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Convex Methods for Sparse Signal Recovery
(Matrices with Restricted Isometry Property)

1 The Johnson-Lindenstrauss Lemma

2 RIP of Gaussian Matrices

3 RIP of Non-Gaussian Matrices

“Algebra is but written geometry; geometry is but drawn algebra.”
– Sophie Germain
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Restricted Isometry Property (Recap)

Definition (Restricted Isometry Property)

The matrix A satisfies the restricted isometry property (RIP) of order k,
with constant δ ∈ [0, 1), if

∀ x k-sparse, (1− δ) ‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ) ‖x‖22 . (1)

The order-k restricted isometry constant δk(A) is the smallest number δ
such that the above inequality holds.

Example of Gaussian Matrices: If AI is a large m× k (k < m) matrix
with entries independent N (0, 1/m),

σmin(A∗I AI) ≈ (
√

1−
√
k/m)2 ≥ 1− 2

√
k/m,

σmax(A∗I AI) ≈ (
√

1 +
√
k/m)2 ≤ 1 + 3

√
k/m.
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The Johnson-Lindenstrauss Lemma

Length Concentration of Gaussian Vectors

Lemma (Gaussian Vectors1)

Let g = [g1, . . . , gm]∗ ∈ Rm be an m-dimensional random vector whose
entries are iid N (0, 1/m). Then for any t ∈ [0, 1],

P
[∣∣∣‖g‖22 − 1

∣∣∣ > t
]
≤ 2 exp

(
− t

2m

8

)
. (2)

Proof (sketch): The moment generating function of a standard normal
random variable is

E
[
eλx

2]
= (1− 2λ)−1/2, λ < 1/2.

Then we have E
[
eλg

2
i
]

=
(
1− 2λ

m

)−1/2
, λ < m

2 .

1This result can be obtained via the Cramer-Chernoff exponential moment method
(see Appendix E) or the book: High-Dimensional Probability, Roman Vershynin, 2018.
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The Johnson-Lindenstrauss Lemma

Length Concentration of Gaussian Vectors

Proof (continued):

P
[ m∑
i=1

g2
i > t+ 1

]
= P

[
exp

(
λ

m∑
i=1

g2
i

)
> exp

(
λ(t+ 1)

)]
≤ e−λ(t+1)E

[
exp

(
λ

m∑
i=1

g2
i

)]
= e−λ(t+1)

m∏
i=1

E
[
eλg

2
i

]
= e−λ(t+1)

(
1− 2λ

m

)−m/2
≤ exp(−λt)

since for sufficiently small λ = tm
C , we have

(
1− 2λ

m

)−m/2 ≤ eλ.
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The Johnson-Lindenstrauss Lemma

The JL Lemma: Distance Preserving Random Projections

Theorem (Johnson-Lindenstrauss Lemma)

Let v1, . . . ,vn ∈ RD and A ∈ Rm×D be a random matrix whose entries
are i.i.d. N (0, 1/m). Then for any ε ∈ (0, 1), with probability at least
1− 1/n2, the following holds:

∀ i 6= j, (1−ε) ‖vi − vj‖22 ≤ ‖Avi −Avj‖22 ≤ (1+ε) ‖vi − vj‖22 , (3)

provided m > 32 logn
ε2

.

RD A

Rm (m� D)

vi

vj

Avj
Avi
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The Johnson-Lindenstrauss Lemma

The JL Lemma

Proof.

Finite cases: let gij = A
vi−vj

‖vi−vj‖2
for any i 6= j ∈ {1, . . . , n}.

Tail bound: gij is distributed as an iid Gaussian vector, with entries
N (0, 1/m). Applying Lemma:

P
[∣∣∣‖gij‖22 − 1

∣∣∣ > t
]
≤ 2 exp

(
−t2m/8

)
. (4)

Union bound: Summing the probability of failure over all i 6= j, and then
plugging in t = ε and m ≥ 32 log n/ε2, we get

P
[
∃ (i, j) :

∣∣∣‖gij‖22 − 1
∣∣∣ > t

]
≤ n(n− 1)

2
× 2 exp

(
−t2m/8

)
≤ n−2. (5)

Hence
∣∣∣‖gij‖22 − 1

∣∣∣ ≤ ε with probability 1− n−2.
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The Johnson-Lindenstrauss Lemma

The JL Lemma: Generalization to `p Norms

Locality-Sensitive Hashing2: for p ∈ (0, 2], there exist the so-called
p-stable distributions such that a random matrix A drawn from a p-stable
distribution will preserve `p distance between vectors:

(1− ε) ‖vi − vj‖2p ≤ ‖Avi −Avj‖2p ≤ (1 + ε) ‖vi − vj‖2p . (6)

Example: For `1 norm, the corresponding distribution is the Cauchy
distribution with density:

p(x) =
1

π
· 1

1 + x2
.

