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“Learners need endless feedback more than
they need endless teaching.”

– Grant Wiggins
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Motivation: Objectives of Learning from Data

High-Dim Data with Mixed Low-Dim Structures

RD

M

M1
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Mj

Figure: High-dimensional Real-World Data: X = [x1, . . . ,xm] in RD lying on
a mixture of low-dimensional submanifolds ∪k

j=1Mj ⊂ RD.

The main objective of learning from (samples of) real-world data:

Find a most compact and simple representation of the data.
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Motivation: Objectives of Learning from Data

Fitting Class Labels via a Deep Network
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Figure: Black Box Classification: y is the class label of x represented as a
“one-hot” vector in Rk. To learn a nonlinear mapping f(·, θ) : x 7→ y, say
modeled by a deep network, using cross-entropy (CE) loss.

min
θ∈Θ

CE(θ,x,y)
.
= −E[⟨y, log[f(x, θ)]⟩] ≈ − 1

m

m∑
i=1

⟨yi, log[f(xi, θ)]⟩. (1)

Prevalence of neural collapse during the terminal phase of deep learning training,

Papyan, Han, and Donoho, 2020.
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LDR Representation via Principle of Rate Reduction

Represent Multi-class Multi-dimensional Data

f(x, ✓)

RD Rd

M
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M2

Mj

xi

S1
S2

Sj

zi

Figure 1: Left and Middle: The distribution D of high-dim data x 2 RD is supported on a manifold M and
its classes on low-dim submanifolds Mj , we learn a map f(x, ✓) such that zi = f(xi, ✓) are on a union of
maximally uncorrelated subspaces {Sj}. Right: Cosine similarity between learned features by our method
for the CIFAR10 training dataset. Each class has 5,000 samples and their features span a subspace of over 10
dimensions (see Figure 3(c)).

the component distributions Dj are (or can be made). One popular working assumption is that the
distribution of each class has relatively low-dimensional intrinsic structures.9 Hence we may assume
the distribution Dj of each class has a support on a low-dimensional submanifold, say Mj with
dimension dj ⌧ D, and the distribution D of x is supported on the mixture of those submanifolds,
M = [k

j=1Mj , in the high-dimensional ambient space RD, as illustrated in Figure 1 left.

With the manifold assumption in mind, we want to learn a mapping z = f(x, ✓) that maps each of
the submanifolds Mj ⇢ RD to a linear subspace Sj ⇢ Rd (see Figure 1 middle). To do so, we
require our learned representation to have the following properties:

1. Between-Class Discriminative: Features of samples from different classes/clusters should
be highly uncorrelated and belong to different low-dimensional linear subspaces.

2. Within-Class Compressible: Features of samples from the same class/cluster should be
relatively correlated in a sense that they belong to a low-dimensional linear subspace.

3. Maximally Diverse Representation: Dimension (or variance) of features for each class/cluster
should be as large as possible as long as they stay uncorrelated from the other classes.

Notice that, although the intrinsic structures of each class/cluster may be low-dimensional, they are
by no means simply linear in their original representation x. Here the subspaces {Sj} can be viewed
as nonlinear generalized principal components for x [VMS16]. Furthermore, for many clustering
or classification tasks (such as object recognition), we consider two samples as equivalent if they
differ by certain class of domain deformations or augmentations T = {⌧}. Hence, we are only
interested in low-dimensional structures that are invariant to such deformations,10 which are known to
have sophisticated geometric and topological structures [WDCB05] and can be difficult to learn in a
principled manner even with CNNs [CW16, CGW19]. There are previous attempts to directly enforce
subspace structures on features learned by a deep network for supervised [LQMS18] or unsupervised
learning [JZL+17, ZJH+18, PFX+17, ZHF18, ZJH+19, ZLY+19, LQMS18]. However, the self-
expressive property of subspaces exploited by [JZL+17] does not enforce all the desired properties
listed above; [LQMS18] uses a nuclear norm based geometric loss to enforce orthogonality between
classes, but does not promote diversity in the learned representations, as we will soon see. Figure 1
right illustrates a representation learned by our method on the CIFAR10 dataset. More details can be
found in the experimental Section 3.

