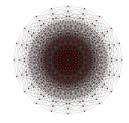
Computational Principles for High-dim Data Analysis

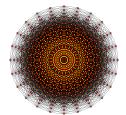
(Lecture Eight)

Yi Ma

EECS Department, UC Berkeley

September 23, 2021





Convex Methods for Sparse Signal Recovery (Phase Transition in Sparse Recovery)

- 1 Phase Transition: Phenomena and Conjecture
- 2 Phase Transition via Coefficient-Space Geometry
- 3 Phase Transition via Observation-Space Geometry
- 4 Phase Transition in Support Recovery

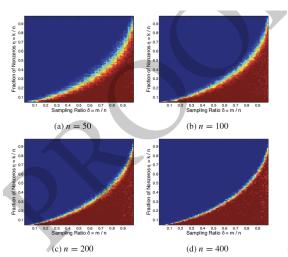
"Algebra is but written geometry; geometry is but drawn algebra."

— Sophie Germain

Phase Transition Phenomenon

Success probability of the ℓ^1 minimization:

$$\min \|\boldsymbol{x}\|_1$$
 subject to $\boldsymbol{y} = \boldsymbol{A}\boldsymbol{x}$.



Phase Transition Phenomenon

Conjecture: measurement ratio $\delta = m/n$ exceeds a certain function $\psi(\eta)$ of the sparsity ratio $\eta = k/n$. That is, the precise number of measurements needed for success of ℓ^1 minimization:

$$m^* \ge \psi(k/n)n$$
.

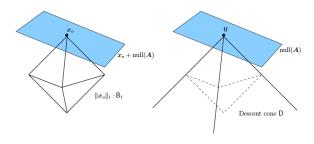
When do we expect this to happen? (compared to RIP)

- From a deterministic to a random matrix $A \sim_{iid} \mathcal{N}(0, \frac{1}{m})$.
- ullet From recovery of all sparse to a fixed sparse x_o .

A More Rigorous (and Weaker) Statement: For a given, fixed x_o , with high probability in the random matrix A, ℓ^1 minimization recovers that particular x_o from the measurements $y = Ax_o$.

Phase Transition: Geometric Intuition

In the Coefficient Space $x \in \mathbb{R}^n$:

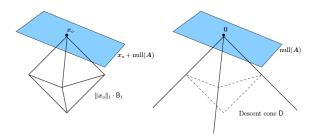


Necessary and Sufficient Condition: x_o is the only intersection between the affine subspace:

$$\mathsf{S}: \quad \{ \boldsymbol{x} \mid \boldsymbol{x} \in \boldsymbol{x}_o + \mathrm{null}(\boldsymbol{A}) \} \tag{1}$$

of feasible solutions and the scaled ℓ^1 ball:

$$\|x_o\|_1 \cdot \mathsf{B}_1 = \{x \mid \|x\|_1 \le \|x_o\|_1\}.$$
 (2)



Lemma

Suppose that $y = Ax_o$. Then x_o is the unique optimal solution to the ℓ^1 minimization problem if and only if $D \cap \operatorname{null}(A) = \{0\}$, where D is the ℓ^1 descent cone:

$$D = \{ v \mid ||x_o + tv||_1 \le ||x_o||_1 \text{ for some } t > 0 \}.$$
 (3)

Phase Transition: Example of Two Random Subspaces

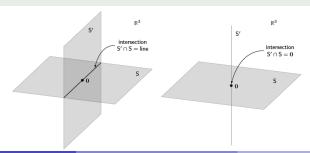
When does a randomly chosen subspace S intersect another subspace S'?

Example (Intersection of Two Linear Subspaces)

Let S' be any linear subspace of \mathbb{R}^n , and let S be a uniform random subspace. Then

$$\mathbb{P}\left[\mathsf{S}\cap\mathsf{S}'=\{\mathbf{0}\}\right] = 0, \quad \dim(\mathsf{S}) + \dim(\mathsf{S}') > n; \tag{4}$$

$$\mathbb{P}\left[\mathsf{S}\cap\mathsf{S}'=\{\mathbf{0}\}\right] = 1, \quad \dim(\mathsf{S}) + \dim(\mathsf{S}') \le n. \tag{5}$$



Phase Transition: Example of Two Random Cones

When does a cone C_1 intersect another randomly chosen cone C_2 ?

