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Convex Methods for Sparse Signal Recovery
(Towards Stronger Correctness Results)

1 Restricted Isometry Property (RIP)

2 Restricted Strong Convexity (RSC)

3 Success of `1 Minimization under RIP

“Algebra is but written geometry; geometry is but drawn algebra.”
– Sophie Germain
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Restricted Isometry Property (RIP)

From Incoherence to Isometry

Consider two columns AI = [ai | aj ] ∈ Rm×2 of A,

A∗I AI =

[
1 a∗iaj

a∗jai 1

]
R2×2. (1)

If |a∗iaj | ≤ µ(A) is small, this matrix is well conditioned:

1− µ(A) ≤ σmin(A∗I AI) ≤ σmax(A∗I AI) ≤ 1 + µ(A). (2)

∀ I of size ≤ k,

1− kµ(A)
δ

≤ σmin(A∗I AI) ≤ σmax(A∗I AI) ≤ 1 + kµ(A)
δ

. (3)

If δ = kµ(A) is small, all σ(A∗I AI) are close to 1.
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Restricted Isometry Property (RIP)

Restricted Isometry Property

Definition (Restricted Isometry Property)

The matrix A satisfies the restricted isometry property (RIP) of order k,
with constant δ ∈ [0, 1), if

∀ x k-sparse, (1− δ) ‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ) ‖x‖22 . (4)

The order-k restricted isometry constant δk(A) is the smallest number δ
such that the above inequality holds.

Example of Gaussian Matrices: If AI is a large m× k (k < m) matrix
with entries independent N (0, 1/m),

σmin(A∗I AI) ≈ (
√

1−
√
k/m)2 ≥ 1− 2

√
k/m,

σmax(A∗I AI) ≈ (
√

1 +
√
k/m)2 ≤ 1 + 3

√
k/m.
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Restricted Isometry Property (RIP)

Restricted Isometry Property

Upper and lower bounds1 for RIP constants of random Gaussian matrix
A ∈ Rm×n. Consider proportional growth of the size of (k,m, n):
ρ = k

m , γ = m
n .

Figure: Left: δu = λmax(ρ, γ)− 1; Right: δl = 1− λmin(ρ, γ).

1Improved Bounds on Restricted Isometry Constants for Gaussian Matrices, B. Bah,
J. Tanner, SIAM Journal on Matrix Analysis and Applications, 2010.
Ma (EECS Department, UC Berkeley) EECS208, Fall 2021 September 14, 2021 5 / 23



Restricted Isometry Property (RIP)

Restricted Isometry Property: Uniqueness

Theorem (`0 Recovery under RIP)

Suppose that y = Axo, with k = ‖xo‖0. If δ2k(A) < 1, then xo is the
unique optimal solution to

min ‖x‖0 s.t. Ax = y. (5)

Proof.

Suppose on the contrary that there exists x′ 6= xo with ‖x′‖0 ≤ k. Then
xo − x′ ∈ null(A), and ‖xo − x′‖0 ≤ 2k. This implies that δ2k(A) ≥ 1,
contradicting our assumption.
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Restricted Isometry Property (RIP)

Restricted Isometry Property: Correctness

Theorem (`1 Recovery under RIP)

Suppose that y = Axo, with k = ‖xo‖0. If δ2k(A) <
√

2− 1, then xo is
the unique optimal solution to

min ‖x‖1 s.t. Ax = y. (6)

Some later developments:

• δ2k <
√

2− 1 ≈ 0.414, Candes and Tao, 2006.

• δ2k < 0.4531, Fouchart and Lai, 2009.

• δ2k < 0.472, Cai, Wang, and Xu, 2009.

• δk < 0.307, Cai, Wang, and Xu, 2010.2

2New Bounds for Restricted Isometry Constants, T. Cai, L. Wang, and G. Xu, IEEE
Transactions on Information Theory, 56, 2010.
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Restricted Isometry Property (RIP)

Restricted Isometry Property: Universality
Computing RIP constant δk(A) is in general NP -hard; and in fact,
certifying a matrix is (k, δ)-RIP is also hard when k �

√
m.3 However:

Theorem (RIP of Gaussian Matrices)

There exists a numerical constant C > 0 such that if A ∈ Rm×n is a
random matrix with entries independent N

(
0, 1

m

)
random variables, with

high probability, δk(A) < δ, provided

m ≥ Ck log(n/k)/δ2. (7)

Compare with Incoherence: With incoherence, we need m ≥ Ω(k2).
Here this result allows (k,m, n) to scale proportionally:

m ≥ Ω(k).

