Computational Principles for High-dim Data Analysis (Lecture Nine)

Yi Ma and Jiantao Jiao

EECS Department, UC Berkeley

September 28, 2021

EECS208, Fall 2021

Convex Methods for Low-Rank Matrix Recovery (Random Measurements)

1 Motivating Examples

2 Representing Low-Rank Matrix via SVD

3 Recovering a Low-Rank Matrix

"Mathematics is the art of giving the same name to different things." – Henri Poincaré

Problem

Recovering a sparse signal x_o :

$$oldsymbol{y} = oldsymbol{A} oldsymbol{x}_o \ {}_{ ext{unknown}},$$

where $A \in \mathbb{R}^{m \times n}$ is a linear map.

Recovering a low-rank matrix X_o :

$$oldsymbol{y} = \mathcal{A} \begin{bmatrix} oldsymbol{X}_o \ {}_{ ext{unknown}} \end{bmatrix},$$

where, $\mathcal{A}: \mathbb{R}^{n_1 \times n_2} \to \mathbb{R}^m$ is a linear map.

- 31

< □ > < □ > < □ > < □ > < □ > < □ >

(1)

(2)

Examples of Low-rank Modeling

Multiple images of a Lambertian object with different light:

 $\boldsymbol{Y} = \mathcal{P}_{\Omega}[\boldsymbol{N}\boldsymbol{L}].$

X = NL has rank 3. (Details in Chapter 14)

Examples of Low-rank Modeling

Recommendation Ratings:

Items Observed (Incomplete) Ratings \boldsymbol{Y}

We observe:

$$\frac{\boldsymbol{Y}}{\boldsymbol{\mathsf{Observed ratings}}} = \mathcal{P}_{\Omega} \begin{bmatrix} \boldsymbol{X} \\ \boldsymbol{\mathsf{Complete ratings}} \end{bmatrix},$$

where $\Omega \doteq \{(i, j) \mid \text{user } i \text{ has rated product } j\}.$

Examples of Low-rank Modeling

Many other examples:

- Euclidean Distance Matrix Embedding
- Latent Semantic Indexing
- ...

-

< 1 k

Singular Value Decomposition

Theorem (Compact SVD)

Let $X \in \mathbb{R}^{n_1 \times n_2}$ be a matrix, and $r = \operatorname{rank}(X)$. Then there exist $\Sigma = \operatorname{diag}(\sigma_1, \ldots, \sigma_r)$ with numbers $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r > 0$ and matrices $U \in \mathbb{R}^{n_1 \times r}$, $V \in \mathbb{R}^{n_2 \times r}$, such that $U^*U = I$, $V^*V = I$ and

$$\boldsymbol{X} = \boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^* = \sum_{i=1}^r \sigma_i \boldsymbol{u}_i \boldsymbol{v}_i^*. \tag{3}$$

Properties of the SVD:

- The left (or right) singular vectors u_i are the eigenvectors of XX* (or X*X).
- The nonzero singular values σ_i are the positive square roots of the positive eigenvalues λ_i of X^{*}X (or XX^{*}).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Singular Vectors via Nonconvex Optimization

To compute singular vector, say u_1 , consider the optimization problem:

$$\min \varphi(\boldsymbol{q}) \equiv -\frac{1}{2} \boldsymbol{q}^* \boldsymbol{\Gamma} \boldsymbol{q} \quad \text{s.t.} \quad \|\boldsymbol{q}\|_2^2 = 1$$
(4)

with $\Gamma \doteq XX^*$.

q is a critical point of $\varphi(q)$ over the sphere \mathbb{S}^{n-1} if and only if (why?):

$$abla arphi(m{q}) \propto m{q}.$$
 (5)

The critical points are precisely the eigenvectors $\pm u_i$ of Γ :

$$\Gamma q = \lambda q$$
 for some λ . (6)

All $\pm u_i$ are unstable critical points of φ over \mathbb{S}^{n-1} except $\pm u_1$!

