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Convex Methods for Low-Rank Matrix Recovery
(Random Measurements)

1 Motivating Examples

2 Representing Low-Rank Matrix via SVD

3 Recovering a Low-Rank Matrix

“Mathematics is the art of giving the same name to different things.”
– Henri Poincaré
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Problem

Recovering a sparse signal xo:

y
observation

= A xo
unknown

, (1)

where A ∈ Rm×n is a linear map.

Recovering a low-rank matrix Xo:

y
observation

= A
[
Xo

unknown

]
, (2)

where, A : Rn1×n2 → Rm is a linear map.
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Motivating Examples

Examples of Low-rank Modeling
Multiple images of
a Lambertian object
with different light:

Y = PΩ[NL].

X = NL has rank 3.
(Details
in Chapter 14)
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Motivating Examples

Examples of Low-rank Modeling

Recommendation Ratings:

We observe:

Y
Observed ratings

= PΩ

[
X

Complete ratings

]
,

where Ω
.
=
{

(i, j) | user i has rated product j
}
.
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Motivating Examples

Examples of Low-rank Modeling

Many other examples:

• Euclidean Distance Matrix Embedding

• Latent Semantic Indexing

• ...
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Representing Low-Rank Matrix via SVD

Singular Value Decomposition

Theorem (Compact SVD)

Let X ∈ Rn1×n2 be a matrix, and r = rank(X). Then there exist
Σ = diag(σ1, . . . , σr) with numbers σ1 ≥ σ2 ≥ · · · ≥ σr > 0 and matrices
U ∈ Rn1×r, V ∈ Rn2×r, such that U∗U = I, V ∗V = I and

X = UΣV ∗ =

r∑
i=1

σiuiv
∗
i . (3)

Properties of the SVD:

• The left (or right) singular vectors ui are the eigenvectors of XX∗

(or X∗X).

• The nonzero singular values σi are the positive square roots of the
positive eigenvalues λi of X∗X (or XX∗).
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Representing Low-Rank Matrix via SVD

Singular Vectors via Nonconvex Optimization

To compute singular vector, say u1, consider the optimization problem:

minϕ(q) ≡ −1
2q
∗Γq s.t. ‖q‖22 = 1 (4)

with Γ
.
= XX∗.

q is a critical point of ϕ(q) over the sphere Sn−1 if and only if (why?):

∇ϕ(q) ∝ q. (5)

The critical points are precisely the eigenvectors ±ui of Γ:

Γq = λq for some λ. (6)

All ±ui are unstable critical points of ϕ over Sn−1 except ±u1!
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Representing Low-Rank Matrix via SVD

Singular Vectors via Nonconvex Optimization

A great circle (a geodesics) on Sn−1: q(t) = q cos(t) + v sin(t) with v ⊥ q
and ‖v‖2 = 1. The 2nd directional derivative of ϕ(q(t)) at q̄ = ±ui:

d2

dt2
ϕ(q(t))

∣∣∣
t=0

= v∗∇2ϕ(q)v
Curvature of ϕ

− 〈∇ϕ(q), q〉v∗v
Curvature of the sphere

= v∗
(
−Γ + λiI

)
“Hessian”

v.
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Representing Low-Rank Matrix via SVD

Best Low-Rank Matrix Approximation

Theorem (Best Low-rank Approximation)

Let Y ∈ Rn1×n2 , and consider the following optimization problem

min ‖X − Y ‖F s.t. rank(X) ≤ r. (7)

The optimal solution X̂ has the form X̂ =
∑r

i=1 σiuiv
∗
i , where

Y =
∑min(n1,n2)

i=1 σiuiv
∗
i is the singular value decomposition of Y .

The same solution (truncating the SVD) applies to minimizing the rank of
the unknown matrix X, subject to a data fidelity constraint:

min rank(X) s.t. ‖X − Y ‖F ≤ ε. (8)
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Recovering a Low-Rank Matrix

General Rank Minimization

Problem: recover a low-rank matrix X from linear measurements:

min rank(X) subject to A[X] = y (9)

where y ∈ Rm is an observation and A : Rn1×n2 → Rm is a linear map:

A[X] = (〈A1,X〉, . . . , 〈Am,X〉), Ai ∈ Rn1×n2 . (10)

Since rank(X) = ‖σ(X)‖0, the problem is equivalent to the (NP-hard) `0

minimization:

min ‖σ(X)‖0 subject to A[X] = y. (11)
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Recovering a Low-Rank Matrix

Convex Relaxation of Rank Minimization

Replace the rank, which is the `0 norm σ(X) with the `1 norm of σ(X):

Nuclear norm: ‖X‖∗
.
= ‖σ(X)‖1 =

∑
i

σi(X). (12)

This is also known as the trace norm (for symmetric positive semidefinite
matrices), the Schatten 1-norm, or the Ky-Fan k-norm.

