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“Algebra is but written geometry; geometry is but drawn algebra.”
– Sophie Germain

Ma (EECS Department, UC Berkeley) EECS208, Fall 2021 September 23, 2021 2 / 19



Phase Transition: Phenomena and Conjecture

Phase Transition Phenomenon
Success probability of the `1 minimization:

min ‖x‖1 subject to y = Ax.

Figure: δ = m/n and η = k/n
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Phase Transition: Phenomena and Conjecture

Phase Transition Phenomenon

Conjecture: measurement ratio δ = m/n exceeds a certain function ψ(η)
of the sparsity ratio η = k/n. That is, the precise number of
measurements needed for success of `1 minimization:

m? ≥ ψ(k/n)n.

When do we expect this to happen? (compared to RIP)

• From a deterministic to a random matrix A ∼iid N (0, 1
m).

• From recovery of all sparse to a fixed sparse xo.

A More Rigorous (and Weaker) Statement: For a given, fixed xo,
with high probability in the random matrix A, `1 minimization recovers
that particular xo from the measurements y = Axo.
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Phase Transition via Coefficient-Space Geometry

Phase Transition: Geometric Intuition
In the Coefficient Space x ∈ Rn:

Necessary and Sufficient Condition: xo is the only intersection between
the affine subspace:

S : {x | x ∈ xo + null(A)} (1)

of feasible solutions and the scaled `1 ball:

‖xo‖1 · B1 = {x | ‖x‖1 ≤ ‖xo‖1}. (2)
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Phase Transition via Coefficient-Space Geometry

Phase Transition: Coefficient Space

Lemma

Suppose that y = Axo. Then xo is the unique optimal solution to the `1

minimization problem if and only if D ∩ null(A) = {0}, where D is the `1

descent cone:

D = {v | ‖xo + tv‖1 ≤ ‖xo‖1 for some t > 0}. (3)
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Phase Transition via Coefficient-Space Geometry

Phase Transition: Example of Two Random Subspaces
When does a randomly chosen subspace S intersect another subspace S′?

Example (Intersection of Two Linear Subspaces)

Let S′ be any linear subspace of Rn, and let S be a uniform random
subspace. Then

P
[
S ∩ S′ = {0}

]
= 0, dim(S) + dim(S′) > n; (4)

P
[
S ∩ S′ = {0}

]
= 1, dim(S) + dim(S′) ≤ n. (5)
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Phase Transition via Coefficient-Space Geometry

Phase Transition: Example of Two Random Cones
When does a cone C1 intersect another randomly chosen cone C2?

Example (Two Cones in R2)

Notice that if we have two convex cones C1 and C2 in R2, with angle α
and β respectively. Let C1 be fixed and we rotate C2 by a rotation R
uniformly chosen from S1. Then we have

P[C1 ∩R(C2) 6= {0}] = min {1, (α+ β)/2π} . (6)

How to generalize these special
cases to general convex cones?
the notion of
dimension or size of angle for cones in R2

to cones in spaces of higher dimension?...
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Phase Transition via Coefficient-Space Geometry

Phase Transition: Geometric & Statistical Dimension

Consider a Gaussian vector, g ∼ N (0, I), projected onto the subspace S:

PS[g]
.
= arg min

x∈S
‖x− g‖22 . (7)

Then, an equivalent definition of dimension of S:

d = dim(S) = Eg

[
‖PS[g]‖22

]
. (8)
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Phase Transition via Coefficient-Space Geometry

Phase Transition: Coefficient Space

Definition (Statistical Dimension)

Given C is a closed convex cone in Rn, then its statistical dimension,
denoted as δ(C), is given by:

δ(C)
.
= Eg

[
‖PC[g]‖22

]
, with g ∼ N (0, I). (9)

Fact: if S is a random subspace of Rn, and C a closed convex cone, then
we have:

δ(S) + δ(C)� n =⇒ S ∩ C 6= {0} with high probability;

δ(S) + δ(C)� n =⇒ S ∩ C = {0} with high probability.

For a more precise statement see Chapter 6 or a proof.1

1Living on the edge: Phase transitions in convex programs with random data. D.
Amelunxen, M. Lotz, M. McCoy, and J. Tropp, Information and Inference, 2014
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Phase Transition via Coefficient-Space Geometry

Phase Transition: Coefficient Space

Proposition (Phase Transition for `1 Minimization – Qualitative)

Suppose that y = Axo with xo sparse. Let D denote the descent cone of
the `1 norm ‖ · ‖1 at xo. Since dim[null(A)] = n−m, then:

P[`1 recovers xo] ≤ C exp

(
−c(δ(D)−m)2

n

)
, m ≤ δ(D);

P[`1 recovers xo] ≥ 1− C exp

(
−c(m− δ(D))2

n

)
, m ≥ δ(D).

Methods and results can be generalized to:

• Any other atomic norms ‖ · ‖D (e.g. nuclear norm for matrices).

