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“Algebra is but written geometry; geometry is but drawn algebra.”
– Sophie Germain
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Geometric Intuition

Geometric Intuition: Coefficient Space

Given y = Axo ∈ Rm with xo ∈ Rn sparse:

min ‖x‖1 subject to Ax = y. (1)

The space of all feasible solutions is an affine subspace:

S = {x | Ax = y} = {xo}+ null(A) ⊂ Rn. (2)
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Geometric Intuition

`1 Minimization in the Coefficient Space

Gradually expand a `1 ball of radius t from the origin 0:

t · B1 = {x | ‖x‖1 ≤ t} ⊂ Rn, (3)

till its boundary first touches the feasible set S:

Ma (EECS Department, UC Berkeley) EECS208, Fall 2021 September 7, 2021 4 / 26



Geometric Intuition

Comparison between `1 and `2 Minimization
Given y = Axo with xo sparse:

A : min ‖x‖1 subject to Ax = y. (4)

versus

B : min ‖x‖2 subject to Ax = y (5)
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Geometric Intuition

Sparsity Promoting with Different `p Norms

Figure: Intersection between the `p-ball and the feasible set S, for p = 2, 1.5, 1
and 0.7, respectively. (Some argue p = 0.5 is somewhat special.)

Figure from Sparse and Redundant Representations, Michael Elad, Springer, 2010.
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Geometric Intuition

Geometric Intuition: High-dimensional Polytopes

Neighborly Polytopes
(vertices from a Gaussian matrix):

A = [a1,a2, . . . ,an] ∈ Rm×n.

The “correct” visualization of high-dimensional
convex polytopes,1 including the `1 ball:

1Lectures on Discrete Geometry, Jiri Matousek, Springer 2002.
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Geometric Intuition

Geometric Intuition: Observation Space

The matrix A ∈ Rm×n can be viewed
as a linear projection from Rn to Rm:

A : B1 → P = A(B1), (6)

which maps a convex polytope to a
convex polytope. Similarly, ∀t ≥ 0:

t · B1 → t ·A(B1).
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Geometric Intuition

Geometric Intuition: Observation Space

All k-faces of B1 cannot be mapped to the inside of the polytope A(B1) :

A Million Dollar Question: When x̂ = xo?
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A First Correctness Result via Incoherence Coherence of a Matrix

Coherence of a Matrix

Definition (Mutual Coherence)

For a matrix A =
[
a1 | a2 | · · · | an

]
∈ Rm×n with nonzero columns,

the mutual coherence µ(A) is the largest normalized inner product
between two distinct columns:

µ(A) = max
i 6=j

∣∣∣∣〈 ai
‖ai‖2

,
aj
‖aj‖2

〉∣∣∣∣ . (7)

Example:
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A First Correctness Result via Incoherence Correctness of `1 Minimization

Uniqueness of Sparse Solution

Proposition (Coherence Controls Kruskal Rank)

For any A ∈ Rm×n,

krank(A) ≥ 1

µ(A)
. (8)

In particular, if y = Axo and

‖xo‖0 ≤
1

2µ(A)
, (9)

then xo is the unique optimal solution to the `0 minimization problem

min ‖x‖0 s.t. Ax = y. (10)

Proof:

1− kµ(A) < σmin(A∗IAI) ≤ σmax(A∗IAI) < 1 + kµ(A). (11)
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A First Correctness Result via Incoherence Correctness of `1 Minimization

Correctness of `1 Minimization

Theorem (`1 Succeeds under Incoherence)

Let A be a matrix whose columns have unit `2 norm, and let µ(A) denote
its mutual coherence. Suppose that y = Axo, with

‖xo‖0 ≤
1

2µ(A)
. (12)

Then xo is the unique optimal solution to the problem

min ‖x‖1 s.t. y = Ax. (13)

Tightness: there exist examples of A and xo with ‖xo‖0 > 1
2

(
1 + 1

µ(A)

)
for

which `1 minimization does not recover xo.
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A First Correctness Result via Incoherence Correctness of `1 Minimization

Correctness of `1 Minimization

Given y = Axo, try to find xo via `1 minimization:

min ‖x‖1 s.t. y = Ax. (14)

Lagrangian formulation:

min ‖x‖1 + λ∗(y −Ax), ∃λ ∈ Rm. (15)

Optimality condition: xo is a minimum of f(x) if and only if 0 is in the
subgradient ∂f(x) at xo:

f(x) ≥ f(xo) + 0∗(x− xo).