Example (Two Cones in \mathbb{R}^2)

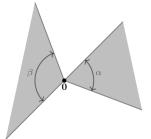
Notice that if we have two convex cones C_1 and C_2 in \mathbb{R}^2 , with angle α and β respectively. Let C_1 be fixed and we rotate C_2 by a rotation \mathbf{R} uniformly chosen from \mathbb{S}^1 . Then we have

$$\mathbb{P}[\mathsf{C}_1 \cap \mathbf{R}(\mathsf{C}_2) \neq \{\mathbf{0}\}] = \min\{1, (\alpha + \beta)/2\pi\}.$$
 (6)

How to generalize these special cases to general convex cones?

the notion of dimension or size of angle for cones in $\ensuremath{\mathbb{R}}^2$

to cones in spaces of higher dimension?...



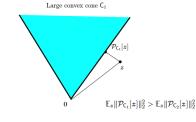
Phase Transition: Geometric & Statistical Dimension

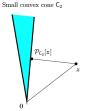
Consider a Gaussian vector, $\boldsymbol{g} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I})$, projected onto the subspace S:

$$\mathcal{P}_{\mathsf{S}}[\boldsymbol{g}] \doteq \arg\min_{\boldsymbol{x}\in\mathsf{S}} \|\boldsymbol{x} - \boldsymbol{g}\|_{2}^{2}. \tag{7}$$

Then, an equivalent definition of dimension of S:

$$d = \dim(\mathsf{S}) = \mathbb{E}_{\boldsymbol{g}} \left[\| \mathcal{P}_{\mathsf{S}}[\boldsymbol{g}] \|_{2}^{2} \right]. \tag{8}$$





Definition (Statistical Dimension)

Given C is a closed convex cone in \mathbb{R}^n , then its statistical dimension, denoted as $\delta(C)$, is given by:

$$\delta(\mathsf{C}) \doteq \mathbb{E}_{\boldsymbol{g}} \left[\| \mathcal{P}_{\mathsf{C}}[\boldsymbol{g}] \|_{2}^{2} \right], \quad \text{with } \boldsymbol{g} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}).$$
 (9)

Fact: if S is a random subspace of \mathbb{R}^n , and C a closed convex cone, then we have:

$$\begin{array}{lll} \delta(\mathsf{S}) + \delta(\mathsf{C}) \gg n & \Longrightarrow & \mathsf{S} \cap \mathsf{C} \neq \{\mathbf{0}\} \text{ with high probability}; \\ \delta(\mathsf{S}) + \delta(\mathsf{C}) \ll n & \Longrightarrow & \mathsf{S} \cap \mathsf{C} = \{\mathbf{0}\} \text{ with high probability}. \end{array}$$

For a more precise statement see Chapter 6 or a proof.¹

¹Living on the edge: Phase transitions in convex programs with random data. D. Amelunxen, M. Lotz, M. McCoy, and J. Tropp, Information and Inference, 2014

Proposition (Phase Transition for ℓ^1 Minimization – Qualitative)

Suppose that $y = Ax_o$ with x_o sparse. Let D denote the descent cone of the ℓ^1 norm $\|\cdot\|_1$ at x_o . Since $\dim[\operatorname{null}(A)] = n - m$, then:

$$\mathbb{P}[\ell^1 \text{ recovers } x_o] \leq C \exp\left(-c \frac{(\delta(\mathsf{D}) - m)^2}{n}\right), \quad m \leq \delta(\mathsf{D});$$

$$\mathbb{P}[\ell^1 \text{ recovers } \boldsymbol{x}_o] \geq 1 - C \exp\left(-c \frac{(m - \delta(\mathsf{D}))^2}{n}\right), \quad m \geq \delta(\mathsf{D}).$$

Methods and results can be generalized to:

- Any other atomic norms $\|\cdot\|_{\mathcal{D}}$ (e.g. nuclear norm for matrices).
- Intersections between two general convex cones (e.g. RPCA).