3The Average-Case Time Complexity of Certifying the Restricted Isometry Property,
Y. Ding, D. Kunisky, A. Wein, and A. Bandeira, https://arxiv.org/pdf/2005.11270.pdf.
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Restricted Isometry Property (RIP)

`1 Recovery under RIP

How to prove `1 minimization succeeds under RIP?
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Restricted Strong Convexity (RSC)

Null Space Property

Given y = Axo, try to recover xo from

min ‖x‖1 subject to Ax = y. (8)

Let x`1 is the optimal solution. If h = x`1 − xo 6= 0. Since
y = Axo = Ax`1 , we also have Ah = 0. We must have

0 ≥ ‖x`1‖1 − ‖xo‖1 = ‖xo + h‖1 − ‖xo‖1
≥ ‖xo‖1 − ‖hI‖1 + ‖hIc‖1 − ‖xo‖1
= −‖hI‖1 + ‖hIc‖1.

That is, we have

‖hIc‖1 ≤ ‖hI‖1.
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Restricted Strong Convexity (RSC)

Null Space Property

Definition (Null Space Property)

The matrix A satisfies the null space property of order k if for every
h ∈ null(A) \ {0} and every I of size at most k,

‖hI‖1 < ‖hIc‖1 . (9)

Example: A =

[
1 1 0
0 1 −1

]
∈ R2×3 :
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Restricted Strong Convexity (RSC)

Null Space Property

Lemma (Success from Null Space Property)

Suppose that A satisfies the null space property of order k. Then for any
y = Axo, with ‖xo‖0 ≤ k, xo is the unique optimal solution to the `1

problem
min ‖x‖1 s.t. Ax = y. (10)

Proof.

Let y = Axo, with ‖xo‖0 ≤ k, and let I = supp(xo). Let x̂`1 be the
optimal solution, so h = x̂`1 − xo ∈ null(A). If h 6= 0, then

‖x̂`1‖1 = ‖xo + h‖1 ≥ ‖xo‖1 − ‖hI‖1 + ‖hIc‖1 > ‖xo‖1,

contradicting the optimality of x̂`1 .

No direction h in null(A) could further reduce ‖xo‖1.
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Restricted Strong Convexity (RSC)

Restricted Strong Convexity Condition
The null space property is equivalent to:

‖Ah‖22 > 0 ∀h ‖hIc‖1 ≤ ‖hI‖1. (11)

‖Ah‖22 must attain its minimum µ > 0 on a compact set. The above is
equivalent to:

‖Ah‖22 ≥ µ‖h‖22, ∀h ‖hIc‖1 ≤ ‖hI‖1. (12)
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Restricted Strong Convexity (RSC)

Restricted Strong Convexity Condition

Definition (Restricted Strong Convexity)

The matrix A satisfies the restricted strong convexity (RSC) condition of
order k, with parameters µ > 0, α ≥ 1, if for every I of size at most k and
for all nonzero h satisfying ‖hIc‖1 ≤ α‖hI‖1,

‖Ah‖22 ≥ µ‖h‖22. (13)

Lemma (Success from RSC Condition)

Suppose that A satisfies the restricted strong convexity condition of order
k with constant α ≥ 1, for some µ > 0. Then for any y = Axo, with
‖xo‖0 ≤ k, xo is the unique optimal solution to the `1 problem

min ‖x‖1 subject to Ax = y. (14)
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Success of `1 Minimization under RIP

RIP Preserves Incoherence

Lemma (RIP Preserves Incoherence of Images of Sparse Vectors)

If x, z are vectors with disjoint support, and |supp(x)|+ |supp(z)| ≤ k,
then

|〈Ax,Az〉| ≤ δk(A) ‖x‖2 ‖z‖2 . (15)

Proof.

WLOG, ‖x‖2 = ‖z‖2 = 1. Notice that ‖p + q‖22 − ‖p− q‖22 = 4〈p, q〉.
Hence,

|〈Ax,Az〉| ≤ 1

4

∣∣∣‖Ax + Az‖22 − ‖Ax−Az‖22
∣∣∣ (16)

≤ 1

4

∣∣∣(1 + δk) ‖x + z‖22 − (1− δk) ‖x− z‖22
∣∣∣ . (17)

Since x and z have disjoint support, ‖x + z‖22 = ‖x− z‖22 = 2.
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Success of `1 Minimization under RIP

Bounds between Norms

Lemma (Bounds between Norms of Sparse Vectors)

For any vector z with ‖z‖0 ≤ k, ‖z‖1 ≤
√
k ‖z‖2 and ‖z‖2 ≤

√
k ‖z‖∞.

Proof.

First inequality: since x2 is a convex function, we have:(
a1 + a2 + · · ·+ ak

k

)2

≤
a21 + a22 + · · ·+ a2k

k
. (18)

Second inequality:

a21 + a22 + · · ·+ a2k
k

≤ max
j
{a2j}. (19)
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Success of `1 Minimization under RIP

RIP Implies RSC

Theorem (RIP Implies RSC)

If a matrix A satisfies RIP with δ2k(A) < 1
1+α
√
2

, then A satisfies the

RSC condition of order k with constant α.