Optimality condition for `1 Minimization:

0 ∈ ∂‖xo‖1 −A∗λ ⇔ A∗λ ∈ ∂‖xo‖1. (16)
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A First Correctness Result via Incoherence Correctness of `1 Minimization

Correctness of `1 Minimization

Proof (a sketch of key ideas):
Due to convexity of ‖ · ‖1, for any v ∈ ∂ ‖·‖1 (xo) and x′ ∈ Rn,∥∥x′∥∥

1
≥ ‖xo‖1 + 〈v,x′ − xo〉 (17)

For v = A∗λ, we have: 〈A∗λ,x′ − xo〉 = 〈λ,A(x′ − xo)〉 = 0. Therefore∥∥x′∥∥
1
≥ ‖xo‖1 .

To find such an optimality certificate A∗λ ∈ ∂ ‖·‖1 (xo), we need:

A∗I λ = σ, ‖A∗Icλ‖∞ ≤ 1. (18)

A natural “candidate”:

λ̂`2
.
= AI(A

∗
IAI)

−1σ. (19)

The rest is to check this satisfies (18) under the given conditions.
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A First Correctness Result via Incoherence Correctness of `1 Minimization

Correctness of `1 Minimization

Proof (continued):
By construction, A∗I λ̂`2 = σ. We are just left to verify (18), by calculating

‖A∗Icλ̂`2‖∞ = ‖A∗IcAI(A
∗
IAI)

−1σ‖∞. (20)

Consider a single element of this vector (j ∈ Ic), which has the form:

|a∗jAI(A
∗
IAI)

−1σ| ≤ ‖A∗I aj‖2︸ ︷︷ ︸
≤
√
kµ

∥∥(A∗IAI)
−1∥∥

2,2︸ ︷︷ ︸
<

1
1−kµ(A)

‖σ‖2︸ ︷︷ ︸
=
√
k

(21)

<
kµ(A)

1− kµ(A)
(22)

≤ 1
Provided kµ(A) ≤ 1/2.

. (23)
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A First Correctness Result via Incoherence Constructing an Incoherent Matrix

Constructing Incoherent Matrices

Example I. Consider a discrete Fourier transform matrix F . Let I ⊂ [n] be
a random set of m indices,

A = F ∗I ∈ Cm×n. (24)

Example II. For two orthogonal matrices Φ and Ψ,

A = Φ∗I Ψ. (25)

Example III. For two orthogonal matrices, say Φ is Fourier F and Ψ is
the identify I or the Wavelet W ,

A = [Φ | Ψ] ∈ Cn×2n. (26)

Ma (EECS Department, UC Berkeley) EECS208, Fall 2021 September 7, 2021 16 / 26



A First Correctness Result via Incoherence Constructing an Incoherent Matrix

Incoherence and Uncertainty Principle

Incoherence between I and F : |〈ei,fj〉| = 1√
n
.

Facts: A signal cannot be sparse in both time I and frequency F . Let
x̂ = Fx ∈ Cn be the discrete Fourier transform of x ∈ Cn. Then the
Heisenberg uncertainty principle states that:

Var(|x|2)Var(|x̂|2) ≥ 1

16π2
. (27)

Or a deterministic uncertainty principle:

‖x‖0 · ‖x̂‖0 ≥ n or ‖x‖0 + ‖x̂‖0 ≥ 2
√
n. (28)
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A First Correctness Result via Incoherence Constructing an Incoherent Matrix

Incoherence and Uncertainty Principle

Theorem (Uncertainty Principle I2)

For A = [Φ | Ψ] ∈ Cn×2n with two orthogonal matrices Φ and Ψ. For
any 0 = Φe+ Ψê with Φe = −Ψê 6= 0, we have

‖e‖0 + ‖ê‖0 ≥
2

µ(A)
. (29)

Corollary (Uncertainty Principle II)

For A = [Φ | Ψ] ∈ Cn×2n with two orthogonal matrices Φ and Ψ. For
any nonzero y = Ax = Ax̂ with x different from x̂, we have

‖x‖0 + ‖x̂‖0 ≥
2

µ(A)
. (30)

Question: What can you say about y = Ax with ‖x‖0 < 1
µ(A)?