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Singular Vectors via Nonconvex Optimization

A great circle (a geodesics) on \mathbb{S}^{n-1} : $q(t) = q \cos(t) + v \sin(t)$ with $v \perp q$ and $||v||_2 = 1$. The 2nd directional derivative of $\varphi(q(t))$ at $\bar{q} = \pm u_i$:

$$\frac{d^2}{dt^2}\varphi(\boldsymbol{q}(t))\Big|_{t=0} = \left. \begin{array}{c} \boldsymbol{v}^*\nabla^2\varphi(\boldsymbol{q})\boldsymbol{v} & -\langle\nabla\varphi(\boldsymbol{q}),\boldsymbol{q}\rangle\boldsymbol{v}^*\boldsymbol{v} = \boldsymbol{v}^*\big(-\boldsymbol{\Gamma}+\lambda_i\boldsymbol{I}\big)\boldsymbol{v}.\\ \text{Curvature of }\varphi & \text{Curvature of the sphere} \end{array} \right.$$

< □ > < □ > < □ > < □ > < □ > < □ >

Best Low-Rank Matrix Approximation

Theorem (Best Low-rank Approximation)

Let $\boldsymbol{Y} \in \mathbb{R}^{n_1 imes n_2}$, and consider the following optimization problem

$$\min \|\boldsymbol{X} - \boldsymbol{Y}\|_{F} \quad s.t. \quad \operatorname{rank}(\boldsymbol{X}) \le r.$$
(7)

The optimal solution \hat{X} has the form $\hat{X} = \sum_{i=1}^{r} \sigma_i u_i v_i^*$, where $Y = \sum_{i=1}^{\min(n_1, n_2)} \sigma_i u_i v_i^*$ is the singular value decomposition of Y.

The same solution (truncating the SVD) applies to minimizing the rank of the unknown matrix X, subject to a data fidelity constraint:

min rank
$$(\boldsymbol{X})$$
 s.t. $\|\boldsymbol{X} - \boldsymbol{Y}\|_F \le \epsilon.$ (8)

イロト イポト イヨト イヨト 二日

General Rank Minimization

Problem: recover a low-rank matrix X from linear measurements:

$$\min \operatorname{rank}(\boldsymbol{X})$$
 subject to $\mathcal{A}[\boldsymbol{X}] = \boldsymbol{y}$ (9)

where $y \in \mathbb{R}^m$ is an observation and $\mathcal{A} : \mathbb{R}^{n_1 \times n_2} \to \mathbb{R}^m$ is a linear map:

$$\mathcal{A}[\mathbf{X}] = (\langle \mathbf{A}_1, \mathbf{X} \rangle, \dots, \langle \mathbf{A}_m, \mathbf{X} \rangle), \quad \mathbf{A}_i \in \mathbb{R}^{n_1 \times n_2}.$$
 (10)

Since $\operatorname{rank}(X) = \|\sigma(X)\|_0$, the problem is equivalent to the (NP-hard) ℓ^0 minimization:

$$\min \|\boldsymbol{\sigma}(\boldsymbol{X})\|_0 \quad \text{subject to} \quad \mathcal{A}[\boldsymbol{X}] = \boldsymbol{y}. \tag{11}$$

Convex Relaxation of Rank Minimization

Replace the rank, which is the ℓ^0 norm $\sigma(X)$ with the ℓ^1 norm of $\sigma(X)$:

Nuclear norm:
$$\|\mathbf{X}\|_* \doteq \|\boldsymbol{\sigma}(\mathbf{X})\|_1 = \sum_i \sigma_i(\mathbf{X}).$$
 (12)

This is also known as the *trace norm* (for symmetric positive semidefinite matrices), the *Schatten* 1-*norm*, or the *Ky*-*Fan k*-*norm*.

Nuclear norm minimization problem:

$$\min \|X\|_*$$
 subject to $\mathcal{A}[X] = y.$ (13)

Nuclear Norm – Convex Envelope of Rank

Why $||X||_*$ is a norm (hence convex)?

Theorem

For $M \in \mathbb{R}^{n_1 \times n_2}$, let $\|M\|_* = \sum_{i=1}^{\min\{n_1, n_2\}} \sigma_i(M)$. Then $\|\cdot\|_*$ is a norm. Moreover, the nuclear norm and the the spectral norm are dual norms:

$$\|M\|_* = \sup_{\|N\| \le 1} \langle M, N \rangle, \quad \text{and} \quad \|M\| = \sup_{\|N\|_* \le 1} \langle M, N \rangle.$$
 (14)

Why $\left\| \boldsymbol{X} \right\|_{*}$ is tight to approximate rank (\boldsymbol{X}) ?