Proof (A Sketch): We want to show:

∀h ∈ Rn : ‖hIc‖1 ≤ α · ‖hI‖1, |I| = k =⇒ ‖Ah‖2 ≥ µ‖h‖2. (20)

Partition the indices of the entries in hIc based on their magnitudes:

J1 indexes the k largest (in magnitude) elements of hIc ,

J2 indexes the k largest (in magnitude) elements of h(I∪J1)c ,

J3 indexes the k largest (in magnitude) elements of h(I∪J1∪J2)c ,

...

Then ∀ i ≥ 1, ‖hJi‖1 ≥ k ·
∥∥hJi+1

∥∥
∞ .
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Success of `1 Minimization under RIP

RIP Implies RSC
Proof (Continued):
Step 1: Since hI and hJ1 likely have the largest entries, first try to show:

‖Ah‖2 ≥ C ‖hI∪J1‖2 , for some C > 0. (21)

From AhI + AhJ1 = Ah−AhJ2 −AhJ3 − · · · , we have:

(1− δ2k)‖hI∪J1‖
2
2 ≤ ‖AhI∪J1‖

2
2

= 〈AhI + AhJ1 ,−AhJ2 −AhJ3 − · · ·〉+ 〈AhI + AhJ1 ,Ah〉

≤
∞∑
j=2

( ∣∣〈AhI,AhJj 〉
∣∣+
∣∣〈AhJ1 ,AhJj 〉

∣∣ )+ ‖AhI∪J1‖2‖Ah‖2

≤ δ2k(‖hI‖2 + ‖hJ1‖2)
∞∑
j=2

∥∥hJj

∥∥
2

+ (1 + δ2k)
1/2‖hI∪J1‖2‖Ah‖2

≤ δ2k
√

2 ‖hI∪J1‖2 ‖hIc‖1 /
√
k + (1 + δ2k)

1/2‖hI∪J1‖2‖Ah‖2. (22)
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Success of `1 Minimization under RIP

RIP Implies RSC
Proof (Continued):
From the restricted cone condition, we have

‖hIc‖1 ≤ α‖hI‖1 ≤ α
√
k‖hI‖2 ≤ α

√
k‖hI∪J1‖2. (23)

This gives:

‖Ah‖2 ≥
1− δ2k(1 + α

√
2)

(1 + δ2k)1/2
‖hI∪J1‖2 . (24)

Step 2: Try to show:

‖hI∪J1‖
2
2 ≥ C

′‖h‖22, for some C ′ > 0. (25)

Since the i-th element of h(I∪J1)c is no larger than the mean of the first i
elements of hIc , we have

|h(I∪J1)c |(i) ≤ ‖hIc‖1/i. (26)

Ma (EECS Department, UC Berkeley) EECS208, Fall 2021 September 14, 2021 19 / 23



Success of `1 Minimization under RIP

RIP Implies RSC

Proof (Continued):
Combining with the restriction (20), we have

‖h(I∪J1)c‖
2
2 ≤ ‖hIc‖21

∞∑
i=k+1

1

i2
≤ ‖hIc‖21

k

≤ α2‖hI‖21
k

≤ α2‖hI‖22 ≤ α2‖hI∪J1‖22.

So we have
‖h‖22 ≤ (1 + α2)‖hI∪J1‖22. (27)

Finally: Combine the results:

‖Ah‖2 ≥
1− δ2k(1 + α

√
2)

(1 + δ2k)1/2
√

1 + α2
‖h‖2 . (28)

Ma (EECS Department, UC Berkeley) EECS208, Fall 2021 September 14, 2021 20 / 23



Success of `1 Minimization under RIP

RIP for `1 Minimization

To prove the RIP Theorem: We need δ2k <
1

1+α
√
2

to ensure RSC

hence the NSP.
For `1 minimization

min ‖x‖1 s.t. y = Ax. (29)

to succeed, we need

∀h ∈ null(A) : ‖hIc‖1 ≤ ‖hI‖1,

hence α = 1 and the associated RIP constant should be:

δ2k <
1

1 +
√

2
=
√

2− 1.
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Success of `1 Minimization under RIP

Conclusions

Conditions when `1 minimization find the correct k-sparse solution:

min ‖x‖1 subject to y = Ax.

• Mutual Coherence:
m = O(k2).

• Restricted Isometry:

m = O
(
k log(n/k)

)
.

Next: what m× n matrix A has a small RIP constant δk?
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Success of `1 Minimization under RIP

Assignments

• Reading: Section 3.3 of Chapter 3.

• Programming Homework #1.
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