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Convex Methods for Low-Rank Matrix Recovery

(Random Measurements)

@ Motivating Examples
@® Representing Low-Rank Matrix via SVD

© Recovering a Low-Rank Matrix

“Mathematics is the art of giving the same name to different things.”
— Henri Poincaré
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Problem

Recovering a sparse signal x,:

Yy = A Lo (1)

observation unknown

where A € R™*" s a linear map.

Recovering a low-rank matrix X,:

Y :A[Xo], (2)

observation unknown

where, A : R™*"2 — R™ is a linear map.
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Motivating Examples

Examples of Low-rank Modeling

Multiple images of Data space R™
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Motivating Examples

Examples of Low-rank Modeling

Recommendation Ratings:

@ 5 3 ... 7 53 ... 5
B |22 4 42 ... 4
N = Pao .

5 7 ... 7 556 ... 3

. Complete Ratings X
Ra R
Ttems
Observed (Incomplete) Ratings Y
We observe:

Complete ratings:|

-

Observed ratings

where Q = {(4,) | user i has rated product j}.
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Motivating Examples

Examples of Low-rank Modeling

Many other examples:
® Euclidean Distance Matrix Embedding

® Latent Semantic Indexing
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Representing Low-Rank Matrix via SVD

Singular Value Decomposition

Theorem (Compact SVD)

Let X € R™*"2 be a matrix, and r = rank(X ). Then there exist
¥ = diag(o1,...,0,) with numbers o1 > o9 > --- > o, > 0 and matrices
U e RM"*" 'V e R™*" such that U*U = I, V*V = I and

X =UXV* = Zaiuiv:' (3)
=1

Properties of the SVD:

® The left (or right) singular vectors u; are the eigenvectors of X X*
(or X*X).

® The nonzero singular values o; are the positive square roots of the
positive eigenvalues \; of X*X (or X X™*).
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Representing Low-Rank Matrix via SVD

Singular Vectors via Nonconvex Optimization

To compute singular vector, say u;, consider the optimization problem:
ming(q) = —3¢'Tqg st [lgl3 =1 (4)
with T' = X X*.
q is a critical point of ¢(q) over the sphere S"~1 if and only if (why?):
V(q) o g. (5)
The critical points are precisely the eigenvectors +u; of I':
I'q = \q for some \. (6)

All +u; are unstable critical points of ¢ over S*! except +u,!
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Representing Low-Rank Matrix via SVD

Singular Vectors via Nonconvex Optimization

®+

Objective: Critical point: Curvature:
»(g) = —39'Tq Vo(q) = Ag 2 0@,
= v V’p(qv

+  (Vela), —a) ]3.
A great circle (a geodesics) on S"~1: q(t) = qcos(t) +vsin(t) with v L q
and ||v||, = 1. The 2nd directional derivative of ¢(q(t)) at § = +u;:

2
L o)) = v Viplg)w — (Volg).qyvs =v" (- + M),

2
dt t=0 Curvature of ¢ Curvature of the sphere “Hessian”
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Best Low-Rank Matrix Approximation

Theorem (Best Low-rank Approximation)

Let Y € R™*"2  and consider the following optimization problem
min || X - Y|, st rank(X) <r. (7)

The optimal solution X has the form X = S°1_ ojuv?, where
Y = me(nl’m oiu;v; is the singular value decomposition of Y .

The same solution (truncating the SVD) applies to minimizing the rank of
the unknown matrix X, subject to a data fidelity constraint:

minrank(X) st. [ X -Y|p<e (8)
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Recovering a Low-Rank Matrix

General Rank Minimization

Problem: recover a low-rank matrix X from linear measurements:
minrank(X) subjectto A[X]|=1y (9)
where y € R™ is an observation and A : R™*"2 — R™ is a linear map:
AX] = (A1, X),...,(Ap, X)), A; e RM*"2, (10)

Since rank(X) = [|o(X)|,, the problem is equivalent to the (NP-hard) ¢°
minimization:

min ||o(X)||, subject to A[X]=1y. (11)
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Recovering a Low-Rank Matrix

Convex Relaxation of Rank Minimization

Replace the rank, which is the £° norm o (X) with the ¢! norm of o(X):
Nuclear norm: || X||. = [|o(X)[l; = Y 0i(X). (12)

This is also known as the trace norm (for symmetric positive semidefinite
matrices), the Schatten 1-norm, or the Ky-Fan k-norm.