Theorem

 $\left\| oldsymbol{M}
ight\|_{*}$ is the convex envelope of $\mathrm{rank}(oldsymbol{M})$ over

$$\mathsf{B}_{op} \doteq \{ \boldsymbol{M} \mid \| \boldsymbol{M} \| \le 1 \}.$$
(15)

イロト 不得 トイヨト イヨト 二日

Nuclear Norm – Variational Forms

How to compute besides SVD?

 $\left\| oldsymbol{X}
ight\|_{*}$ is equivalent to the following variational forms:

1
$$\|X\|_* = \min_{U,V} \frac{1}{2} (\|U\|_F^2 + \|V\|_F^2)$$
, s.t. $X = UV^*$.

2
$$\|X\|_* = \min_{U,V} \|U\|_F \|V\|_F$$
, s.t. $X = UV^*$.

3 $\|X\|_* = \min_{U,V} \sum_k \|u_k\|_2 \|v_k\|_2$, s.t. $X = UV^* \doteq \sum_k u_k v_k^*$.

These are useful in parameterizing low-rank matrices and finding them numerically, say via optimization.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Success of Nuclear Norm – Geometric Intuition

Nuclear norm ball: consider the set

of 2×2 symmetric matrices, parameterized as

$$\boldsymbol{M} = \begin{bmatrix} x & y \\ y & z \end{bmatrix} \in \mathbb{R}^{2 \times 2}.$$

The nuclear norm (unit) ball

$$\mathsf{B}_* = \{\boldsymbol{M} \mid \|\boldsymbol{M}\|_* \le 1\}$$

is a cylinder in \mathbb{R}^3 . The two circles at both ends of the cylinder correspond to matrices of rank 1.

Rank-RIP

Definition (Rank-Restricted Isometry Property)

The operator \mathcal{A} has the rank-restricted isometry property of rank r with constant δ , if $\forall \mathbf{X}$'s that satisfy $\operatorname{rank}(\mathbf{X}) \leq r$, we have

$$(1-\delta) \| \boldsymbol{X} \|_{F}^{2} \leq \| \mathcal{A}[\boldsymbol{X}] \|_{2}^{2} \leq (1+\delta) \| \boldsymbol{X} \|_{F}^{2}.$$
 (16)

The rank-r restricted isometry constant $\delta_r(\mathcal{A})$ is the smallest δ such that the above property holds.

Theorem (Uniqueness)

If $y = \mathcal{A}[X_o]$, with $r = \operatorname{rank}(X_o)$ and $\delta_{2r}(\mathcal{A}) < 1$, then X_o is the unique optimal solution to the rank minimization problem

$$\min \operatorname{rank}(\boldsymbol{X})$$
 subject to $\mathcal{A}[\boldsymbol{X}] = \boldsymbol{y}.$ (17)

イロト イヨト イヨト

Theorem (Nuclear Norm Minimization Success)

Suppose that $\boldsymbol{y} = \mathcal{A}[\boldsymbol{X}_o]$ with $\operatorname{rank}(\boldsymbol{X}_o) \leq r$, and that $\delta_{4r}(\mathcal{A}) \leq \sqrt{2} - 1$. Then \boldsymbol{X}_o is the unique optimal solution to the nuclear norm minimization problem

$$\min \|X\|_*$$
 subject to $\mathcal{A}[X] = y$. (18)

Let $X_o = U\Sigma V^*$ be the SVD of the true solution X_o .

"Support" of X_o (compared to | of x_o):

 $\mathsf{T} \doteq \{ \boldsymbol{U}\boldsymbol{R}^* + \boldsymbol{Q}\boldsymbol{V}^* \mid \boldsymbol{R} \in \mathbb{R}^{n_2 \times r}, \ \boldsymbol{Q} \in \mathbb{R}^{n_1 \times r} \} \subseteq \mathbb{R}^{n_1 \times n_2}.$ (19)

"Sign" of X_o (compared to σ of x_o): UV^* plays the role of the "signs" of X_o since $UV^* \in \mathsf{T}$ and

$$\langle \boldsymbol{X}_{o}, \boldsymbol{U}\boldsymbol{V}^{*} \rangle = \left\| \boldsymbol{X}_{o} \right\|_{*}.$$
 (20)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Proof Ideas: very similar to certifying optimality of x_o for the ℓ^1 minimization.