2 Technical Approach and Method

2.1 Measure of Compactness for a Representation

Although the above properties are all highly desirable for the latent representation z, they are by no
means easy to obtain: Are these properties compatible so that we can expect to achieve them all at

9There are many reasons why this assumption is plausible: 1. high dimensional data are highly redundant; 2.
data that belong to the same class should be similar and correlated to each other; 3. typically we only care about
equivalent structures of x that are invariant to certain classes of deformation and augmentations.

10So x 2 M iff ⌧(x) 2 M for all ⌧ 2 T .

3

Given samples
X = [x1, . . . ,xm] ⊂ RD

from a mixture of
k submanifolds: M = ∪k

j=1Mj ,
seek a good representation
Z = [z1, . . . ,zm] ⊂ Rd through
a continuous mapping:

f(x, θ) : x ∈ RD 7→ z ∈ Rd.

Goals of “re-present” the data:

• from non-parametric (samples) to more compact (models).

• from nonlinear structures in X to linear in Z ⊂ ∪k
j=1Sj .

• from separable X to maximally discriminative Z.

What constitutes a good representation? (why a DNN?)
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LDR Representation via Principle of Rate Reduction

Seeking a Linear Discriminative Representation (LDR)

Desiderata: Representation z = f(x, θ) have the following properties:

1 Within-Class Compressible: Features of the same class/cluster should
be highly compressed in a low-dimensional linear subspace.

2 Between-Class Discriminative: Features of different classes/clusters
should be in highly incoherent linear subspaces.

3 Maximally Informative Representation: Dimension (or variance) of
features for each class/cluster should be as large as possible.

Is there a principled measure for all such properties, together?
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LDR Representation via Principle of Rate Reduction Theoretical justification

Compactness Measure for Linear/Gaussian Representation

Theorem (Ma, TPAMI’07)

The number of bits needed to encode data X = [x1,x2, . . . ,xm] ∈ RD×m

up to a precision ∥x− x̂∥2 ≤ ϵ is bounded by:

L(X, ϵ)
.
=

(
m+D

2

)
log det

(
I +

D

mϵ2
XX⊤

)
.

This can be derived from constructively quantifying SVD of X or by
sphere packing vol(X) as samples of a noisy Gaussian source.

Linear subspace Gaussian source
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LDR Representation via Principle of Rate Reduction Theoretical justification

Compactness Measure for Linear/Gaussian Representation

If X is not (piecewise) linear or Gaussian, consider a nonlinear mapping:

X = [x1, . . . ,xm] ∈ RD×m f(x,θ)−−−−−−→ Z(θ) = [z1, z2, . . . ,zm] ∈ Rd×m.

The average coding length per sample (rate) subject to a distortion ϵ:

R(Z, ϵ)
.
=

1

2
log det

(
I +

d

mϵ2
ZZ⊤

)
. (2)

Rate distortion is an intrinsic
measure for the volume of all features.
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LDR Representation via Principle of Rate Reduction Theoretical justification

Compactness Measure for Mixed Linear Representations

The features Z of multi-class data

X = X1 ∪X2 ∪ · · · ∪Xk ⊂ ∪k
j=1Mj .

may be partitioned into multiple subsets:

Z = Z1 ∪Z2 ∪ · · · ∪Zk ⊂ ∪k
j=1Sj .