• Intersections between two general convex cones (e.g. RPCA).
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Phase Transition via Coefficient-Space Geometry

Phase Transition: Coefficient Space

Proposition (Phase Transition for `1 Minimization – Quantitative)

Let D be the descent cone of the `1 norm at any xo ∈ Rn satisfying
‖xo‖0 = k. Then

nψ

(
k

n

)
− 4
√
n/k ≤ δ(D) ≤ nψ

(
k

n

)
, (10)

where
ψ(η) = min

t≥0

{
η(1 + t2) + (1− η)

√
2

π

∫ ∞
t

(s− t)2 exp

(
−s

2

2

)
ds

}
. (11)

See Chapter 6 for derivation...
Phase transition for `1 minimization
takes place at:

m? = ψ

(
k

n

)
n. (12)
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Phase Transition via Observation-Space Geometry

Phase Transition: Observation Space

The unit `1 ball in Rn:

B1
.
= {x | ‖x‖1 ≤ 1}

and its projection into Rm:

P
.
= A(B1) = {Ax | ‖x‖1 ≤ 1}.

`1 minimization uniquely recovers
any x with support I and signs σ
if and only if

F
.
= conv({σiai | i ∈ I}) (13)

forms a face of the polytope P.
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Phase Transition via Observation-Space Geometry

Phase Transition: Observation Space
Internal angle and external angle of a face F on a polytope G.

Fact2: for an m× n Gaussian matrix A,

EA[fk(AP)] = fk(P)− 2
∑

`=m+1,m+3,...

∑
F∈Fk(P)

∑
G∈F`(P)

β(F,G)γ(G,P)

︸ ︷︷ ︸
∆=Expected number of faces lost

.

When ∆ is substantially smaller than one, w.h.p., we have

fk(A(P)) = fk(P).
2Counting faces of randomly projected polytopes when the projection radically lowers

dimension, D. Donoho and J. Tanner, 2009.
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Phase Transition in Support Recovery

Phase Transition for Recovering Support

Recall
face identification problem: From
noisy observations y = Axo + z,
estimate the signed support:

σo = sign(xo), (14)

by solving the Lasso problem:

x̂ = arg minx∈Rn
1
2 ‖y −Ax‖

2
2 + λ ‖x‖1 .

Two scenarios:

• Partial support recovery: supp(x̂) ⊆ supp(xo). The estimator
exhibits no “false positives”.

• Signed support recovery: sign(x̂) = σo. The estimator correctly
determines all nonzero entries of xo and their signs – difficult!.
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Phase Transition in Support Recovery

Phase Transition for Recovering Support

Theorem (Phase Transition in Partial Support Recovery)

Suppose that A ∈ Rm×n with entries iid N (0, 1
m) random variables, and

let y = Axo + z, with xo a k-sparse vector and z ∼iid N
(

0, σ
2

m

)
. If

m ≥
(

1 +
σ2

λ2k
+ ε

)
2k log(n− k), (15)

then with probability at least 1− Cn−ε, any solution x̂ to the Lasso
problem satisfies supp(x̂) ⊆ supp(xo). Conversely, if

m <

(
1 +

σ2

λ2k
− ε
)

2k log(n− k), (16)

then the probability that there exists a solution x̂ of the Lasso which
satisfies sign(x̂) = sign(xo) is at most Cn−ε.

Note: we can have sign(x̂) = sign(xo) w.h.p. only if mini∈I |xoi| > Cλ.
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Phase Transition in Support Recovery

Recovering Support

Proof ideas: x̂ is optimal if and only if (looking familiar?)

A∗ (y −Ax̂) ∈ λ∂ ‖·‖1 (x̂). (17)

Let J = supp(x̂) and the condition (17) decomposes into two conditions:

A∗J (y −Ax̂) = λ sign(x̂J), (18)

‖A∗Jc (y −Ax̂)‖∞ ≤ λ. (19)

Construct a guess solution vector x? by solving a restricted Lasso problem:

x? ∈ arg minsupp(x)⊆I

{
1
2 ‖Ax− y‖

2
2 + λ ‖x‖1

}
, (20)

which satisfies the equality constraint (18). We will then be left to check
the inequality constraints (19).
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Phase Transition in Support Recovery

Conclusions (of Chapter 3)

Conditions when `1 minimization find the correct k-sparse solution:

min ‖x‖1 subject to y = Ax.

• Mutual Coherence:
m = O(k2).

• Restricted Isometry:

m = O
(
k log(n/k)

)
.

• Phase Transition:

m? = ψ
(k
n

)
n.

Recovery is also stable w.r.t. to noise and approximate sparsity.
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Phase Transition in Support Recovery

Assignments

• Reading: Section 3.6 and 3.7 of Chapter 3.

• Written Homework #2.

• Advanced Reading: Section 6.2 of Chapter 6.
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