The Hidden Convex Optimization Landscape of Deep
Neural Networks

Mert Pilanci

Workshop on Seeking Low-dimensionality in Deep Neural Networks

November 23, 2021

Electrical Engineering
Stanford University



History of Artificial Neural Networks
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Deep learning revolution
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The Impact of Deep Learning

Atlast — a computer pr
can beat a champion Go p}

ALLSYS TEMS GO

Y. LeCun, Y. Bengio, G. Hinton (2015)



The Impact of Deep Learning

these are not real people

o Generative Adversarial Networks, Goodfellow et al. (2014), Karras et al. (2018)



Outline

o

Challenges in neural networks

ReLU neural networks are convex models

e}
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Role of the architecture

Generative Adversarial Networks
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Deeper ReLU networks



Deep Neural Networks

hidden layer 1 hidden layer 2 hidden layer 3

input layer

o non-convex (stochastic) gradient descent

o extremely high-dimensional problems
152 layer ResNet-152: 60.2 Million parameters (2015)
GPT!-3 language model: 175 Billion parameters (May 2020)
BAAI? multi-modal model: 1.75 Trillion parameters (June 2021)

10penAl General Purpose Transformer
2The Beijing Academy of Artificial Intelligence




deep learning models
o often provide the best performance due to their large capacity
— challenging to train
GPT-3 is estimated to cost $12 Million for a single training run
requires large non-public datasets



deep learning models

o often provide the best performance due to their large capacity
— challenging to train

o are complex black-box systems based on non-convex optimization
— hard to interpret what the model is actually learning



deep learning models
o often provide the best performance due to their large capacity
— challenging to train
o are complex black-box systems based on non-convex optimization
— hard to interpret what the model is actually learning

nature

Letter | Published: 29 August 2018
Deep learning of aftershock patterns
following large earthquakes

Phoebe M. R. DeVries &, Fernanda Viégas, Martin Wattenberg & Brendan J.
Meade

Nature 560, 632-634(2018) | Cite this article



deep learning models
o often provide the best performance due to their large capacity
— challenging to train
o are complex black-box systems based on non-convex optimization
— hard to interpret what the model is actually learning

one year later, another paper
logistic regression performs just as good as the 6 layer NN

nature

Matters Arising | Published: 02 October 2019
One neuron versus deep learningin
aftershock prediction

Arnaud Mignan &4 & Marco Broccardo

Nature 574, E1-E3(2019) | Cite this article



Interpretability is important

Example: Deep networks for MR image reconstruction (FastMRI
Challenge, 2020)

Transfer Track

Ground Truth

Submission

Figure 7: Examples of reconstruction hallucinations among challenge submissions. (leff) A 4X submission from
Neurospin generated a false vessel, possibly related to susceptibilities introduced by surgical staples. (center) An 8X
submission from ATB introduced a linear bright signal mimicking a cleft of cerebrospinal fluid, as well as blurring of

the boundaries of the extra-axial mass. (right) A submission from ResoNNance introduced a false sulcus or prominent
vessel.



Adversarial examples

“panda” " “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

o adversarial examples, Szegedy et al., 2014, Goodfellow et al., 2015

o stop sign recognized as speed limit sign, Evtimov et al, 2017



Questions

o}

What are neural networks actually doing?

(¢]

Are they automatically finding the ’'best’ features?

e}

Is it possible to establish optimality?

o}

Is there a more efficient way?

deep convnet (2012), transformer (2017), fully connected mixer (May 2021), ...?

10



How neural networks work?
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How neural networks work?

| convex \ non-convex

o least-squares, logistic regression, support vector machines etc. are
understood extremely well
o the choice of the solver does not matter

o insightful theorems for neural networks?

12



Least Squares

min || Az — bl|3
X

convex optimality condition: AT Az = ATb

efficient solvers: conjugate gradient (CG), preconditioned CG, QR, Cholesky...