W.r.t. this partition, the average coding rate is:

Rc(Z, ϵ | Π)
.
=

k∑
j=1

tr(Πj)

2m
log det

(
I +

d

tr(Πj)ϵ2
ZΠjZ

⊤
)
, (3)

where Π = {Πj ∈ Rm×m}kj=1 encode the membership of the m samples
in the k classes: the diagonal entry Πj(i, i) of Πj is the probability of
sample i belonging to subset j. Ω

.
= {Π | ∑Πj = I,Πj ≥ 0.}
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LDR Representation via Principle of Rate Reduction Theoretical justification

Measure for Linear Discriminative Representation (LDR)

A Fundamental Idea: maximize the difference between the coding rate
of all features and the average rate of features in each of the classes:

∆R
(
Z,Π, ϵ) =

1

2
log det

(
I +

d

mϵ2
ZZ⊤

)
︸ ︷︷ ︸

R

−
k∑

j=1

tr(Πj)

2m
log det

(
I +

d

tr(Πj)ϵ2
ZΠjZ

⊤
)

︸ ︷︷ ︸
Rc

.

This difference is called rate reduction:

• Large R: expand all features Z as large as possible.

• Small Rc: compress each class Zj as small as possible.

Slogan: similarity contracts and dissimilarity contrasts!
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LDR Representation via Principle of Rate Reduction Theoretical justification

Interpretation of MCR2: Sphere Packing and Counting

Example: two subspaces S1 and S2 in R2.

• log#(green spheres + blue spheres) = rate of span of all samples R.

• log#(green spheres) = rate of the two subspaces Rc.

• log#(blue spheres) = rate reduction gain ∆R.
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LDR Representation via Principle of Rate Reduction Theoretical justification

Principle of Maximal Coding Rate Reduction (MCR2)
[Yu, Chan, You, Song, Ma, NeurIPS2020]

Learn a mapping f(x, θ) (for a given partition Π):

X
f(x,θ)−−−−−−→ Z(θ)

Π,ϵ−−−−→ ∆R(Z(θ),Π, ϵ) (4)

so as to Maximize the Coding Rate Reduction (MCR2):

max
θ

∆R
(
Z(θ),Π, ϵ

)
= R(Z(θ), ϵ)−Rc(Z(θ), ϵ | Π),

subject to ∥Zj(θ)∥2F = mj , Π ∈ Ω. (5)

Since ∆R is monotonic in the scale of Z, one needs to:
normalize the features z = f(x, θ) so as to compare Z(θ) and Z(θ′)!

Batch normalization, Sergey Ioffe and Christian Szegedy, 2015.

Layer normalization’16, instance normalization’16; group normalization’18...
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LDR Representation via Principle of Rate Reduction Theoretical justification

Theoretical Justification of the MCR2 Principle

Theorem (Informal Statement [Yu et.al., NeurIPS2020])

Suppose Z⋆ = Z⋆
1 ∪ · · · ∪Z⋆

k is the optimal solution that maximizes the
rate reduction (5). We have:

• Between-class Discriminative: As long as the ambient space is
adequately large (d ≥ ∑k

j=1 dj), the subspaces are all orthogonal to

each other, i.e. (Z⋆
i )

⊤Z⋆
j = 0 for i ̸= j.

• Maximally Informative Representation: As long as the coding
precision is adequately high, i.e., ϵ4 < minj

{mj

m
d2

d2j

}
, each subspace

achieves its maximal dimension, i.e. rank(Z⋆
j ) = dj . In addition, the

largest dj − 1 singular values of Z⋆
j are equal.

A new slogan, beyond Aristotle:
The whole is to be maximally greater than the sum of the parts!
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LDR Representation via Principle of Rate Reduction Experimental results

Experiment I: Supervised Deep Learning

Experimental Setup: Train f(x, θ) as ResNet18 on the CIFAR10
dataset, feature z dimension d = 128, precision ϵ2 = 0.5.
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Figure: (a). Evolution of R,Rc,∆R during the training process; (b). Training
loss versus testing loss.
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LDR Representation via Principle of Rate Reduction Experimental results

Visualization of Learned Representations Z
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Figure: PCA of learned representations from MCR2 and cross-entropy.

