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Convex Methods for Sparse Signal Recovery
(Noisy Observations or Approximated Sparsity)

@ Problem Formulation
@ Stable Recovery of Sparse Signals

© Recovery of Inexact Sparse Signals

“Algebra is but written geometry; geometry is but drawn algebra.”
— Sophie Germain
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Problem Formulation

Problem Formulation

The observation y is perturbed by a small amount of noise z:
y=Ax,+z, |z|,<e (1)

Three typical scenarios (or combination of them):

® Deterministic error: z is bounded: [|z||, <€, and € is known.
e Stochastic noise: entries of z ~;;q N(0, %2) hence ||z|2 = 0.

® Inexact sparsity: x, is not perfectly sparse with ||z, — [z,];] small.
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Problem Formulation

Problem Formulation

The observation y is perturbed by a small amount of noise z:
y=Ax,+z |z[;<e (2)
Three typical tasks (or combination of them):
¢ Estimation: Is | — x,||, small?

® Prediction: Is Az ~ Ax,?

¢ |dentification: Is supp(&) = supp(x,)?
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Problem Formulation

Lasso versus Basis Pursuit Denoising

To find a sparse x, from noisy measurements:
y=Az,+z |z[;<e (3)
I. BPDN (basis pursuit denoising):
min ||x||; subjectto |y— Az|, <e. (4)
Il. LASSO (least absolute shrinkage and selection operator):

min A [z]|; + 3 ly — Az, (5)

3X <> e such that BPDN and LASSO have the same optimal solution.
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Stable Recovery: Bounded Error (Best Scenario)

Knowing the support | of x,, solve the least squares problem:
min [ly — Aiz'(1)]|3 (6)
to obtain the “oracle” (best possible) estimate:
{;&'(l) = (AjA) ' Afy,
Z/'(I°) = 0.
From ||A1Z’ — Ajx,||, < €, we have the (tight) error bound:

~ €
le_mOHQ < m ~ CE. (8)
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Stable Recovery of Sparse Signals

Stable Recovery: Bounded Error
Theorem (Stable Sparse Recovery via BPDN)

Suppose that y = Az, + z, with ||z||, <€, and let k = ||z,||,. If
02k (A) < /2 — 1, then any solution & to the optimization problem:
min ||z[|; s.t. ||y — Azx||, < e satisfies

& — ol < Ce. (9)

Here, C' is a constant which depends only on o1, (A) (and not on €).

T

—

—

{z|lly — Az|l, <<}
Subspace constraint

{z [ ll=lly < lloll; }
Cone constraint
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Stable Recovery: Bounded Error

From feasibility of the solutions,

A —zo)lly, = [(y— AZ) — (y — Az,)l|,
< ly - Azl + ||y — Az,
< 2e.

Let h = & — x,, from optimality of &: [|z||; < ||z, , we have
[Piclly < [IPally -

With 891, < v/2 — 1, A satisfies the RSC property on h above. Therefore,

we have
AR5 > plklf3- (10)

Ol
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Stable Recovery of Sparse Signals

Stable Recovery: Random Noise
Model: x, is k-sparse, and the matrix A ~ N(0, L) and z ~ N(0, %)
y=Ax,+z €cR" (11)

Solve the Lasso program for an estimate &:

& = argmin } |ly — A| + A, |zl (12)

Let h=2 —x, € R" and L(x) = % ly — Aa:||§ Notice that
VL(x) = —A*(y — Ax) and in particular:

VIi(x,) = —-A"(y — Ax,) = —A*z.

L(#) = Do) + {VE(@o), & — o) + 3| A& — o)}
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Stable Recovery of Sparse Signals

Stable Recovery: Random Noise

Since & minimizes the objective function, we have:

0 L(2) + Amll@[1 — L(®o) = Aml| 2|11
(VL(x,), & — @o) + Am([[ 21 — [lzo]l1)
= [{A%zh) [ +an (2] = [lzo1)

=A% z[lcollPl[1 + Al ae [t = [Ral[1)- (13)

vV IV IV IV

This is almost the cone condition: ||hic||1 < ||hi|1, given the first term is
very small.