Nuclear norm minimization problem:

min ‖X‖∗ subject to A[X] = y. (13)
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Recovering a Low-Rank Matrix

Nuclear Norm – Convex Envelope of Rank

Why ‖X‖∗ is a norm (hence convex)?

Theorem

For M ∈ Rn1×n2 , let ‖M‖∗ =
∑min{n1,n2}

i=1 σi(M). Then ‖·‖∗ is a norm.
Moreover, the nuclear norm and the the spectral norm are dual norms:

‖M‖∗ = sup
‖N‖≤1

〈M ,N〉, and ‖M‖ = sup
‖N‖∗≤1

〈M ,N〉. (14)

Why ‖X‖∗ is tight to approximate rank(X)?

Theorem

‖M‖∗ is the convex envelope of rank(M) over

Bop
.
= {M | ‖M‖ ≤ 1}. (15)
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Recovering a Low-Rank Matrix

Nuclear Norm – Variational Forms

How to compute besides SVD?

‖X‖∗ is equivalent to the following variational forms:

1 ‖X‖∗ = minU ,V
1
2(‖U‖2F + ‖V ‖2F ), s.t. X = UV ∗.

2 ‖X‖∗ = minU ,V ‖U‖F ‖V ‖F , s.t. X = UV ∗.

3 ‖X‖∗ = minU ,V
∑

k ‖uk‖2‖vk‖2, s.t. X = UV ∗
.
=
∑

k ukv
∗
k.

These are useful in parameterizing low-rank matrices and finding
them numerically, say via optimization.
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Recovering a Low-Rank Matrix

Success of Nuclear Norm – Geometric Intuition
Nuclear norm ball: consider the set
of 2× 2 symmetric matrices, parameterized as

M = [ x yy z ] ∈ R2×2.

The nuclear norm (unit) ball

B∗ = {M | ‖M‖∗ ≤ 1}
is a cylinder in R3. The two circles at both ends of the cylinder correspond
to matrices of rank 1.
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Recovering a Low-Rank Matrix

Rank-RIP

Definition (Rank-Restricted Isometry Property)

The operator A has the rank-restricted isometry property of rank r with
constant δ, if ∀X’s that satisfy rank(X) ≤ r, we have

(1− δ)‖X‖2F ≤ ‖A[X]‖22 ≤ (1 + δ)‖X‖2F . (16)

The rank-r restricted isometry constant δr(A) is the smallest δ such that
the above property holds.

Theorem (Uniqueness)

If y = A[Xo], with r = rank(Xo) and δ2r(A) < 1, then Xo is the unique
optimal solution to the rank minimization problem

min rank(X) subject to A[X] = y. (17)
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Recovering a Low-Rank Matrix

Rank-RIP for Nuclear Norm Minimization

Theorem (Nuclear Norm Minimization Success)

Suppose that y = A[Xo] with rank(Xo) ≤ r, and that δ4r(A) ≤
√

2− 1.
Then Xo is the unique optimal solution to the nuclear norm minimization
problem

min ‖X‖∗ subject to A[X] = y. (18)

Let Xo = UΣV ∗ be the SVD of the true solution Xo.

“Support” of Xo (compared to I of xo):

T
.
= {UR∗ +QV ∗ | R ∈ Rn2×r, Q ∈ Rn1×r} ⊆ Rn1×n2 . (19)

“Sign” of Xo (compared to σ of xo):
UV ∗ plays the role of the “signs” of Xo since UV ∗ ∈ T and

〈Xo,UV
∗〉 = ‖Xo‖∗ . (20)
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Recovering a Low-Rank Matrix

Rank-RIP for Nuclear Norm Minimization

Proof Ideas: very similar to certifying
optimality of xo for the `1 minimization.

Let X̂ = Xo +H be any optimal
solution to our problem (18). Then
H = X̂ −Xo ∈ null(A) must satisfy the
following cone restriction:

‖PT⊥ [H]‖∗ ≤ ‖PT[H]‖∗ . (21)
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Recovering a Low-Rank Matrix

Rank-RIP for Nuclear Norm Minimization

Definition (Matrix Restricted Strong Convexity)

The linear operator A satisfies the matrix restricted strong convexity
(RSC) condition of rank r with constant α if for the support T of every
matrix of rank r and for all nonzero H satisfying

‖PT⊥ [H]‖∗ ≤ α · ‖PT[H]‖∗ . (22)

with some constant α ≥ 1, we have

‖A[H]‖22 > µ · ‖H‖2F , for some µ > 0. (23)
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Recovering a Low-Rank Matrix

Rank-RIP for Nuclear Norm Minimization

Theorem (Rank-RIP Implies Matrix RSC)

If a linear operator A satisfies rank-RIP with δ4r <
1

1+α
√

2
, then A satisfies

the matrix-RSC condition of rank r with constant α.