No neural collapse!
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LDR Representation via Principle of Rate Reduction Experimental results

Visualization - Samples along Principal Components
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(b) Ship

Figure 8: Visualization of principal components learned for class 2-‘Bird’ and class 8-‘Ship’. For each class j,
we first compute the top-10 singular vectors of the SVD of the learned features Zj . Then for the l-th singular
vector of class j, ul

j , and for the feature of the i-th image of class j, zi
j , we calculate the absolute value of inner

product, |hzi
j , u

l
ji|, then we select the top-10 images according to |hzi

j , u
l
ji| for each singular vector. In the

above two figures, each row corresponds to one singular vector (component Cl). The rows are sorted based on
the magnitude of the associated singular values, from large to small.
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(a) 10 representative images from each class based
on top-10 principal components of the SVD of

learned representations by MCR2.
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(b) Randomly selected 10 images from each class.

Figure 9: Visualization of top-10 “principal” images for each class in the CIFAR10 dataset. (a) For each class-j,
we first compute the top-10 singular vectors of the SVD of the learned features Zj . Then for the l-th singular
vector of class j, ul

j , and for the feature of the i-th image of class j, zi
j , we calculate the absolute value of inner

product, |hzi
j , u

l
ji|, then we select the largest one for each singular vector within class j. Each row corresponds

to one class, and each image corresponds to one singular vector, ordered by the value of the associated singular
value. (b) For each class, 10 images are randomly selected in the dataset. These images are the ones displayed in
the CIFAR dataset website [Kri09].

B.3.2 Experimental Results of MCR2 in the Supervised Learning Setting.

Training details for mainline experiment. For the model presented in Figure 1 (Right) and
Figure 3, we use ResNet-18 to parameterize f(·, ✓), and we set the output dimension d = 128,
precision ✏2 = 0.5, mini-batch size m = 1, 000. We use SGD in Pytorch [PGM+19] as the optimizer,
and set the learning rate lr=0.01, weight decay wd=5e-4, and momentum=0.9.

25

Figure: Top-10 “principal” images for class - “Bird” and “Ship” in the CIFAR10.
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LDR Representation via Principle of Rate Reduction Experimental results

Experiment II: Robustness to Label Noise

Experiments on real data. We consider CIFAR10 dataset [Kri09] and ResNet-18 [HZRS16] for
f(·, ✓). We replace the last linear layer of ResNet-18 by a two-layer fully connected network with
ReLU activation function such that the output dimension is 128. We set the mini-batch size as
m = 1, 000 and the precision parameter ✏2 = 0.5. More results can be found in Appendix B.3.2.

Figure 3(a) illustrates how the two rates and their difference (for both training and test data) evolves
over epochs of training: After an initial phase, R gradually increases while Rc decreases, indicating
that features Z are expanding as a whole while each class Zj is being compressed. Figure 3(c) shows
the distribution of singular values per Zj and Figure 1 (right) shows the angles of features sorted by
class. Compared to the geometric loss [LQMS18], our features are not only orthogonal but also of
much higher dimension. We compare the singular values of representations, both overall data and
individual classes, learned by using cross-entropy and MCR2 in Figure 6 and Figure 7 in Appendix
B.3.1. We find that the representations learned by using MCR2 loss are much more diverse than
the ones learned by using cross-entropy loss. In addition, we find that we are able to select diverse
images from the same class according to the “principal” components of the learned features (see
Figure 8 and Figure 9 in Appendix B.3.1).

Robustness to corrupted labels. Because MCR2 by design encourages richer representations that
preserves intrinsic structures from the data X , training relies less on class labels than traditional loss
such as cross-entropy (CE). To verify this, we train the same network20 using both CE and MCR2

with certain ratios of randomly corrupted training labels. Figure 4 illustrates the learning process: for
different levels of corruption, while the rate for the whole set always converges to the same value,
the rates for the classes are inversely proportional to the ratio of corruption, indicating our method
only compresses samples with valid labels. The classification results are summarized in Table 1. By
applying exact the same training parameters, MCR2 is significantly more robust than CE, especially
with higher ratio of corrupted labels. This can be an advantage in the settings of self-supervised
learning or constrastive learning when the grouping information can be very noisy.