2Locality-sensitive hashing scheme based on p-stable distributions, M. Datar, N.
Immorlica, P. Indyk, and V. S. Mirrokni. ACM SCG 2004.
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The Johnson-Lindenstrauss Lemma

The JL Lemma: Fast Nearest Neighbors

Compact Code for Fast Nearest Neighbor3:

1: Goal: Generate compact binary code for efficient nearest neighbor
search of high-dimensional data points.

2: Input: x1, . . . ,xn ∈ RD and m = O(log n).
3: Generate a Gaussian matrix R ∈ Rm×D with entries i.i.d. N (0, 1).
4: for i = 1, . . . , n do
5: Compute Rxi,
6: Set yi = σ(Rxi) where σ(·) is the entry-wise binary thresholding.
7: end for
8: Output: y1, . . . ,yn ∈ {0, 1}m.

Instead of O(log n) real numbers, one only needs O(log n) binary bits!

3Compact projection: Simple and efficient near neighbor search with practical
memory requirements, K. Min, J. Wright, and Y. Ma, CVPR 2010.
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RIP of Gaussian Matrices

RIP of Gaussian Matrices

Theorem (RIP of Gaussian Matrices)

There exists a numerical constant C > 0 such that if A ∈ Rm×n is a
random matrix with entries independent N

(
0, 1

m

)
random variables, with

high probability, δk(A) < δ, provided

m ≥ Ck log(n/k)/δ2. (7)

Implications: `1 minimization can successfully recover k-sparse solutions
xo from about

m ≥ Ck log(n/k) ∼ Ω(k)

random measurements.
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RIP of Gaussian Matrices

Proof: Step 1. Discretization to Finite Cases

δk(A) ≤ δ if and only if supx∈Σk

∣∣∣‖Ax‖22 − 1
∣∣∣ ≤ δ where

Σk = {x | ‖x‖0 ≤ k, ‖x‖2 = 1}. (8)

Construct a finite (minimal) ε-net for Σk.
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RIP of Gaussian Matrices

Proof: Step 1. Discretization to Finite Cases
An ε-net (or covering) N for a given set S if

∀x ∈ S, ∃ x̄ ∈ N such that ‖x− x̄‖2 ≤ ε. (9)

A set M is ε-separated if every pair of distinct points x,x′ in M has
distance at least ε:

‖x− x′‖2 ≥ ε. (10)

Fact: A maximal ε-separated subset M ⊂ S is a (minimal) ε-net of S.
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RIP of Gaussian Matrices

Proof: Step 1. Discretization to Finite Cases

Lemma (ε-Nets for the Unit Ball)

There exists an ε-net for the unit ball B(0, 1) ⊂ Rd of size at most (3/ε)d.

Proof: Let N ⊂ B(0, 1)
be a maximal ε-separated set. The balls B(x, ε/2)
with x ∈ N are contained in B(0, 1 + ε/2). Thus,

|N| vol(B(0, ε/2)) ≤ vol(B(0, 1 + ε/2)). (11)

Hence,

|N| ≤ vol(B(0, 1 + ε/2))

vol(B(0, ε/2))
(12)

=

(
1 + ε/2

ε/2

)d
= (1 + 2/ε)d (13)

≤ (3/ε)d (14)
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RIP of Gaussian Matrices

Proof: Step 1. Discretization to Finite Cases

Lemma (Discretization)

Suppose we have a set N̄ ⊆ Σk with the following property: for all x ∈ Σk,
there exists x̄ ∈ N̄ such that

• |supp(x̄) ∪ supp(x|) ≤ k

• ‖x− x̄‖2 ≤ ε.
set

δN̄ = max
x̄∈N̄

∣∣∣‖Ax̄‖22 − 1
∣∣∣ . (15)

Then

δk(A) ≤ δN̄ + 2ε

1− 2ε
. (16)

Implications: RIP constant δ does not change much if we restrict our
calculation to a finite ε-covering set N̄.
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RIP of Gaussian Matrices

Proof: Step 1. Discretization to Finite Cases

Lemma (ε-Nets for Σk)

There exists an ε-net N̄ for Σk satisfying the two properties required in
Lemma 6, with ∣∣N̄∣∣ ≤ exp

(
k log(3/ε) + k log(n/k) + k

)
. (17)

Proof.