13



Least Squares with L1 Regularization
min [|Az — y||3 + ]

Lasso

o L1 norm ||z||; = Zle |z;| encourages sparsity in the solution z*

R. Tibshirani (1996), E.J. Candes & T. Tao (2005), D.L. Donoho (2006)

14



Least Squares with Group L1 regularization
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Group Lasso
o encourages group sparsity in the solution z*, i.e., most blocks x; are zero

o convex optimization and convex regularization methods are well understood

Yuan & Lin (2007)

15



Two-Layer Neural Networks with Rectified Linear Unit (ReLU) activation

Pnon-convex = minimize L (gb(XWl)WQ, y) + A (“Wl”%? + ||W2||%‘V)
Wl c Rdxm
W2 c Rmxl

where ¢(u) = ReLU(u) = (u)4

-

y /
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Neural Networks are Convex Regularizers

Pnon-convex := minimize L (¢(XW1)Wa,y) + A (|Wil|7 + [W2l|7)
W, € RIXm
Wy € R™*1
Pconvex := minimize L (Z,y)+ A R(Z)
convex regularization
Z € K CRPP

17



Pnon-convex := minimize L (¢(XW1)W2; y) + A (||W1||%? + ||W2||%>
Wl c Rde
W2 c Rmxl

Pconvex := minimize L (Z,y)+ AR(Z)
Z € K C RIXP
Theorem pnon-convex = Pconvex, and an optimal solution to pnon-convex
can be obtained from an optimal solution to pconvex.

M. Pilanci, T. Ergen Neural Networks are Convex Regularizers: Exact

Polynomial-time Convex Optimization Formulations for Two-Layer Networks,
ICML 2020 18



Squared Loss: ReLU Neural Networks are Convex Group Lasso Models

data matrix X € R"*? and label vector y € R™

xlT Y1
, Yn

m
2
Pnon-convex = Minimizey, w, ‘ Z P(XW1;)Waj — ?/H2 + A (||Wl||% + ”W2||%)
j=1

p 2 p
Peonvex = Minimizeu,.uapen || D2 DiX (s = v)) =y + A [ D lullz + il
] 1=1

1=
Dy, ..., D, are fixed diagonal matrices
Theorem pnon-convex = Pconvex, and an optimal solution to pnon-convex can be

recovered from optimal non-zero v}, v}, i =1,...,p as

u¥ v¥
Wi = e Wai = Vudll2 or Wiy = —Zmee s Wai = —/[ofl2 - 19

[




Regularization Path

P 9 P
Pconvex = MINIMizey, v, . u, v,k H ZDiX(Ui — ;) — ?JH2 +A (Z [Jwill2 + Hvz||2>
i=1 i=1

o As X € (0,00) increases, the number of non-zeros in the solution decreases
Corollary

Optimal solutions of pconvex generates the entire set of optimal architectures
f(z) = Wagp(Wix) with m neurons for m = 1,2, ...,

where W € R&>*™ W, € RMx1

o non-convex NN models correspond to regularized convex models

20
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Example: Convex Program for n = 3,d = 2

$1T U
n =3 samples X = x2T o= y
i Y3
2
xt zT 0
min o (wr—v)+ | 22 | (ug—v2)+ | 0 |(us—wv3)—y
xd 0 zd 5
3
subject to + )\(Z luill2 + Jlvill2)
i=1

DlXul Z O,Dlel Z 0
Dy Xuo > 0,D3Xv9 >0
D4XU3 Z O, D4X’Ug 2 0

equivalent to the non-convex two-layer NN problem 25



Neural Networks as High-dimensional Variable Selectors

T
L1
I —
X=| : | erRd ™, X = [DiX,...,D,X]| € R"*P
) network
Ty

neural network = convex regularization applied to X

26



Computational Complexity
Learning two-layer ReLU neural networks with m neurons
f(@) = 3250 Wap(Wiix)

Previous result: o Combinatorial O(2™n9™) (Arora et al., ICLR 2018)

Convex program O((%)") where r = rank(X)

27



Computational Complexity

Learning two-layer ReLU neural networks with m neurons
flz) =327 Wajo(Wiiz)

Previous result: o Combinatorial O(2™n9™) (Arora et al., ICLR 2018)

Convex program O((%)") where r = rank(X)

n : number of samples, d : dimension
(i) polynomial in n and m for fixed rank r

(ii) exponential in d for full rank data = d. This can not be improved
unless P = NP even for m = 1.