Table 1: Classification results with features learned with labels corrupted at different levels.

RATIO=0.1 RATIO=0.2 RATIO=0.3 RATIO=0.4 RATIO=0.5

CE TRAINING 90.91% 86.12% 79.15% 72.45% 60.37%
MCR2 TRAINING 91.16% 89.70% 88.18% 86.66% 84.30%

3.2 Self-supervised Learning of Invariant Features

Learning invariant features via rate reduction. Motivated by self-supervised learning algo-
rithms [LHB04, KRFL09, OLV18, HFW+19, WXYL18], we use the MCR2 principle to learn
representations that are invariant to certain class of transformations/augmentations, say T with a
distribution PT . Given a mini-batch of data {xj}k

j=1, we augment each sample xj with n transfor-
mations/augmentations {⌧i(·)}n

i=1 randomly drawn from PT . We simply label all the augmented
samples Xj = [⌧1(xj), . . . , ⌧n(xj)] of xj as the j-th class, and Zj the corresponding learned
features. Using this self-labeled data, we train our feature mapping f(·, ✓) the same way as the
supervised setting above. For every mini-batch, the total number of samples for training is m = kn.

Evaluation via clustering. To learn invariant features, our formulation itself does not require the
original samples xj come from a fixed number of classes. For evaluation, we may train on a
few classes and observe how the learned features facilitate classification or clustering of the data.
A common method to evaluate learned features is to train an additional linear classifier [OLV18,
HFW+19], with ground truth labels. But for our purpose, because we explicitly verify whether the
so-learned invariant features have good subspace structures when the samples come from k classes,
we use an off-the-shelf subspace clustering algorithm EnSC [YLRV16], which is computationally
efficient and is provably correct for data with well-structured subspaces. We also use K-Means
on the original data X as our baseline for comparison. We use normalized mutual information
(NMI), clustering accuracy (ACC), and adjusted rand index (ARI) for our evaluation metrics, see
Appendix B.3.4 for their detailed definitions.

Controlling dynamics of expansion and compression. By directly optimizing the rate reduction
�R = R � Rc, we achieve 0.570 clustering accuracy on CIFAR10 dataset, which is the second best

20Both CE and MCR2 can have better performance by choosing larger models for our mapping.
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Figure: Evolution of R,Rc,∆R of MCR2 during training with corrupted labels.

Represent only what can be jointly compressed.
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LDR Representation via Principle of Rate Reduction Experimental results

ReduNet: A White-box Deep Network from MCR2

A white-box, forward-constructed, deep neural network from maximizing
the rate reduction based on projected gradient flow:

Ż = η · ∂∆R

∂Z
s.t. Z ⊂ Sd−1.

ReduNet: A Whitebox Deep Network from Rate Reduction (JMLR’21):
https://arxiv.org/abs/2105.10446
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Transcription: Close the Loop of Encoding and Decoding

From One-sided to Bi-directional Representation

MCR2 : X
f(x,θ)−−−−−−→ Z(θ) : max

θ
∆R(Z(θ),Π, ϵ).

Features learned are more interpretable, independent, rich, and robust.
However:

• Need to choose a proper feature dimension d.

• How good are the learned representation Z?

• Anything missing, anything unexpected: dim(X) = dim(Z)?

• Can we go from the feature Z back to the data X?

• Is an LDR adequate to generate real-world (visual) data?