Proposition (Phase Transition for ℓ^1 Minimization – Quantitative)

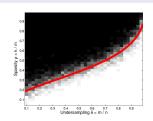
Let D be the descent cone of the ℓ^1 norm at any $x_o \in \mathbb{R}^n$ satisfying $\|x_o\|_0 = k$. Then

$$n\psi\left(\frac{k}{n}\right) - 4\sqrt{n/k} \le \delta(\mathsf{D}) \le n\psi\left(\frac{k}{n}\right),$$
 (10)

where where $\psi(\eta) = \min_{t \ge 0} \left\{ \eta(1+t^2) + (1-\eta)\sqrt{\frac{2}{\pi}} \int_t^\infty (s-t)^2 \exp\left(-\frac{s^2}{2}\right) ds \right\}.$

See Chapter 6 for derivation... Phase transition for ℓ^1 minimization takes place at:

$$m^* = \psi\left(\frac{k}{n}\right)n. \tag{12}$$



Phase Transition: Observation Space

The unit ℓ^1 ball in \mathbb{R}^n :

$$\mathsf{B}_1 \doteq \{ \boldsymbol{x} \mid \|\boldsymbol{x}\|_1 \leq 1 \}$$

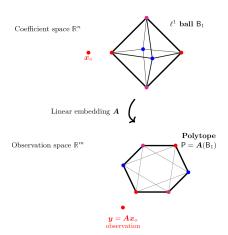
and its projection into \mathbb{R}^m :

$$\mathsf{P} \doteq \boldsymbol{A}(\mathsf{B}_1) = \{\boldsymbol{A}\boldsymbol{x} \mid \|\boldsymbol{x}\|_1 \leq 1\}.$$

 ℓ^1 minimization uniquely recovers any ${m x}$ with support I and signs ${m \sigma}$ if and only if

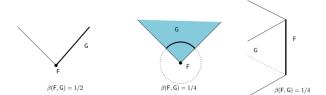
$$\mathsf{F} \doteq \operatorname{conv}(\{\sigma_i \boldsymbol{a}_i \mid i \in \mathsf{I}\}) \tag{13}$$

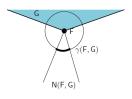
forms a face of the polytope P.



Phase Transition: Observation Space

Internal angle and external angle of a face F on a polytope G.





Fact²: for an $m \times n$ Gaussian matrix A,

$$\mathbb{E}_{\boldsymbol{A}}[f_k(\boldsymbol{A}\mathsf{P})] = f_k(\mathsf{P}) - 2 \sum_{\ell = m+1, m+3, \dots} \sum_{\mathsf{F} \in \mathsf{F}_k(\mathsf{P})} \sum_{\mathsf{G} \in \mathsf{F}_\ell(\mathsf{P})} \beta(\mathsf{F}, \mathsf{G}) \gamma(\mathsf{G}, \mathsf{P}) \,.$$

 $\Delta{=}\mathsf{Expected}$ number of faces lost

When Δ is substantially smaller than one, w.h.p., we have

$$f_k(\mathbf{A}(\mathsf{P})) = f_k(\mathsf{P}).$$

²Counting faces of randomly projected polytopes when the projection radically lowers dimension, D. Donoho and J. Tanner, 2009.

Phase Transition for Recovering Support

Recall

face identification problem: From noisy observations $m{y} = m{A} m{x}_o + m{z}$, estimate the signed support:

$$\sigma_o = \operatorname{sign}(\boldsymbol{x}_o),$$
 (14)

by solving the Lasso problem:

$$\hat{\boldsymbol{x}} = \arg\min_{\boldsymbol{x} \in \mathbb{R}^n} \tfrac{1}{2} \left\| \boldsymbol{y} - \boldsymbol{A} \boldsymbol{x} \right\|_2^2 + \lambda \left\| \boldsymbol{x} \right\|_1.$$

Two scenarios:

- Partial support recovery: $\operatorname{supp}(\hat{x}) \subseteq \operatorname{supp}(x_o)$. The estimator exhibits no "false positives".
- **Signed support recovery**: $sign(\hat{x}) = \sigma_o$. The estimator correctly determines all nonzero entries of x_o and their signs difficult!.