28



Hyperplane Arrangements
Let X € R"x4

{sign(Xw) : w € RY}

at most 23725 (1) < O((2)") patterns where r = rank(X).

29



Let X € R"*4 be partitioned into patch matrices X = [Xi, ..., Xx| where
Xk c Rnxh

{sign(Xpw) : w e RM}E

at most O((25)") patterns where h is the filter size.

30



Convolutional Neural Networks can be optimized in fully polynomial time

INPUT CONVOLUTION + RELU

o f(a;) = W2¢(W1x), W1 S ]Rdxm, W2 S ]RmX1
m filters (neurons), h filter size
typical example: 1024 filters of size 3 x 3 (m = 1024,h = 9)

convex optimization complexity: polynomial in all parameters n, m and d

M. Pilanci, T. Ergen Implicit Convex Regularizers of CNN Architectures,
ICLR 2021

31



Approximating the Convex Program

p 2 p
Pconvex = MiNiMizey, o, ..up v, ek H ZDiX(Ui —vi) — yH2 + A(Z will2 + [Jvill2)
i=1 =1

o Sample Dy, ..., D), as Diag(Xu > 0) where u ~ N(0,1)

o Low rank approximation of X ~ X, where | X — X, |2 < 0,41
(1 + Z5F) approximation in O((2)") complexity

o Backpropagation (gradient descent) on the non-convex loss

is a heuristic for the convex program

32



An Exact Characterization of All Optimal Solutions

Pnon-convex := minimize L (¢(XW1)Wa,y) + A (|Wil7 + [Wa|F)
Wy € R¥xm
W2 c Rmxl

Pconvex := minimize L (Z,y)+ AR(Z)
Z e K C R
Theorem All optimal solutions of pnon-convex can be found from the optimal solutions of
Pconvex up to permutation and neuron splitting. Hence, the optimal set of pnon-convex

is convex up to equivalence.

Y. Wang, J. Lacotte, M. Pilanci, The Hidden Convex Optimization Landscape of
Two-Layer ReLU Neural Networks, arXiv 2021.



Numerical Experiment: Two-Layer Fully Connected RelLU

10° T T
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Training cost of a two-layer ReLU network trained with SGD (10 initialization trials)

and the convex program on a toy dataset (d = 2)
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Numerical Experiment:

Objective Value
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binary classification on a subset of the CIFAR Dataset
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SGD for the Convex Program vs SGD for the Non-convex Problem

o
3

Training Accuracy
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10-class classification on the CIFAR Dataset (n = 50,000, d = 3072) with randomly

o
o

o
=

200

400

training accuracy

w00
Time(s)

800

1000

1200

0.60

055 A

Test Accuracy
o o
5 g

o
5
S

0.35

030

test accuracy

sampled arrangement patterns for the convex program

—e’S=zZ=72
~a. yoSFzlZ==
P
-
.
/I/
v’
"
"
14
I
T
I
1 —— SGD-u=1le-2
H —— sGDu=5e-3
] SGD-u=1e-3
: Convex
0 200 400 600 800 1000
Time(s)

1200

36



Plan for the rest of the talk

o Are all neural network problems convex? What is the role of the network
architecture? What does gradient descent with no regularization do?
vector output networks, e.g., autoencoders
batch normalization layers
gradient flow
Generative Adversarial Networks (GANs)
deeper networks

o Numerical results

convex vs non-convex neural networks
convex GANs

37



Vector Output Two-layer ReLU Networks: Nuclear Norm Regularization

Input layer Hidden layer Output layer

“bottleneck”

p
- DX (Ui — Vi) H A Uille + Vil
ponvex =, | min_ HZ —y,+ (Z\ i +Hw)

Theorem Pnon-convex = Pconvex, and an optlmal solution to Pnon-convex Can be
recovered from optimal non-zero U/, V.*, i =1, ..., p.