Theorem (Rank-RIP of Gaussian Measurements)

If the measurement operator A is a random Gaussian map with entries
i.i.d. N (0, 1

m), then A satisfies the rank-RIP with constant δr(A) ≤ δ with
high probability, provided m ≥ Cr(n1 + n2)× δ−2 log δ−1, where C > 0 is
a numerical constant.

Proofs precisely emulate those of `1 minimization for sparsity!
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Recovering a Low-Rank Matrix

Matrices with Rank-RIP

Theorem

Let us assume {U1,U2, . . . ,Un2} ⊂ Cn×n be a unitary basis for the
matrix space Cn×n and with ‖Ui‖ ≤ ζ/

√
n for some constant ζ. Let A

consists of m randomly selected Ai = n√
m
Ui. Then if

m ≥ Cζ2 · rn log6 n, (24)

then w.h.p., A satisfies the rank-RIP over the set of all rank-r matrices.

Example: Pauli observables of quantum states.
Ui = P1 ⊗ · · · ⊗ Pk where ⊗ is the tensor (Kronecker) product and each
Pi = 1√

2
σ where σ is a 2× 2 matrix of the four possibilities:

σ1 =

[
1 0
0 1

]
, σ2 =

[
0 1
1 0

]
, σ3 =

[
0 −i
i 0

]
, σ4 =

[
1 0
0 −1

]
.
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Recovering a Low-Rank Matrix

Noisy Measurements - Worst Case

Theorem (Stable Low-rank Recovery via BPDN)

Suppose that y = A[Xo] + z, with ‖z‖2 ≤ ε, and let rank(Xo) = r. If

δ4r(A) <
√

2− 1, then any solution X̂ to the optimization problem

min ‖X‖∗ subject to ‖A[X]− y‖2 ≤ ε. (25)

satisfies
‖X̂ −Xo‖F ≤ Cε (26)

for some numerical constant C > 0.
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Recovering a Low-Rank Matrix

Noisy Measurements - High Probability

Theorem (Stable Low-rank Recovery via Lasso)

Suppose that A ∼iid N (0, 1
m), and y = A[Xo] + z, with Xo of rank r

and z ∼iid N (0, σ
2

m ). Solve the matrix Lasso

min 1
2 ‖y −A[X]‖22 + λm ‖X‖∗, (27)

with regularization parameter λm = c · 2σ
√

(n1+n2)
m for a large enough c.

Then with high probability,

‖X̂ −Xo‖F ≤ C ′σ

√
r(n1 + n2)

m
. (28)
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Recovering a Low-Rank Matrix

Inexact Low Rank

Theorem (Inexact Low-rank Recovery)

Let y = A[Xo] + z, with ‖z‖2 ≤ ε. Let X̂ solve the denoising problem

min ‖X‖∗ subject to ‖y −A[X]‖2 ≤ ε. (29)

Then for any r such that δ4r(A) <
√

2− 1,∥∥∥X̂ −Xo

∥∥∥
2
≤ C

‖Xo − [Xo]r‖∗√
r

+ C ′ε (30)

for some constants C and C ′.
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Recovering a Low-Rank Matrix

Phase Transition

Let D be the descent cone of the nuclear norm at
Xo ∈ Rn1×n2 of rank r:

D
.
= {H | ‖Xo +H‖∗ ≤ ‖Xo‖∗}. (31)

Theorem (Phase Transition in Low-rank Recovery)

Let G be an (n1 − r)× (n2 − r) matrix with entries i.i.d. N (0, 1). Set

ψ(n1, n2, r) = inf
τ≥0
{r(n1 + n2 − r + τ2) + EG

[
‖Dτ [G]‖2F

]
}. (32)

Then there is a phase transition at m? = δ(D):

ψ(n1, n2, r)− 2
√
n2/r ≤ δ(D) ≤ ψ(n1, n2, r). (33)
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Recovering a Low-Rank Matrix

Summary
Parallel developments for sparse vectors and low-rank matrices.

Sparse v.s. Low-rank Sparse Vector Low-rank Matrix

Low-dimensionality of individual signal x a set of signals X

Compressive sensing y = Ax Y = A(X)

Low-dim measure `0 norm ‖x‖0 rank(X)

Convex surrogate `1 norm ‖x‖1 nuclear norm ‖X‖∗

Success conditions (RIP) δ2k(A) ≥
√

2− 1 δ4r(A) ≥
√

2− 1

Random measurements m = O
(
k log(n/k)

)
m = O(nr)

Stable/Inexact recovery y = Ax+ z Y = A(X) +Z

Phase transition at Stat. dim. of descent cone: m∗ = δ(D)
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Recovering a Low-Rank Matrix

Assignments

• Reading: Sections 4.1-4.3 of Chapter 4.

• Programming Homework # 2.
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