Nuclear norm minimization problem:

min | X ||, subjectto A[X]=1y. (13)
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Recovering a Low-Rank Matrix

Nuclear Norm — Convex Envelope of Rank

Why || X ||, is a norm (hence convex)?

Theorem
min{ni,n2} o

For M € R™*"2 et |M||, = >, i(M). Then |||, is a norm.
Moreover, the nuclear norm and the the spectral norm are dual norms:

IM|l, = sup (M,N), and [M]|= sup (M,N).  (14)
INfi<1 1N, <1

Why || X ||, is tight to approximate rank(X)?

||M||, is the convex envelope of rank(M ) over

Bop = {M | | M]| <1}. (15)
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Recovering a Low-Rank Matrix

Nuclear Norm — Variational Forms

How to compute besides SVD?
|| X||, is equivalent to the following variational forms:
© || X||, =ming v 3(|U[} +[VI}), st. X =UV*™.
@ | X|, =ming v |U||p||V|F, st. X =UV*.
© IIX]), = miny X furlolfvplle, st X = UV = ¥, weos.

These are useful in parameterizing low-rank matrices and finding
them numerically, say via optimization.
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Recovering a Low-Rank Matrix

Success of Nuclear Norm — Geometric Intuition

Nuclear norm ball: consider the set
of 2 X 2 symmetric matrices, parameterized as

M=[jY] €R,
The nuclear norm (unit) ball
B.={M|[|M]. <1}

is a cylinder in R3. The two circles at both ends of the cylinder correspond
to matrices of rank 1.

(@) (b)
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Recovering a Low-Rank Matrix

Rank-RIP

Definition (Rank-Restricted Isometry Property)

The operator A has the rank-restricted isometry property of rank r with
constant ¢, if V. X's that satisfy rank(X ) < r, we have

1-9IX[7 < [AX]IE < 1 +)IX]E. (16)

The rank-r restricted isometry constant d,(.A) is the smallest 0 such that
the above property holds.

Theorem (Uniqueness)

Ify = A[X,], with r = rank(X,) and d2,(A) < 1, then X, is the unique
optimal solution to the rank minimization problem

minrank(X) subject to A[X]|=uy. (17)
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Recovering a Low-Rank Matrix

Rank-RIP for Nuclear Norm Minimization

Theorem (Nuclear Norm Minimization Success)

Suppose that y = A[X,] with rank(X,) < r, and that 6,,.(A) < v/2 — 1.

Then X, is the unique optimal solution to the nuclear norm minimization
problem

min || X ||, subject to A[X]|=uy. (18)
Let X, = UXV™ be the SVD of the true solution X,.
“Support” of X, (compared to | of z,):
T={UR*+QV*| ReR™*" Qe R" "} CR™*"2, (19)

“Sign” of X, (compared to o of z,):
UV™ plays the role of the “signs” of X, since UV* € T and

(Xo, UVT) = [| Xoll,, - (20)
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Recovering a Low-Rank Matrix

Rank-RIP for Nuclear Norm Minimization

Proof Ideas: very similar to certifying

optimality of x, for the ¢! minimization. T
M, = {X | rank(X) =7}

Let X = X, + H be any optimal
solution to our problem (18). Then

H = X — X, € null(A) must satisfy the
following cone restriction:

[Pro[H]I. < Pr[H]. - (21)

Ma (EECS Department, UC Berkeley) EECS208, Fall 2021 September 28, 2021 18 /27



Recovering a Low-Rank Matrix

Rank-RIP for Nuclear Norm Minimization

Definition (Matrix Restricted Strong Convexity)

The linear operator A satisfies the matrix restricted strong convexity
(RSC) condition of rank 7 with constant « if for the support T of every
matrix of rank r and for all nonzero H satisfying

[Pro[H]|, < o [|Pr[H],- (22)
with some constant o« > 1, we have

IA[H]|3 > po- | H||%,  for some y > 0. (23)
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Recovering a Low-Rank Matrix

Rank-RIP for Nuclear Norm Minimization

Theorem (Rank-RIP Implies Matrix RSC)

If a linear operator A satisfies rank-RIP with 04, < +ﬁ then A satisfies

1+«
the matrix-RSC condition of rank r with constant c.