Let $\hat{X} = X_o + H$ be any optimal solution to our problem (18). Then $H = \hat{X} - X_o \in \text{null}(\mathcal{A})$ must satisfy the following **cone restriction**:

$$\left\|\mathcal{P}_{\mathsf{T}^{\perp}}[\boldsymbol{H}]\right\|_{*} \leq \left\|\mathcal{P}_{\mathsf{T}}[\boldsymbol{H}]\right\|_{*}.$$
(21)

Definition (Matrix Restricted Strong Convexity)

The linear operator A satisfies the matrix *restricted strong convexity* (RSC) condition of rank r with constant α if for the support T of every matrix of rank r and for all nonzero H satisfying

$$\left\|\mathcal{P}_{\mathsf{T}^{\perp}}[\boldsymbol{H}]\right\|_{*} \leq \alpha \cdot \left\|\mathcal{P}_{\mathsf{T}}[\boldsymbol{H}]\right\|_{*}.$$
(22)

with some constant $\alpha \geq 1$, we have

$$\|\mathcal{A}[\boldsymbol{H}]\|_{2}^{2} > \mu \cdot \|\boldsymbol{H}\|_{F}^{2}, \quad \text{for some } \mu > 0.$$
(23)

(日) (四) (日) (日) (日)

Theorem (Rank-RIP Implies Matrix RSC)

If a linear operator A satisfies rank-RIP with $\delta_{4r} < \frac{1}{1+\alpha\sqrt{2}}$, then A satisfies the matrix-RSC condition of rank r with constant α .

Theorem (Rank-RIP of Gaussian Measurements)

If the measurement operator \mathcal{A} is a random Gaussian map with entries i.i.d. $\mathcal{N}(0, \frac{1}{m})$, then \mathcal{A} satisfies the rank-RIP with constant $\delta_r(\mathcal{A}) \leq \delta$ with high probability, provided $m \geq Cr(n_1 + n_2) \times \delta^{-2} \log \delta^{-1}$, where C > 0 is a numerical constant.

Proofs precisely emulate those of ℓ^1 minimization for sparsity!

イロト 不得 トイヨト イヨト 二日

Matrices with Rank-RIP

Theorem

Let us assume $\{U_1, U_2, \ldots, U_{n^2}\} \subset \mathbb{C}^{n \times n}$ be a unitary basis for the matrix space $\mathbb{C}^{n \times n}$ and with $||U_i|| \leq \zeta/\sqrt{n}$ for some constant ζ . Let \mathcal{A} consists of m randomly selected $A_i = \frac{n}{\sqrt{m}}U_i$. Then if

$$m \ge C\zeta^2 \cdot rn \log^6 n,\tag{24}$$

then w.h.p., A satisfies the rank-RIP over the set of all rank-r matrices.

Example: Pauli observables of quantum states.

 $U_i = P_1 \otimes \cdots \otimes P_k$ where \otimes is the tensor (Kronecker) product and each $P_i = \frac{1}{\sqrt{2}}\sigma$ where σ is a 2×2 matrix of the four possibilities:

$$oldsymbol{\sigma}_1 = egin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad oldsymbol{\sigma}_2 = egin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad oldsymbol{\sigma}_3 = egin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, \quad oldsymbol{\sigma}_4 = egin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

イロト イポト イヨト イヨト 二日

Noisy Measurements - Worst Case

Theorem (Stable Low-rank Recovery via BPDN)

Suppose that $\boldsymbol{y} = \mathcal{A}[\boldsymbol{X}_o] + \boldsymbol{z}$, with $\|\boldsymbol{z}\|_2 \leq \epsilon$, and let $\operatorname{rank}(\boldsymbol{X}_o) = r$. If $\delta_{4r}(\mathcal{A}) < \sqrt{2} - 1$, then any solution $\hat{\boldsymbol{X}}$ to the optimization problem

$$\min \|\boldsymbol{X}\|_*$$
 subject to $\|\mathcal{A}[\boldsymbol{X}] - \boldsymbol{y}\|_2 \leq \epsilon.$ (25)

satisfies

$$\|\hat{\boldsymbol{X}} - \boldsymbol{X}_o\|_F \le C\epsilon \tag{26}$$

for some numerical constant C > 0.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Noisy Measurements - High Probability

Theorem (Stable Low-rank Recovery via Lasso)

