value thresholding as

G∗ = U(Σ2 − λI)
1/2
+ V > where X = UΣV > is the SVD of X.

◦ the second problem can be solved via convex optimization as shown earlier

45

Progressive GANs

deeper architectures can be trained layerwise

46

Numerical Results

◦ real faces from the CelebA dataset

◦ fake faces generated using convex optimization

two-layer quadratic activation discriminator and linear generator trained via closed

form optimal solution progressively for a total of 4 layers

A. Sahiner et al. Hidden Convexity of Wasserstein GANs, arXiv 2021 47

Three-layer Neural Networks: Double Hyperplane Arrangements

p∗3 = min
{Wj ,uj ,w1j ,w2j}mj=1

uj∈B2,∀j

1

2

∥∥∥∥∥∥
m∑
j=1

((XWj)+w1j)+w2j − y

∥∥∥∥∥∥
2

2

+
β

2

m∑
j=1

(
‖Wj‖2F + ‖w1j‖22 + w2

2j

)
,

Theorem

The equivalent convex problem is

min
{Wi,W

′
i}

p
i=1∈K

1

2

∥∥∥∥∥∥
p∑
i=1

P∑
j=1

DiDjX̃
(
W ′ij −Wij

)
− y

∥∥∥∥∥∥
2

2

+
β

2

p∑
i,j=1

‖Wij‖F + ‖W ′ij‖F

T. Ergen, M. Pilanci Global Optimality Beyond Two Layers: Training Deep

ReLU Networks via Convex Programs, ICML 2021

Deep ReLU Networks

arbitrarily deep ReLU neural networks with parallel architecture

Theorem There is a convex program such that pnon-convex = pconvex

Y. Wang, T. Ergen, M. Pilanci, Parallel Deep Neural Networks Have Zero

Duality Gap, arXiv 2021. 49

Conclusion and Open Problems

◦ we can train ReLU and polynomial NNs in polynomial time

◦ convex optimization theory & solvers can be applied

◦ multi layer ReLU neural network problems are convex in higher dimensions

◦ neural networks seek sparsity

◦ architecture search = regularizer search (block `2-`1, nuclear norm,...)

◦ we need faster algorithms to solve high-dimensional convex programs whose

solutions are sparse and better layer-wise learning strategies

CODE: github.com/pilancilab

50

References

stanford.edu/∼pilanci CODE: github.com/pilancilab

◦ T. Ergen, M. Pilanci, Convex Geometry and Duality of Over-parameterized Neural

Networks , Journal of Machine Learning Research (JMLR), 2021

◦ T. Ergen, M. Pilanci, Revealing the Structure of Deep Neural Networks via

Convex Duality, ICML 2021

◦ B. Bartan, M. Pilanci, Training Quantized Neural Networks to Global Optimality

via Semidefinite Programming, ICML 2021

◦ A. Sahiner, M. Mardani, B. Ozturkler, M. Pilanci, J. Pauly, Convex Regularization

behind Neural Reconstruction, ICLR 2021

◦ T. Ergen, M. Pilanci, Convex geometry of two-layer relu networks: Implicit

autoencoding and interpretable models, AISTATS 2020

◦ V. Gupta, B. Bartan, T. Ergen, M. Pilanci, Exact and Relaxed Convex

Formulations for Shallow Neural Autoregressive Models, ICASSP 2021

◦ B. Bartan and M. Pilanci Convex Relaxations of Convolutional Nets, ICASSP 2019
51

References

◦ Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature, 2015

◦ I. Tolstikhin et al., An all-MLP architecture for vision, 2021, arXiv:2105.01601

52

extra slides

53

Interpreting NN models: Signal Prediction

200 300 400 500 600 700 800 900 1000
-6

-4

-2

0

2

4

6

8

True Signal

◦ electrocardiogram (ECG)

◦ window size: 15 samples

◦ training and test set

54

200 300 400 500 600 700 800 900 1000
-6

-4

-2

0

2

4

6

8

True Signal

X =


x[1] ... x[d]

x[2] ... x[d+ 1]
...

x[n] ... x[d+ n− 1]

 , y =


x[d+ 1]

x[d+ 2]
...

x[d+ n]


55

Signal Prediction: Test accuracy

200 300 400 500 600 700 800 900 1000
-6

-4

-2

0

2

4

6

8

True Signal

SGD

Convex

Linear

290 295 300 305

0

2

4

6

56

Neural Networks are fully explainable as convex models

pnon-convex = pconvex

= minimizeu1,v1...up,vp∈K

∥∥∥ p∑
i=1

DiX(ui − vi)− y
∥∥∥2
2

+ λ

(
p∑
i=1

‖ui‖2 + ‖vi‖2

)