A. Sahiner, T. Ergen, J. Pauly, M. Pilanci Vector-output ReLU Neural
Network Problems are Copositive Programs, ICLR 2021
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ReLU Networks with Batch Normalization (BN)

o BN transforms a batch of data to zero mean and standard deviation one, and has

two trainable parameters a,

BN, (2) (I-21117)2 N
a~rl®) = «
A= T,

2
Pnon-convex = minimizeW1,W2,a,'y HBNa,fy(CZS(le))WQ - ?JH2 + A (||W1H%: + ||W2H%)

I P , p

Pconvex = MINIMIZey, vy . w, v, H Z; Ui(w; — v;) — ?JH2 + A (Z; [willz + Hv,Hg)
1= 1=

where UiZiViT = D; X is the SVD of DX;, i.e., BatchNorm whitens local data

T. Ergen, A. Sahiner, B. Ozturkler, J. Pauly, M. Mardani, M. Pilanci
Demystifying Batch Normalization in ReLU Networks, arXiv 2021 39



Unregularized Gradient Flow Converges to the Optimum of the Convex Program

Consider the unregularized problem

min £(6) = min 14 Xwii)rwas,
) (9) 0= (w1131 o1 103} (;( 15)+Wa2; y)
and corresponding non-convex gradient flow
d
—0(t — ot
Z0(t) € —0L(0(1))
Theorem: Suppose that X is linearly separable, and ¢ is log loss. Then, 6(t)

converges to the solution of the convex program

P p
minimizey, o;..u,,v,ek Z lluill2 + [Jvill2 s.t. Diag(y) ZDiX(ui —v) >1
i=1 i=1
Y. Wang, M. Pilanci, The Convex Geometry of Backpropagation: Neural Network
Gradient Flows Converge to Extreme Points of the Dual Convex Program, arXiv
2021. 40



Other Activations: Two-Layer Polynomial Activation Networks

—— relu activation 7
——- polynomial approximation

o polynomial activation function

o(t) = at? + bt +c

o(u)

5
4
3
2
1
0

-5-4-3-2-10 1 2 3 4 5
u

Pconvex := minimizez L (Z,y)+ A R(2)
——
convex regularization

Theorem: pconvex = Pnon-convex and can be solved via a convex semidefinite
program in polynomial-time with respect to (n,d, m).
o R(Z) = ||Z||s (nuclear norm) when o (t) = t2

B. Bartan, M. Pilanci Neural Spectrahedra and Semidefinite Lifts, arXiv,
2021.
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Polynomial Activation Networks for Binary Classification
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Layer-Wise Learning Deep Networks

Imagenet
90.9%
88.7%

CIFAR-10

92%
90.4%

16 Layer NN (VGG16) (Simonyan et al. 2015)

Layerwise (2-Layerx15) (Belilovsky et al. 2019)

43



Convex Generative Adversarial Networks (GANSs)

Training Set Eﬂﬂm Discriminator r&,
e
: R Fc;ke

i]

Generator Fake image

o Wasserstein GAN parameterized with neural networks

p" =min  max Eznp, [D(z)] — E.np. [D(Gog (2))]

0y D:1-Lipschitz

2min  max Egop, [Dg,(2)] — E.np, [Dg,(Gy, (2))]

0, 04

Theorem Two layer generator two layer discriminator WGAN problems are

convex-concave games.

a4



two-layer Rel U-activation generator G, (Z) = (ZW1), Wo
two-layer quadratic activation discriminator Dy, (X) = (XV1)?V4

Wasserstein GAN problem is equivalent to a convex-concave game, which can be
solved via convex optimization

G* =argming |G|% s.t. [XTX —GTGll2 < A

Wi, W5 =argming, w, [Willz + [Wall% s.t. G* = (ZW1) 4 Wa,

the first problem can be solved via singular value thresholding as
G = U2 = AD)Y?VT where X = USV T is the SVD of X.

the second problem can be solved via convex optimization as shown earlier

45



Progressive GANs

deeper architectures can be trained layerwise

7 W’f' ZW*

4 x 4 4 x4
X1




Numerical Results

o real faces from the CelebA dataset

b L SO, Y
(A A3 @Yﬂ;“

o fake faces generated using convex optimization

two-layer quadratic activation discriminator and linear generator trained via closed
form optimal solution progressively for a total of 4 layers
A. Sahiner et al. Hidden Convexity of Wasserstein GANs, arXiv 2021