Suppose that $\mathcal{A} \sim_{iid} \mathcal{N}(0, \frac{1}{m})$, and $\boldsymbol{y} = \mathcal{A}[\boldsymbol{X}_o] + \boldsymbol{z}$, with \boldsymbol{X}_o of rank r and $\boldsymbol{z} \sim_{iid} \mathcal{N}(0, \frac{\sigma^2}{m})$. Solve the matrix Lasso

$$\min \frac{1}{2} \|\boldsymbol{y} - \mathcal{A}[\boldsymbol{X}]\|_{2}^{2} + \lambda_{m} \|\boldsymbol{X}\|_{*}, \qquad (27)$$

with regularization parameter $\lambda_m = c \cdot 2\sigma \sqrt{\frac{(n_1+n_2)}{m}}$ for a large enough c. Then with high probability,

$$\|\hat{X} - X_o\|_F \leq C' \sigma \sqrt{\frac{r(n_1 + n_2)}{m}}.$$
 (28)

Inexact Low Rank

Theorem (Inexact Low-rank Recovery)

Let $m{y} = \mathcal{A}[m{X}_o] + m{z}$, with $\|m{z}\|_2 \leq \epsilon$. Let $\hat{m{X}}$ solve the denoising problem

$$\min \|\boldsymbol{X}\|_{*}$$
 subject to $\|\boldsymbol{y} - \mathcal{A}[\boldsymbol{X}]\|_{2} \leq \epsilon.$ (29)

Then for any r such that $\delta_{4r}(oldsymbol{A}) \ < \ \sqrt{2}-1$,

$$\left\|\hat{\boldsymbol{X}} - \boldsymbol{X}_{o}\right\|_{2} \leq C \frac{\left\|\boldsymbol{X}_{o} - [\boldsymbol{X}_{o}]_{r}\right\|_{*}}{\sqrt{r}} + C'\epsilon$$
(30)

for some constants C and C'.

イロト イポト イヨト イヨト 二日

Phase Transition

Let D be the descent cone of the nuclear norm at $oldsymbol{X}_o \in \mathbb{R}^{n_1 imes n_2}$ of rank r:

$$\mathsf{D} \doteq \{ \boldsymbol{H} \mid \| \boldsymbol{X}_{o} + \boldsymbol{H} \|_{*} \leq \| \boldsymbol{X}_{o} \|_{*} \}.$$
(31)

Theorem (Phase Transition in Low-rank Recovery)

Let ${m G}$ be an $(n_1-r) imes (n_2-r)$ matrix with entries i.i.d. $\mathcal{N}(0,1).$ Set

$$\psi(n_1, n_2, r) = \inf_{\tau \ge 0} \{ r(n_1 + n_2 - r + \tau^2) + \mathbb{E}_{\boldsymbol{G}} \left[\| \mathcal{D}_{\tau}[\boldsymbol{G}] \|_F^2 \right] \}.$$
(32)

Then there is a phase transition at $m^* = \delta(\mathsf{D})$:

$$\psi(n_1, n_2, r) - 2\sqrt{n_2/r} \le \delta(\mathsf{D}) \le \psi(n_1, n_2, r).$$
 (33)

イロト 不得 トイヨト イヨト 二日

Summary

Parallel developments for sparse vectors and low-rank matrices.

Sparse v.s. Low-rank	Sparse Vector	Low-rank Matrix
Low-dimensionality of	individual signal x	a set of signals X
Compressive sensing	$oldsymbol{y} = oldsymbol{A}oldsymbol{x}$	$oldsymbol{Y} = \mathcal{A}(oldsymbol{X})$
Low-dim measure	ℓ^0 norm $\ oldsymbol{x}\ _0$	$rank(oldsymbol{X})$
Convex surrogate	ℓ^1 norm $\ oldsymbol{x}\ _1$	nuclear norm $\ oldsymbol{X}\ _*$
Success conditions (RIP)	$\delta_{2k}(\boldsymbol{A}) \ge \sqrt{2} - 1$	$\delta_{4r}(\boldsymbol{A}) \ge \sqrt{2} - 1$
Random measurements	$m = O\bigl(k\log(n/k)\bigr)$	m = O(nr)
Stable/Inexact recovery	$oldsymbol{y} = oldsymbol{A}oldsymbol{x} + oldsymbol{z}$	$oldsymbol{Y} = \mathcal{A}(oldsymbol{X}) + oldsymbol{Z}$
Phase transition at	Stat. dim. of descent cone: $m^* = \delta(D)$	

э

Image: A matrix

Assignments

- Reading: Sections 4.1-4.3 of Chapter 4.
- Programming Homework # 2.

э

∃ ► < ∃ ►</p>

- ∢ 🗗 ▶