57

SGD for the Convex Neural Network

0 100 200 300 400 500 600 700 800
Tim e (sec)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

A
cc

ur
ac

y
SGD (Baseline)
Convex (Ours)

CIFAR-100 test accuracy

58

Three-layer ReLU Networks

59

Three-layer ReLU Networks: CIFAR-10 and Fashion-MNIST

60

Other Activations: Polynomial Activation Networks

◦ polynomial activation function σ(t) = at2 + bt+ c

pnon-convex := minimize‖W1i‖2=1,∀i L (σ(XW1)W2, y) + λ‖W2‖1
W1 ∈ Rd×m

W2 ∈ Rm×1

pconvex := minimizeZ L (Z, y) + λ R(Z)︸ ︷︷ ︸
convex regularization

Z ∈ K ⊆ Rd×p

◦ Theorem: pconvex = pnon-convex and can be solved via a convex semidefinite
program in polynomial-time with respect to (n, d,m).

B. Bartan, M. Pilanci Neural Spectrahedra and Semidefinite Lifts, 2021.

arXiv:2101.02429v1
61

Polynomial Activation Networks

special case: quadratic activation σ(t) = t2

pconvex := minimizeZ L (Z, y) + λ‖Z‖∗ Z ∈ K ⊆ Rd×p

‖Z‖∗ is the nuclear norm

promotes low rank solutions

first and second layer weights can be recovered via Eigenvalue Decomposition

Z =
∑m

i=1 αiuiu
T
i

62

Polynomial Activation Networks

◦ polynomial activation function

φ(t) = at2 + bt+ c

min
Z

L(ŷ, y) + λZ4

s.t. ŷi = axTi Z1xi + bxTi Z2 + cZ4, i ∈ [n]

Z =

[
Z1 Z2

ZT2 Z4

]
� 0, tr(Z1) = Z4,

63

Numerical Results: Quadratic Activation

toy dataset n = 100, d = 10

m = 10 planted neurons

red cross marker shows the time taken by the convex solver

64

Quantized neural networks can be globally optimized in polynomial time

B. Bartan, M. Pilanci Training Quantized Neural Networks to Global

Optimality via Semidefinite Programming, ICML 2021 65

EE 269 Signal Processing for Machine Learning

◦ Signal processing methods for classifying, predicting, and learning signals

◦ Topics: Discrete Fourier Transform, distance based classifiers, kernel methods,

wavelets, adaptive filters, deep and convolutional neural networks, sparse

optimization and relaxation methods, dictionary learning

http://web.stanford.edu/class/ee269

66

EE 269 Sample Projects

flight state estimation

from wing vibrations

predicting corn planting

dates from satellite images

EEG sleep stage

classification

67

Learning Dynamical Models

◦ Punjani and Abbeel, 2015. Deep Learning Helicopter Dynamics Models

Two-Layer ReLU network f(x) = W2φ(W1x)

x : current state and controls

f(x) : linear and angular acceleration the helicopter undergoes

68

Learning Dynamical Models

◦ Evaluated on the data from the Stanford Autonomous Helicopter Project

(P. Abbeel, A. Coates, and A. Y. Ng, 2010)

69

Convex Program for Two-Layer ReLU network (n = 1620,m = 500, d = 56) on

the same dataset using the same architecture

0 100 200 300 400 500 600
time (sec)

100

101

102

RM
SE

Training set
SGD - Trial 1
SGD - Trial 2
SGD - Trial 3
SGD - Trial 4
SGD - Trial 5
Convex

0 100 200 300 400 500 600
time (sec)

101

102

RM
SE

Test set
SGD - Trial 1
SGD - Trial 2
SGD - Trial 3
SGD - Trial 4
SGD - Trial 5
Convex

70

Unregularized Neural Networks

punreg := minimizeW1,W2 L (φ(XW1)W2, y)

◦ Gradient descent (randomly initialized) on punreg converges to the local

optimizers of

pnon-convex := minimizeW1,W2 ‖W1‖2F + ‖W2‖2F s.t. L (φ(XW1)W2, y) = 0

pconvex := minimize R(Z) s.t. L (Z, y) = 0, Z ∈ K ⊆ Rd×p

Theorem pnon-convex = pconvex, and an optimal solution to pnon-convex

can be obtained from an optimal solution to pconvex.

71

Extra Slides: spike-free Polar set

72

Extra Slides: nonspike-free Polar set

73

Extra Slides: nonspike-free Polar set

74

Extra Slides: Piecewise linear approximation

75

Extra Slides: Layerwise Learning via Convex Programs on CIFAR-10

Trenton Chang, Raymond Lee, Peeking Into the Black-Box:

Layerwise-Convex Training for Convolutional Neural Networks, 2021
76