Phase Transition for Recovering Support

Theorem (Phase Transition in Partial Support Recovery)

Suppose that $A \in \mathbb{R}^{m \times n}$ with entries iid $\mathcal{N}(0, \frac{1}{m})$ random variables, and let $y = Ax_o + z$, with x_o a k-sparse vector and $z \sim_{\mathrm{iid}} \mathcal{N}\left(0, \frac{\sigma^2}{m}\right)$. If

$$m \ge \left(1 + \frac{\sigma^2}{\lambda^2 k} + \epsilon\right) 2k \log(n - k),$$
 (15)

then with probability at least $1 - Cn^{-\epsilon}$, any solution \hat{x} to the Lasso problem satisfies $\operatorname{supp}(\hat{x}) \subseteq \operatorname{supp}(x_o)$. Conversely, if

$$m < \left(1 + \frac{\sigma^2}{\lambda^2 k} - \epsilon\right) 2k \log(n - k),$$
 (16)

then the probability that there exists a solution \hat{x} of the Lasso which satisfies $\operatorname{sign}(\hat{x}) = \operatorname{sign}(x_o)$ is at most $Cn^{-\epsilon}$.

Note: we can have $\mathrm{sign}(\hat{\boldsymbol{x}}) = \mathrm{sign}(\boldsymbol{x}_o)$ w.h.p. only if $\min_{i \in \mathbf{I}} |\boldsymbol{x}_{oi}| > C\lambda$.

Recovering Support

Proof ideas: \hat{x} is optimal if and only if (looking familiar?)

$$\mathbf{A}^{*}\left(\mathbf{y} - \mathbf{A}\hat{\mathbf{x}}\right) \in \lambda \partial \left\|\cdot\right\|_{1} (\hat{\mathbf{x}}). \tag{17}$$

Let $J = \operatorname{supp}(\hat{x})$ and the condition (17) decomposes into two conditions:

$$A_{\mathsf{J}}^{*}(y - A\hat{x}) = \lambda \operatorname{sign}(\hat{x}_{\mathsf{J}}),$$
 (18)

$$\|\boldsymbol{A}_{\mathsf{J}^{c}}^{*}\left(\boldsymbol{y}-\boldsymbol{A}\hat{\boldsymbol{x}}\right)\|_{\infty} \leq \lambda.$$
 (19)

Construct a guess solution vector x_{\star} by solving a $\emph{restricted}$ Lasso problem:

$$\boldsymbol{x}_{\star} \in \operatorname{arg\,min}_{\operatorname{supp}(\boldsymbol{x}) \subseteq \mathsf{I}} \left\{ \frac{1}{2} \left\| \boldsymbol{A} \boldsymbol{x} - \boldsymbol{y} \right\|_{2}^{2} + \lambda \left\| \boldsymbol{x} \right\|_{1} \right\},$$
 (20)

which satisfies the equality constraint (18). We will then be left to check the inequality constraints (19).

Conclusions (of Chapter 3)

Conditions when ℓ^1 minimization find the correct k-sparse solution:

$$\min \|x\|_1$$
 subject to $y = Ax$.

Mutual Coherence:

$$m = O(k^2).$$

Restricted Isometry:

$$m = O(k \log(n/k)).$$

Phase Transition:

$$m^* = \psi\left(\frac{k}{n}\right)n.$$

Recovery is also stable w.r.t. to noise and approximate sparsity.

Assignments

- Reading: Section 3.6 and 3.7 of Chapter 3.
- Written Homework #2.
- Advanced Reading: Section 6.2 of Chapter 6.