Can we find a bi-directional (auto-encoding) data representation:

X
f(x,θ)−−−−−−→ Z(θ)

g(z,η)−−−−−→ X̂? (6)
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Transcription: Close the Loop of Encoding and Decoding

Low-dim Representation for High-Dim Data

Assumption: the data X lies on a low-dimensional submanifold X ⊂ M
or multiple ones: X ⊂ ∪k

j=1Mj in a high-dimensional space ∈ RD:

RD

M

M1

M2

Mj

Goal: seeking a low-dim representation Z in Rd (d ≪ D) for the data X
on low-dim submanfiolds such that:

X ⊂ RD f(x,θ)−−−−−−→ Z ⊂ Rd g(z,η)−−−−−→ X̂ ≈ X ∈ RD. (7)
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Transcription: Close the Loop of Encoding and Decoding A closed-Loop formulation

Problem Formulation

Desiderata for a good representation:

• Geometry: f and g are continuous and approximately isometric.

• Auto Encoding/Embedding for the data X:

g(f(M)) = M, or g(f(Mj)) = Mj . (8)

Caveats: we do not know dim(M) nor dj = dim(Mj). Often

d > dim(M) or d > d1 + d2 + · · ·+ dk.

Structure of the learned Z ⊂ f(M) often remains “hidden” in Rd!

• So further wish the feature Z explicitly simple, say an LDR:

f(x, ✓)

RD Rd

M

M1

M2

Mj

xi

S1
S2

Sj

zi

Figure 1: Left and Middle: The distribution D of high-dim data x 2 RD is supported on a manifold M and
its classes on low-dim submanifolds Mj , we learn a map f(x, ✓) such that zi = f(xi, ✓) are on a union of
maximally uncorrelated subspaces {Sj}. Right: Cosine similarity between learned features by our method
for the CIFAR10 training dataset. Each class has 5,000 samples and their features span a subspace of over 10
dimensions (see Figure 3(c)).

the component distributions Dj are (or can be made). One popular working assumption is that the
distribution of each class has relatively low-dimensional intrinsic structures.9 Hence we may assume
the distribution Dj of each class has a support on a low-dimensional submanifold, say Mj with
dimension dj ⌧ D, and the distribution D of x is supported on the mixture of those submanifolds,
M = [k

j=1Mj , in the high-dimensional ambient space RD, as illustrated in Figure 1 left.

With the manifold assumption in mind, we want to learn a mapping z = f(x, ✓) that maps each of
the submanifolds Mj ⇢ RD to a linear subspace Sj ⇢ Rd (see Figure 1 middle). To do so, we
require our learned representation to have the following properties:

1. Between-Class Discriminative: Features of samples from different classes/clusters should
be highly uncorrelated and belong to different low-dimensional linear subspaces.

2. Within-Class Compressible: Features of samples from the same class/cluster should be
relatively correlated in a sense that they belong to a low-dimensional linear subspace.

3. Maximally Diverse Representation: Dimension (or variance) of features for each class/cluster
should be as large as possible as long as they stay uncorrelated from the other classes.

Notice that, although the intrinsic structures of each class/cluster may be low-dimensional, they are
by no means simply linear in their original representation x. Here the subspaces {Sj} can be viewed
as nonlinear generalized principal components for x [VMS16]. Furthermore, for many clustering
or classification tasks (such as object recognition), we consider two samples as equivalent if they
differ by certain class of domain deformations or augmentations T = {⌧}. Hence, we are only
interested in low-dimensional structures that are invariant to such deformations,10 which are known to
have sophisticated geometric and topological structures [WDCB05] and can be difficult to learn in a
principled manner even with CNNs [CW16, CGW19]. There are previous attempts to directly enforce
subspace structures on features learned by a deep network for supervised [LQMS18] or unsupervised
learning [JZL+17, ZJH+18, PFX+17, ZHF18, ZJH+19, ZLY+19, LQMS18]. However, the self-
expressive property of subspaces exploited by [JZL+17] does not enforce all the desired properties
listed above; [LQMS18] uses a nuclear norm based geometric loss to enforce orthogonality between
classes, but does not promote diversity in the learned representations, as we will soon see. Figure 1
right illustrates a representation learned by our method on the CIFAR10 dataset. More details can be
found in the experimental Section 3.