Theorem (Rank-RIP of Gaussian Measurements)

If the measurement operator A is a random Gaussian map with entries
ii.d. N'(0,L1), then A satisfies the rank-RIP with constant 6,(A) < & with
high probability, provided m > Cr(ni + na) x 6 2logd~!, where C > 0 is
a numerical constant.

Proofs precisely emulate those of /! minimization for sparsity!
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Matrices with Rank-RIP

Let us assume {U1,Us,...,U,2} C C"™™ be a unitary basis for the
matrix space C"*" and with ||\U;|| < {/+/n for some constant (. Let A
consists of m randomly selected A; = \/LmUi. Then if

m > C¢* - rnlogdn, (24)
then w.h.p., A satisfies the rank-RIP over the set of all rank-r matrices.

Example: Pauli observables of quantum states.
U, =P ®- - ® P, where ® is the tensor (Kronecker) product and each
P, = %0’ where o is a 2 X 2 matrix of the four possibilities:

10 o 1 0 - 10
=00 1|0 2701 o0 T ool YT o —1|”
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Recovering a Low-Rank Matrix

Noisy Measurements - Worst Case

Theorem (Stable Low-rank Recovery via BPDN)

Suppose that y = A[X,]| + z, with ||z||, <€, and let rank(X,) =r. If
64 (A) < V2 — 1, then any solution X to the optimization problem

min | X ||, subject to ||A[X]—yl, <e. (25)

satisfies
|X = X,|Ir < Ce (26)

for some numerical constant C > 0.
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Noisy Measurements - High Probability

Theorem (Stable Low-rank Recovery via Lasso)

Suppose that A ~;q N (0, %) and y = A[X,] + z, with X, of rank r
and z ~y;q N (0, %) Solve the matrix Lasso

min g [y — ALX]||3 + Am |1 X .. (27)

with regularization parameter A, = c- 204/ W for a large enough c.
Then with high probability,

1% - X lp < Cloy/mmE"2) (28)

m 0
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Recovering a Low-Rank Matrix

Inexact Low Rank

Theorem (Inexact Low-rank Recovery)

Let y = A[X,] + 2z, with || z|, < . Let X solve the denoising problem

min || X ||, subject to |y — A[X]||, <e. (29)

Then for any r such that 6,,.(A) < V2 —1,

A X, — | X
‘ X -X, < CM + (e (30)
2 T
for some constants C and C'.
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Recovering a Low-Rank Matrix

Phase Transition

Let D be the descent cone of the nuclear norm at
X, € R™*"2 of rank r:

D={H|[X,+H|, <[X|.}. (31

Theorem (Phase Transition in Low-rank Recovery)

Let G be an (ny —r) X (ny — r) matrix with entries i.i.d. N'(0,1). Set
Plna,nz,m) = inf {r(m +nz =7 +7%) +Eg ID:(GII% ]} (32)

Then there is a phase transition at m* = §(D):

Y(ny,ng,r) —24y/ne/r < §(D) < (n1,ne, ). (33)
Ma (EECS Department, UC Berkeley) EECS208, Fall 2021

September 28, 2021 25 /27



Recovering a Low-Rank Matrix

Summary
Parallel developments for sparse vectors and low-rank matrices.

Sparse v.s. Low-rank Sparse Vector Low-rank Matrix

Low-dimensionality of individual signal « a set of signals X

Compressive sensing y=Ax Y = A(X)
Low-dim measure 29 norm |||l rank(X)
Convex surrogate 2t norm ||z, nuclear norm || X ||«

Success conditions (RIP) | o (A) > v2 —1 Sur(A) > V2 -1

Random measurements | m = O(klog(n/k)) m = O(nr)
Stable/Inexact recovery y=Ax+z Y=AX)+2Z
Phase transition at Stat. dim. of descent cone: m* = §(D)
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Assignments

® Reading: Sections 4.1-4.3 of Chapter 4.
® Programming Homework # 2.
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