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“"Algebra is but written geometry; geometry is but drawn algebra.”
— Sophie Germain
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Geometric Intuition

Geometric Intuition: Coefficient Space
Given y = Ax, € R™ with x, € R sparse:

min ||x||; subjectto Az =1y. (1)
The space of all feasible solutions is an affine subspace:

S={z| Az =y} = {x,} + null(A) CR". (2)

Feasible set
Coefficient

S={z,}+null(A)
space R™
¢ ball
Bi = {z ||, <1}
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Geometric Intuition

¢' Minimization in the Coefficient Space

Gradually expand a ¢! ball of radius ¢ from the origin 0:
t-Br=A{z| |z, <t} CR", (3)

till its boundary first touches the feasible set S:

I AN

N
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Geometric Intuition

Comparison between ¢! and ¢?> Minimization

Given y = Ax, with x, sparse:

A: minlz|; subjectto Ax=y. (4)
VErsus
B: min|x|2 subjectto Az =1y (5)
A L1 regularization B L2 regularization
T2 X2

N,
NN
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Geometric Intuition

Sparsity Promoting with Different ¢/ Norms

Figure: Intersection between the ¢P-ball and the feasible set S, for p = 2,1.5,1
and 0.7, respectively. (Some argue p = 0.5 is somewhat special.)

Figure from Sparse and Redundant Representations, Michael Elad, Springer, 2010.
o T = E Dae
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Geometric Intuition

Geometric Intuition: High-dimensional Polytopes

Neighborly Polytopes
(vertices from a Gaussian matrix):

Convex polytope

A = [al, a, ... 70’7’1,] c Rmxn' (Gaussian vertices)

The “correct” visualization of high-dimensional
convex polytopes,® including the ¢' ball:

a b
1
X i? 2/vn

A general convex set The ¢; ball

Lectures on Discrete Geometry, Jiri Matousek, Springer-2002:
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Geometric Intuition

Geometric Intuition: Observation Space

¢! ball By
. . Coefficient space R™
The matrix A € R™*™ can be viewed "’

as a linear projection from R™ to R™:

He

A: B — P:A(Bl), (6)
which maps a convex polytope to a e enbedding 4 C
convex polytope. Similarly, V¢ > 0: Polytope

Observation space R™ — P = A(B1)

t- Bl —>t‘A(Bl).

y = Az,
observation
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Geometric Intuition

Geometric Intuition: Observation Space

All k-faces of By cannot be mapped to the inside of the polytope A(B;) :

He

A Million Dollar Question: When & = x,,?
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A First Correctness Result via Incoherence @IS ILNIEEN Y El{7'e

Coherence of a Matrix
Definition (Mutual Coherence)

For a matrix A= |aj |as |- | an} € R™*™ with nonzero columns,

the mutual coherence (1(A) is the largest normalized inner product

between two distinct columns:
a; aj >‘ (7)
<||ai!|2’ llajlly

n(A) = 0.70711 = 0.99488

NN
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A) = max
n(A) I

Example:



A First Correctness Result via Incoherence [@ee St RS ANV TP ter

Uniqueness of Sparse Solution

Proposition (Coherence Controls Kruskal Rank)

For any A € R™*™,

krank(A) > b

() (8)

In particular, if y = Ax, and

1
n(A)’ ©)

[@ofl0 <

then x, is the unique optimal solution to the ¢° minimization problem

min ||z]jp st Az =uy. (10)

Proof:

1—ku(A) < omin(ATA1) < omax(AfA)) < 1+ Eku(A). (11)
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A First Correctness Result via Incoherence [@ee St RS ANV TP ter

Correctness of ¢} Minimization

Theorem (¢! Succeeds under Incoherence)

Let A be a matrix whose columns have unit £* norm, and let (A) denote
its mutual coherence. Suppose that y = Ax,, with

[Zoll0 < WlAW (12)

Then x, is the unique optimal solution to the problem
min ||z]|; st y= Azx. (13)

Tightness: there exist examples of A and x, with |z,o > 3 (1 + ﬁ) for
which ¢ minimization does not recover x,.
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Correctness of ¢! Minimization
Given y = Ax,, try to find =, via ¢! minimization:
min ||z||; st y= Az (14)
Lagrangian formulation:
min |z + A*(y — Az), IAER™. (15)

Optimality condition: x, is a minimum of f(x) if and only if O is in the
subgradient 0f(x) at x,:

f(@) = f(xo) + 07 (z — o).