Three-layer Neural Networks: Double Hyperplane Arrangements

. 1 m 5 m
P§={W LS > (XW))pwij), wey —y 52 W17 + [[wij]13 + w;)
j Uy, W15, W25 55— . _
’ JjEB]Q,VjJ = J=1 2 -

Theorem
The equivalent convex problem is

2

p
nin ZZD DX (W}, — Wij) —y +§ D IWille + W5l

np 2
We,Wikio. €k 2 133 53 ) ij=1

T. Ergen, M. Pilanci Global Optimality Beyond Two Layers: Training Deep
ReLU Networks via Convex Programs, ICML 2021



Deep ReLU Networks

Input Layer 1 Layer 2 Layer 3 Layer 4

arbitrarily deep ReLU neural networks with parallel architecture

Theorem There is a convex program such that pnon-convex = Pconvex
Y. Wang, T. Ergen, M. Pilanci, Parallel Deep Neural Networks Have Zero
Duality Gap, arXiv 2021.
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Conclusion and Open Problems

o we can train RelLU and polynomial NNs in polynomial time

o convex optimization theory & solvers can be applied

o multi layer ReLU neural network problems are convex in higher dimensions
o neural networks seek sparsity

o architecture search = regularizer search (block ¢2-¢1, nuclear norm,...)

o we need faster algorithms to solve high-dimensional convex programs whose
solutions are sparse and better layer-wise learning strategies

CODE: github.com/pilancilab

50



References

stanford.edu/~pilanci CODE: github.com/pilancilab

o T. Ergen, M. Pilanci, Convex Geometry and Duality of Over-parameterized Neural
Networks , Journal of Machine Learning Research (JMLR), 2021

T. Ergen, M. Pilanci, Revealing the Structure of Deep Neural Networks via
Convex Duality, ICML 2021

B. Bartan, M. Pilanci, Training Quantized Neural Networks to Global Optimality
via Semidefinite Programming, ICML 2021

o A. Sahiner, M. Mardani, B. Ozturkler, M. Pilanci, J. Pauly, Convex Regularization
behind Neural Reconstruction, ICLR 2021

T. Ergen, M. Pilanci, Convex geometry of two-layer relu networks: Implicit
autoencoding and interpretable models, AISTATS 2020

V. Gupta, B. Bartan, T. Ergen, M. Pilanci, Exact and Relaxed Convex
Formulations for Shallow Neural Autoregressive Models, ICASSP 2021

B. Bartan and M. Pilanci Convex Relaxations of Convolutional Nets, ICASSP 2019

o

(¢]

O

e}

e}

51



References

o Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature, 2015
o |. Tolstikhin et al., An all-MLP architecture for vision, 2021, arXiv:2105.01601

52



extra slides
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Interpreting NN models: Signal Prediction

—— True Signal

-6
200 300 400

o electrocardiogram (ECG)
o window size: 15 samples
o training and test set

500

600

700

800

900

1000
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— True Signal

z[d] zld+1
z[d+ 1] z[d + 2]

y Y=
z[d+n —1] x[d + n|
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Signal Prediction: Test accuracy

4r --—-Convex
- = Linear
200 300 400 500 600 700 800 900

1000
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Neural Networks are fully explainable as convex models

Pnon-convex = Pconvex

p 2 p
= minimizey, ;.. .upvpek H > DiX (u; — ;) —yH2+>\ > luillz + [vill2
i=1 i=1

AY

nea c\as
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SGD for the Convex Neural Network
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Three-layer ReLU Networks

e

— Trial #1
—Trial #2
Trial #3
—Trial #4
—Trial #5
Convex opt. val.
-O-Non-convex feas. val.