2 Technical Approach and Method

2.1 Measure of Compactness for a Representation

Although the above properties are all highly desirable for the latent representation z, they are by no
means easy to obtain: Are these properties compatible so that we can expect to achieve them all at

9There are many reasons why this assumption is plausible: 1. high dimensional data are highly redundant; 2.
data that belong to the same class should be similar and correlated to each other; 3. typically we only care about
equivalent structures of x that are invariant to certain classes of deformation and augmentations.

10So x 2 M iff ⌧(x) 2 M for all ⌧ 2 T .

3

f(M) = S or

f(Mj) = Sj (with Si ⊥ Sj).
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Transcription: Close the Loop of Encoding and Decoding A closed-Loop formulation

Three Classic Simpler Cases

One low-dim linear subspace: Principal Component Analysis (PCA)

X ⊂ SD V T

−−−−→ Z ⊂ Sd V−−−→ X̂ ⊂ SD. (9)

Multiple linear subspaces: Generalized PCA (GPCA)1

X ⊂ ∪k
j=1Sj

f(x,θ)−−−−−−→ ∪k
j=1Zj ⊂ Sj

g(z,η)−−−−−→ X̂ ⊂ ∪k
j=1Sj . (10)

One low-dim nonlinear submanifold: Nonlinear PCA2

X ⊂ MD f(x,θ)−−−−−−→ Z ⊂ Sd g(z,η)−−−−−→ X̂ ⊂ MD. (11)

The most general (likely the most important) case:

X ⊂ ∪k
j=1Mj

f(x,θ)−−−−−−→ ∪k
j=1Zj ⊂ Sj

g(z,η)−−−−−→ X̂ ⊂ ∪k
j=1Mj . (12)

1Generalized principal component analysis, R. Vidal, Yi Ma, and S. Sastry, 2005.
2Nonlinear PCA using autoassociative neural networks, M. Krammer, 1991.
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Principal Component Analysis (Auto Encoding)

One low-dim linear subspace: principal component analysis (PCA)

X ⊂ SD V T

−−−−→ Z ⊂ Sd V−−−→ X̂ ⊂ SD. (13)

Solve the following optimization problem:

min
V

∥X − X̂∥22 s.t. X̂ = V V TX, V ∈ O(D, d). (14)

One low-dim nonlinear submanifold: Nonlinear PCA

X ⊂ MD f(x,θ)−−−−−−→ Z ⊂ Sd g(z,η)−−−−−→ X̂ ⊂ MD. (15)

Solve the following optimization problem:

min
θ,η

∥X − X̂∥22︸ ︷︷ ︸
d(X,X̂)2

s.t. X̂ = g(f(X, η), θ). (16)

What is the right distance d(X, X̂), say for images?
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Transcription: Close the Loop of Encoding and Decoding A closed-Loop formulation

Auto Encoding and its Difficulties

Nonlinear PCA: Auto-encoding (AE) (Krammer’91)

X ⊂ MD f(x,θ)−−−−−−→ Z ⊂ Sd g(z,η)−−−−−→ X̂ ⊂ MD. (17)

Assuming a generative model: p(x|z,Θ) and p(z,Θ), maximal likelihood:

max
Θ

P (X,Θ) ∼ p(x,Θ) =

∫
p(x|z,Θ)p(z,Θ)dz. (18)

is in general intractable, so is to compute the true posterior

P (Z|X,Θ) ∼ p(z|x,Θ) = p(x|z,Θ)p(z,Θ)/p(x,Θ). (19)

Instead optimize certain variational lower bounds (VAE):3

max−DKL

(
p̂(z|x, η)︸ ︷︷ ︸
surrogate

, p(z,Θ)
)
+ Ep̂(z|x,η)