Optimality condition for £! Minimization:

0€|z)i — A'A = A€ d|zo|. (16)
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A First Correctness Result via Incoherence [@ee St RS ANV TP ter

Correctness of ¢} Minimization

Proof (a sketch of key ideas):
Due to convexity of || - |1, for any v € 9 ||-||; (x,) and &’ € R",

2], > llao]l, + (v, 2’ — ) (17)
For v = A*\, we have: (A*\ x' —x,) = (A, A(x’ — x,)) = 0. Therefore
Hx/H1 > [|zoll; -

To find such an optimality certificate A*X € 9 |||, (x,), we need:
Afx =0, |ALA| <1 (18)

A natural “candidate”:
Az = A(ATA) o (19)

The rest is to check this satisfies (18) under the given conditions.
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A First Correctness Result via Incoherence [@ee St RS ANV TP ter

Correctness of ¢} Minimization

Proof (continued):
By construction, AjAp2 = o. We are just left to verify (18), by calculating

1A Azl = AL AI(A] A) " o]|oc (20)

Consider a single element of this vector (5 € 1), which has the form:

@AATA) o] < ATl |(ATA) )y, lol, (1)
———\ N~
<Vkp 1 =Vk
1—kp(A)
ku(A)
= k(A) (22)
< 1 . (23)
Provided ku(A) < 1/2.
[]
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AN ETE NN ST I AVEN TN Constructing an Incoherent Matrix

Constructing Incoherent Matrices

Example |. Consider a discrete Fourier transform matrix F'. Let | C [n] be
a random set of m indices,

A=F'eCm™m. (24)
Example Il. For two orthogonal matrices ® and ¥,
A=V (25)

Example Ill. For two orthogonal matrices, say ® is Fourier F' and W is
the identify I or the Wavelet W,

A=[®| W] cC (26)
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AN ETE NN ST I AVEN TN Constructing an Incoherent Matrix

Incoherence and Uncertainty Principle

Incoherence between I and F: |(e;, f;)| = \/Lﬁ

Facts: A signal cannot be sparse in both time I and frequency F'. Let
& = Fx € C" be the discrete Fourier transform of & € C™. Then the
Heisenberg uncertainty principle states that:

1
\% WVar(|2*) > —. 27
ar((a ) Var(a ) = 1 (27)
Or a deterministic uncertainty principle:
lllo - |&llo > n or [0+ [[&]lo > 2v/n. (28)
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AN ETE NN ST I AVEN TN Constructing an Incoherent Matrix

Incoherence and Uncertainty Principle

Theorem (Uncertainty Principle 12)

For A = [® | W] € C™*2" with two orthogonal matrices ® and ¥. For
any 0 = ®e + We with e = —Wé # 0, we have

lello + lléllo > (29)

A
u(A)

Corollary (Uncertainty Principle I1)

For A = [® | ¥] € C™*2" with two orthogonal matrices ® and ¥. For
any nonzero y = Ax = Ax with x different from &, we have

[&llo + [[#]lo > (30)

2
n(A)

Question: What can you say about y = Ax with ||z < f({at)?