Objective Value
>
S

.c _____________
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Time(s) Time(s) Time(s)
@QK=2 b)K=5 (c) K =15

Figure 4: Training cost of a three-layer architecture trained with SGD (5 initialization trials) on a synthetic dataset with
(n,d,my, B,batch size) = (5,2,3,0.002,5) , where the green line with a marker represents the objective value obtained
by the proposed convex program in (12) and the red line with a marker represents the non-convex objective value in (4) of
a classical ReLU network constructed from the solution of convex program as described in Proposition 1. Here, we use
markers to denote the total computation time of the convex optimization solver.
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Three-layer ReLU Networks: CIFAR-10 and Fashion-MNIST
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Other Activations: Polynomial Activation Networks

o polynomial activation function o(t) = at? + bt + ¢

Pnon-convex = minimize|y,,,=1vi L (0(XW1)Wa,y) + A[W2[lx

Wl c Rdxm
W2 c Rmxl
Pconvex := minimizez L (Z,y)+ A R(Z)
N——
convex regularization
Z € K C R¥*P

o Theorem: pconvex = Pnon-convex and can be solved via a convex semidefinite
program in polynomial-time with respect to (n,d, m).

B. Bartan, M. Pilanci Neural Spectrahedra and Semidefinite Lifts, 2021.
arXiv:2101.02429v1
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Polynomial Activation Networks

special case: quadratic activation o(t) = t2

Pconvex = minimizez L (Z,y) + M| Z|« Z € K C R¥P

IIZ||« is the nuclear norm
promotes low rank solutions

first and second layer weights can be recovered via Eigenvalue Decomposition
_xm T
Z = )ity i
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Polynomial Activation Networks

—— relu activation 7
——- polynomial approximation

o polynomial activation function

B(t) = at® + bt + c

o(u)
o - N w S w

-5-4-3-2-10 1 2 3 4 5
u

st. @ = axiTZlaci + bm;fFZg + cZy,i € [n]

Z1 Zo

7 =
zI z,

=0, tr(Z1) = Zy,




Numerical Results: Quadratic Activation

toy dataset n = 100,d = 10

m = 10 planted neurons

104 —— Backpropagation (SGD)
X Convex SDP (optimal)

Test cost
=
o
o

—— Backpropagation (SGD)
X Convex SDP (optimal)

Time (sec)

20 40 60
Time (sec)

red cross marker shows the time taken by the convex solver



Quantized neural networks can be globally optimized in polynomial time

3000 \ —— SDP + sampling o8
—e— Backprop + quantization
>
20001 Tttt Lower bound go7
@ E
<] 3
o 2 06l — Backprop (unquantized)
1000 X SDP + sampling
Backprop + quantization
0.5
0 00 25 50 7.5 10.0 125
Time (sec)
4) Training accuracy
a) Training error 0.7
2000 —— SDP + sampling > !u
—e— Backprop + quantization 806
1500 3
=2 b 0.5| — Backprop (unquantized)
81000 ] % sDP+sampling
Backprop + quantization
4
500 %400 25 50 75 100 125
Time (sec)
0 10t 102 103 b) Test accuracy
m
b) Test error Figure 2. Classification st wall-clock time. Breast
cancer dataset with . = 228,d = 9. The number of neurons is
m = 500 and the regularization coefficient is 3 = 0.01

B. Bartan, M. Pilanci Training Quantized Neural Networks to Global
Optimality via Semidefinite Programming, ICML 2021



EE 269 Signal Processing for Machine Learning

o Signal processing methods for classifying, predicting, and learning signals

o Topics: Discrete Fourier Transform, distance based classifiers, kernel methods,
wavelets, adaptive filters, deep and convolutional neural networks, sparse
optimization and relaxation methods, dictionary learning

http://web.stanford.edu/class/ee269
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EE 269 Sample Projects

flight state estimation predicting corn planting EEG sleep stage
from wing vibrations  dates from satellite images classification

sensor
etwork

E3

Figure 1: Example MODIS band resampled and masked to leave only corn pixels

Figure 3: EEG Channel Locations

wee 52254
w007
3
0 i
E - 2
B e 7505

Figure 2: Estimated phenology curve for red wavelength (MODIS SR band 1)
using two sine terms, two cosine terms, and a constant ) oo -

Sloep Score Vae

Figure 2: Sleep Stage Distribution
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Learning Dynamical Models

o Punjani and Abbeel, 2015. Deep Learning Helicopter Dynamics Models
Two-Layer ReLU network f(x) = Wap(Wix)
x : current state and controls

f(x) : linear and angular acceleration the helicopter undergoes
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Learning Dynamical Models

5 T T
T 0 — Observed
%) = Linear Acceleration Model
LE/ -9 — ReLU Network Model
3;; —10
c —15¢k
g —20)
& —25+
2 —30 ' '

0 fime (s) 6 8

o Evaluated on the data from the Stanford Autonomous Helicopter Project

(P. Abbeel, A. Coates, and A. Y. Ng, 2010)
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Convex Program for Two-Layer ReLU network (n = 1620, m

the same dataset using the same architecture

102

RMSE

10!