2Sparse and Redundant Representations, Michael Elad, Springer, 2010.
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A First Correctness Result via Incoherence Constructing an Incoherent Matrix

Constructing Incoherent Matrices

Recall phenomena associated with random matrices:

• Measure Concentration (ε ∼ O(n−1/2))

Area{x ∈ Sn−1 : −ε ≤ xn ≤ ε} = 0.99 · Area(Sn−1), (31)

• Neighborly Polytopes (vertices from a Gaussian matrix):

A = [a1,a2, . . . ,an] ∈ Rm×n.
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A First Correctness Result via Incoherence Constructing an Incoherent Matrix

Constructing Incoherent Matrices

Theorem (Spherical Measure Concentration3)

Let u ∼ uni(Sm−1) be distributed according to the uniform distribution on
the sphere. Let f : Sm−1 → R be an 1-Lipschitz function:

∀u, u′,
∣∣f(u)− f(u′)

∣∣ ≤ 1 ·
∥∥u− u′∥∥

2
, (32)

and let med(f) denote any median of the random variable Z = f(u).
Then

P [ f(u) > med(f) + t ] ≤ 2 exp

(
−mt

2

2

)
, (33)

P [ f(u) < med(f)− t ] ≤ 2 exp

(
−mt

2

2

)
. (34)

3Lectures on Discrete Geometry, Jiri Matousek, Springer 2002.
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A First Correctness Result via Incoherence Constructing an Incoherent Matrix

Constructing Incoherent Matrices

Theorem

Let A = [a1 | · · · | an] with columns ai ∼ uni(Sm−1) chosen
independently according to the uniform distribution on the sphere. Then
with probability at least 3/4,

µ(A) ≤ C

√
log n

m
, (35)

where C > 0 is a numerical constant.

Proof (a sketch): For any v ∈ Sm−1, E[|v∗a|]2 ≤ [(v∗a)2] ≤ 1
m implies

med(|v∗a|) ≤ 2E[|v∗a|] ≤ 2√
m

(Markov inequality).

P
[
|v∗a| > 2 + t√

m

]
≤ 2 exp

(
− t

2

2

)
. (36)
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A First Correctness Result via Incoherence Constructing an Incoherent Matrix

Constructing Incoherent Matrices

Proof (continued):
As all the n columns {ai} are independent:

P
[
|a∗iaj | >

2 + t√
m

]
≤ 2 exp

(
− t

2

2

)
. (37)

Summing the failure probability over all n(n− 1)/2 pairs of (ai,aj):

P
[
∃ (i, j) : |a∗iaj | >

2 + t√
m

]
≤ n(n− 1) exp

(
− t

2

2

)
. (38)

Setting t = 2
√

log 2n, the RHS probability is less than 1/4.
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A First Correctness Result via Incoherence Limitations of Incoherence

Limitations of Incoherence

Theorem (Welch Bound)

For any matrix A = [a1 | · · · | an] ∈ Rm×n, m ≤ n, and suppose that the
columns ai have unit `2 norm. Then

µ(A) = max
i 6=j
|〈ai,aj〉| ≥

√
n−m
m(n− 1)

= Ω

(
1√
m

)
. (39)
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A First Correctness Result via Incoherence Limitations of Incoherence

Limitations of Incoherence

Proof of the Welch bound.

Let G = A∗A ∈ Rn×n and its eigenvalues satisfy:
∑m

i=1 λi(G)
= trace(G) =

∑n
i=1 ‖ai‖22 = n. Using this fact, we have:

n2

m
≤ n2

m
+

m∑
i=1

(
λi(G)− n

m

)2
(40)

=
n2

m
+

m∑
i=1

{
λ2i (G) +

n2

m2
− 2

n

m
λi(G)

}
(41)

=

m∑
i=1

λ2i (G) = ‖G‖2F =
∑
i,j

|a∗iaj |2 = n+
∑
i 6=j
|a∗iaj |2 (42)

≤ n+ n(n− 1)
(

max
i 6=j
|a∗iaj |

)2
. (43)
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A First Correctness Result via Incoherence Limitations of Incoherence

Limitations of Incoherence

Incoherence ensures to recover k-sparse solution from

m ≥ Õ(k2)

measurements.

Experimental results suggest m = O(k) :

In a proportional growth setting m ∝ n, k ∝ m, `1 minimiza-
tion succeeds with very high probability whenever the constants
of proportionality n/m and k/m are small enough.

Next: how to sharpen the bound?
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A First Correctness Result via Incoherence Limitations of Incoherence

Assignments

• Reading: Section 3.1 & 3.2 of Chapter 3.

• Programming Homework # 1.

Ma (EECS Department, UC Berkeley) EECS208, Fall 2021 September 7, 2021 26 / 26


	Geometric Intuition
	A First Correctness Result via Incoherence
	Coherence of a Matrix
	Correctness of 1 Minimization
	Constructing an Incoherent Matrix
	Limitations of Incoherence