2Sparse and Redundant Representations, Michael Elad, Springer, 2010.
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AN ETE NN ST I AVEN TN Constructing an Incoherent Matrix

Constructing Incoherent Matrices

Recall phenomena associated with random matrices:

e Measure Concentration (¢ ~ O(n~1/?))
Area{x € S" 1 : —e <, < €} =0.99 - Area(S"1), (31)
* Neighborly Polytopes (vertices from a Gaussian matrix):

A= [al,ag, .. .,an] € R"™*™,

Convex polytope
ECRRRRRREEES (Gaussian vertices)
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AN ETE NN ST I AVEN TN Constructing an Incoherent Matrix

Constructing Incoherent Matrices

Theorem (Spherical Measure Concentration®)

Let u ~ uni(S™1) be distributed according to the uniform distribution on
the sphere. Let f : S™~! — R be an 1-Lipschitz function:

/

Vu, o', |f(u) - fu)] < 1-[ju—|,,

and let med(f) denote any median of the random variable Z = f(u).

(32)

Then

mi2
P[f(u) > med(f)+t] < 2€Xp< t),

P[f(u) < med(f) —t] < 2(—:-Xp< mf).

3Lectures on Discrete Geometry, Jiri Matousek, Springer-2002:
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AN ETE NN ST I AVEN TN Constructing an Incoherent Matrix

Constructing Incoherent Matrices

Theorem

Let A=[ay |- | ay,] with columns a; ~ uni(S™~1) chosen
independently according to the uniform distribution on the sphere. Then
with probability at least 3/4,

WA) < C logn’ (35)

m

where C > 0 is a numerical constant.

Proof (a sketch): For any v € S~ 1, E[|v*al]? < [(v*a)?] < L implies
2
med(|v*al) < 2E[v*al|] < N (Markov inequality).

P [\v*a| > 2\;{} < 2exp (-’i) . (36)
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AN ETE NN ST I AVEN TN Constructing an Incoherent Matrix

Constructing Incoherent Matrices

Proof (continued):
As all the n columns {a;} are independent:

2+t t?
p[m;*aj\ > %} < 2exp <—5>. (37)

Summing the failure probability over all n(n — 1)/2 pairs of (a;, a;):

vm
Setting t = 2¢/log 2n, the RHS probability is less than 1/4. O

]P’[H(i,j)  Jata;| > w] < n(n—1)exp (—g) (38)
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A First Correctness Result via Incoherence Limitations of Incoherence

Limitations of Incoherence
Theorem (Welch Bound)

For any matrix A =[a; | -+ | ap] € R™*™, m < n, and suppose that the
columns a; have unit (> norm. Then

n—m 1
@A) = max|(ai,a;)| > /——— =0(—]. (39
( ) i |< ) J>| m(n—l) \/ﬁ ( )
(A) for random A Guarantee based on p(A)
0.8|® | === Estimate of E[u(A)] « m— 1 guarantee via u(A) K
. —@— 1.75(log(n)/m)1/2 2 mmmmm Best Possible from
;" 0.6 - s Welch bound on p E 10+
= =
A 55 .
“ 02} E
Z, /____——————-
0 | I 0 | | |
0 1,000 2,000 3,000 4,000 0 1,000 2,000 3,000 4,000
Dimension n Dimension n
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A First Correctness Result via Incoherence Limitations of Incoherence

Limitations of Incoherence

Proof of the Welch bound.
Let G = A*A € R™ ™ and its eigenvalues satisfy: >, \;(G)
= trace(G) = Y., ||lai||3 = n. Using this fact, we have:

n2 n2 m 2
<
oz +;( ) (40)
n " 2 )\
_ 22l 41
- +§;{ )+ ) (a1)
= Y @) = GIE =Y lajail> = n+ > lafa;l? (42)
i=1 i, i
< ntnfn—1)(max|afa])’. (43)
7]

Ol
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A First Correctness Result via Incoherence Limitations of Incoherence

Limitations of Incoherence

Incoherence ensures to recover k-sparse solution from
m > O(k?)
measurements.

Experimental results suggest m = O(k) :

In a proportional growth setting m o n, k o« m, £' minimiza-

tion succeeds with very high probability whenever the constants
of proportionality n/m and k/m are small enough.

Next: how to sharpen the bound?

Ma (EECS Department, UC Berkeley) EECS208, Fall 2021 September 7, 2021 25/26



Assignments

® Reading: Section 3.1 & 3.2 of Chapter 3.
® Programming Homework # 1.
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