Training set

—— SGD - Trial 1

SGD - Trial 2

~—— SGD - Trial 3

—— SGD - Trial 4

~—— SGD - Trial 5
-- Convex

o

200

time (sec)

Test set

500

600

—— SGD - Trial 1

SGD - Trial 2

—— SGD - Trial 3

—— SGD - Trial 4

—— SGD - Trial 5
-- Convex

o

200

time (sec)

500

600

= 500,d = 56) on
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Unregularized Neural Networks

punreg := minimizey, w, L (¢(XW1)Wa,y)

o Gradient descent (randomly initialized) on Punreg converges to the local
optimizers of

Pnon-convex := minimizey, w, HWlﬂ% + HWQ”%‘ sit. L(p(XW1)Wa,y) =0

Peonvex := minimize R(Z) st. L(Z,y)=0, Ze&KCRM?
Theorem pnon-convex = Pconvex, and an optimal solution to pnon-convex

can be obtained from an optimal solution to pconvex.

71



Extra Slides: spike-free Polar set

2 ER El 05 [ 05 1 15 2 “2 En E) 05 o 05 1 15 2

(a) Ellipsoidal set: (b) Rectified ellipsoidal set Qa: (c) Polar set Q%:
{Au|u e RY, ||lu, < 1} {(Au), [ueR% [luf; <1} {vl[vTu<1Vue Qa}
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Extra Slides:

nonspike-free Polar set

a5 4 o5 o 05 1 15 2 2 s El 05 o 05 1 15 2

(a) Ellipsoidal set:
{Au|ueR? |ulls <1}

(b) Rectified ellipsoidal set Qa:
{(Au) [ue R, [uf; <1}

(c) Polar set Q4 :
{vivTu<1Vue Qa}
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Extra Slides: nonspike-free Polar set

(a) Ellipsoidal set:
{Au|ueR? |u; <1}

0 02 04 06 08 1 12 14 18

(b) Rectified ellipsoidal set Qa:
{(Au)+ |lue R4, [[ull2 < 1}

(c) Polar set Q% :
{vivTu < 1Vu € Qa}
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Extra Slides: Piecewise linear approximation

’ Standard Deviation
(a) Deviation of the ReLU network
output from piecewise linear spline
vs standard deviation of initializa-
tion plotted for different number of
hidden neurons m.

—Neurons
® Samples
Piecewise Linear Fit

(b) Contribution of each neuron
along with the overall fit. Each
activation point corresponds to a
particular data sample.

IlNegative Region
sitive Region
Piecewise Linear Fit
@ Samples
Points of Intersections

(c) Binary classification using
hinge loss. Network output is a lin-
ear spline interpolation, and deci-
sion regions are determined by zero
crossings (see Lemma 2.6).
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Extra Slides: Layerwise Learning via Convex Programs on CIFAR-10

Convex formulation

Non-convex formulation

0.6 0.6

@2

804% 0.4 3=

£

]

Zo2 0.2

0.0 0.0
0 50000 100000 150000 0 50000 100000 150000
Iteration Iteration
Layer #
— layerl —— layer2 Layer 3 Layer 4 Layer 5
Convex formulation Non-convex formulation

0.8 0.8
>
gos W 06 //___M,.ﬁ——-—AO‘
5
8
Soa W o /"‘_____"‘____

0.2 v v v v 0.2 T T v v

0 20 40 60 80 0 20 40 60 80

Epoch

Epoch

Trenton Chang, Raymond Lee, Peeking Into the Black-Box:

Layerwise-Convex Training for Convolutional Neural Networks, 2021
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