Constructing an ε-Net for each ball in Σk and take the union. Using the
Stirling’s formula,4 we can estimate

∣∣N̄∣∣ ≤ (3/ε)k
(
n

k

)
≤ (3/ε)k

(ne
k

)k
. (18)

4Stirling’s formula gives the bounds for factorials:
√
2πk

(
k
e

)k ≤ k! ≤ e√k( k
e

)k
.
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RIP of Gaussian Matrices

Proof: Steps 2 and 3
Step 2: Tail Bound for Probability of Each Failure Case:
For each x ∈ N̄, Ax is a random vector with entries independent
N (0, 1/m). We have

P
[∣∣∣‖Ax‖22 − 1

∣∣∣ > t
]
≤ 2 exp(−mt2/8). (19)

Step 3: Union Bound for Probability of All Failure Cases:
Summing over all elements of N̄, we have

P [δN̄ > t] ≤ 2
∣∣N̄∣∣ exp

(
−mt2/8

)
(20)

≤ 2 exp
(
− mt2

8
+ k log

(n
k

)
+ k(log

(3

ε

)
+ k)

)
. (21)

On the complement of the event δN̄ > t, we have

δk(A) ≤ 2ε+ t

1− 2ε
. (22)

Setting ε = δ/8, t = δ/4, and ensuring that m ≥ Ck log(n/k)/δ2 for
sufficiently large numerical constant C, we obtain the result.

Ma (EECS Department, UC Berkeley) EECS208, Fall 2021 September 16, 2021 16 / 21



RIP of Gaussian Matrices

RIP of Order k for Gaussian Matrices A ∈ Rm×n

From the above derivation, especially from equation (21), we see that
a slight more tight bound for m is of the form

m ≥ 128k log(n/k)/δ2 + (log(24/δ) + 1)k/δ2 .
= C1k log(n/k) + C2k.

For a small δ, the constants C1 and C2 can be rather large.

A much tighter bound (one of the best known) for m is given as5:

m ≥ 8k log(n/k) + 12k.

A precise (phase transition) expression
of m as function of k, n exists
(Lecture Eight: Section 3.6 or Chapter 6).

5On sparse reconstruction from Fourier and Gaussian measurements, M. Rudelson
and R. Vershynin. Comm. on Pure and Applied Mathematics, 2008.
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RIP of Non-Gaussian Matrices

RIP of Random Unitary Matrices

Motivating example: recall the MRI sensing model:

y = FΩΨx, with F Fourier and Ψ wavelet.

Theorem

Let U ∈ Cn×n be unitary (U∗U = I) and Ω is a random subset of m
elements from {1, . . . , n}. Suppose that

‖U‖∞ ≤ ζ/
√
n. (23)

If

m ≥ Cζ2

δ2
k log4(n), (24)

then with high probability, A =
√

n
mUΩ,• satisfies the RIP of order k, with

constant δk(A) ≤ δ.
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RIP of Non-Gaussian Matrices

Circulant Convolution Matrices
A (random) circulant convolution:

r ∗ x =


r0 rn−1 . . . r2 r1

r1 r0 rn−1 r2
... r1 r0

. . .
...

rn−2
. . .

. . . rn−1

rn−1 rn−2 . . . r1 r0

x
.
= Rx. (25)

Fact: any circulant matrix can be diagonalized by the discrete Fourier
transform6:

R = FDF ∗.

Select a (random) subset of the measurements:

y = PΩ[r ∗ x] = Ax, (26)

6See Appendix A.7.
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RIP of Non-Gaussian Matrices

RIP of Random Circulant Convolution Matrices

Let r be a random vector with independent zero-mean, subgaussian
random variables of variance one.

Theorem

Let Ω ⊆ {1, . . . , n} be any fixed subset of size |Ω| = m. Then if

m ≥ Ck log2(k) log2(n)

δ2
, (27)

then with high probability, A has RIP of order k with δk(A) ≤ δ.

Approximate isometric property is the key to deep convolution
neural networks!7

7Deep Isometric Learning for Visual Recognition, H. Qi, C. You, X. Wang, Yi Ma,
and J. Malik, ICML 2020.
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RIP of Non-Gaussian Matrices

Assignments

• Reading: Section 3.4 of Chapter 3.
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