Need a slightly relaxed version of the cone condition.
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Stable Recovery of Sparse Signals

Stable Recovery: Random Noise

For the lasso problem (12), if we choose Ay, > ¢ - 201/ 8™ then with

m ’
high probability, h = & — x,, satisfies the cone condition:

c+1
c—1

[Puellx < Nl (14)

Proof (Sketch):
As a}z is a Gaussian random variable of variance 02/m, we have

£2
Pllaz] > 1] < 2exp (—Z;) . (15)
By union bound on the n columns, we have
" mt?
P[lA"z]|c > ] < 2exp —2—2+logn . (16)
o
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Stable Recovery: Random Noise

Proof (continued): Choose 2 = 4"2—1‘—;;", then with high probability at

L we have
. logn
|A* 2|00 < 20 .
m

for some ¢ > 0. Then from the last inequality of

least 1 — en™

logn

choose A\, > ¢- 20 =

(13), we have

0

v

—[|A*2[|oo ||l + Am (| Z][1 — [l20]|1)
A A
—Tmllhllll - fl!hchl + Amlliell1 = Am [P |1

o (1= 2 el = (142 ) (")
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Stable Recovery of Sparse Signals

Stable Recovery: Random Noise

Theorem (Stable Sparse Recovery via Lasso)

Suppose that A ~iia N (0, ) and y = Ax, + z, with =, k-sparse and
z ~yq N(0, ) Solve the Lasso

min 1 ly — Az|3 + A |2l (18)

with regularization parameter \,, = c - 20 10%

for a large enough c.
Then with high probability,

(19)

Compared to (9), ¢’ kk’% can be very small as k/m — 0!

Ma (EECS Department, UC Berkeley) EECS208, Fall 2021 September 21, 2021 13 /21



Stable Recovery of Sparse Signals

Stable Recovery: Random Noise

From the optimality of &:

0 > L@+ Mlélh ~ Lwo) ~ Anllaol
> ZIAG ~ @3+ (VE(@o),& — @) + Am(lés  lizoll)
> glantg o (1= Dl - (1+2)Ilk) . (20)
Hence
SIARIZ < A (142 ) Il < A (14 <) VRl
C C
W.H.P., random A satisfies the RSC property: || Ah|j3 > u|h|3. O
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Stable Recovery: Random Noise

The above bound is nearly optimal in the sense:!

Theorem

Suppose that we will observe y = Ax + z. Set

M*(A) = it B = x| (21)
x| <

Then for any A with ||efA|, < \/n for each i, we have

M*(A) > Ca2klog(n/k)

m

(22)

Difference in bound |2 (y) — z||3 is only O(c2*1%8%) \ 0 as k/m \, 0.

Y How well can we estimate a sparse vector? E. Candes and Mz Davenport, 2013.
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Approximate Sparsity

£ e ] E = ™ - = T T £l = ]

dense vector sparse vector compressible vector

X, is not perfectly k-sparse. Let [x,]; be the best k-sparse signal that
approximates x,. Then we can rewrite the observation model as:

y = Alx,); + Ao — [To1) + 2.

How well does /' minimization recover such signals?
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Approximate Sparsity

Let y = Az, + z, with ||z||, < €. Let & solve the basis pursuit denoising
problem

min ||z||; subject to |y — Azx|, <e. (23)
Then for any k such that dy,(A) < V2 —1,

|0 — [$O]kH1

vk

for some constants C' and C' which only depend on 691 (A).

& — x|, < C +C'e (24)

Notice: When x, — [z,]x = 0, this reduces to previous result on stable
recovery.
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Approximate Sparsity

Sketch of Proof.

From feasibility of the solution &:

ARy = [|A(Z — @)l < 2e.
From optimality of the solution &:
0<[lzolly = lIZlly, <= lhuell; < Plly + 2 ([2orel]; - (25)

Follow the same proof of RIP for the clean case. The only difference is to
replace the condition ||hic||; < ||hi||; with the new one. We obtain:

1 — (14 v/2)d9, 2v260%  ||Toic|l;
Ah|, > h - 26
” ||2 = (1 +52k)1/2 H |UJ1||2 (1 + 62]{:)1/2 \/E ( )
Combing with [|F2[[s < 2[[Ruy, [l2 + 21221 gives the result. O
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Conclusions
¢' minimization
min ||z||; subject to |y — Azx|s <e.
finds a stable estimate & to the k-sparse x,:
T || — a2 < Ce.

For a random matrix A € R™*", we need:
¢ mutual coherence:
m = O(k?).

® restricted isometry:

m = O(klog(n/k)).
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Recovery of Inexact Sparse Signals

Next: the Phase Transition Phenomenon

c
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Can we characterize this phenomenon mathematically?

Ma (EECS Department, UC Berkeley) EECS208, Fall 2021 September 21, 2021 20/21



Assignments

® Reading: Section 3.5 of Chapter 3.
® Written Homework # 2.
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