[
log p(x|z,Θ)

]
. (20)

3Auto-Encoding Variational Bayes, D. Kingma and M. Welling, 2014.
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Transcription: Close the Loop of Encoding and Decoding A closed-Loop formulation

GAN and its Caveats

Learning generative models via discriminative approaches? (Tu’2007)

Generative Adversarial Nets (GAN) (Goodfellow’2014):

Z
g(z,η)−−−−−→ X̂,X

d(x,θ)−−−−−→ 0,1. (21)

A minimax game between generator and discriminator:

min
η

max
θ

Ep(x)

[
log d(x, θ)

]
+ Ep(z)

[
1− log d(g(z, η)︸ ︷︷ ︸

x̂∼ pg

, θ)
]
. (22)

This is equivalent to minimize the Jensen-Shannon divergence:

DJS(p, pg) = DKL

(
p∥(p+ pg)/2

)
+DKL

(
pg∥(p+ pg)/2

)
. (23)

But the J-S divergence is extremely difficult,
if not impossible, to compute and optimize.
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GAN and its Caveats

An Example: distance between distributions in high-dim space with
non-overlapping low-dim supports. (always the case in high-dim!)

Replace DJS with the Earth-Mover distance or Wasserstein-1 distance:

W1(p, pg) = inf
π∈Π(p, pg)

E(x,y)∼π

[
∥x− y∥1

]
. (24)

• Hard to compute DJS(p, pg) or W1(p, pg) accurately and efficiently.

• Either DJS or W1 has no closed-form even between two Gaussians!
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Transcription: Close the Loop of Encoding and Decoding A closed-Loop formulation

Rate Reduction as Distance between Subspace Gaussians

Rate reduction ∆R = log#(blue spheres) gives a closed-form distance
between two (non-overlapping) subspace Gaussians S1 and S2!

A good measure for the (LDR-like) features Z, but what about d(X, X̂)?

X
f(x,θ)−−−−−−→ Z

g(z,η)−−−−−→ X̂. (25)

Question: do we ever need to measure in the data x space?
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Transcription: Close the Loop of Encoding and Decoding A closed-Loop formulation

A New Closed-Loop Formulation

Goal: Transcribe the data X ⊂ ∪k
j=1Mj onto an LDR Z ⊂ ∪k

j=1Sj :

f(Mj) = Sj︸ ︷︷ ︸
linear

with Si ⊥ Sj︸ ︷︷ ︸
discriminative

and g(f(Mj)) = Mj︸ ︷︷ ︸
auto-embedding

. (26)

Is it possible to measure everything internally in the feature space?

X
f(x,θ)−−−−−−→ Z

g(z,η)−−−−−→ X̂
f(x,θ)−−−−−−→ Ẑ. (27)
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Measure Data Difference through Their Features
Measure difference in Xj and X̂j through their features Zj and Ẑj :

Xj
f(x,θ)−−−−−−→ Zj

g(z,η)−−−−−→ X̂j
f(x,θ)−−−−−−→ Ẑj , j = 1, . . . , k. (28)

with the rate reduction measuring the error:

∆R
(
Zj , Ẑj

) .
= R

(
Zj ∪ Ẑj

)
− 1

2

(
R
(
Zj) +R

(
Ẑj)

)
, j = 1, . . . , k. (29)

Decoder/controller g minimizes the difference between X and X̂:

d(X, X̂)
.
= min

η

k∑
j=1

∆R
(
Zj , Ẑj

)
= min

η

k∑
j=1

∆R
(
Zj , f(g(Zj , η), θ)

)
.

Encoder/sensor f amplifies any difference between X and X̂:

d(X, X̂)
.
= max

θ

k∑
j=1

∆R
(
Zj , Ẑj

)
= max

θ

k∑
j=1

∆R
(
f(Xj , θ), f(X̂j , θ)

)
.
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Transcription: Close the Loop of Encoding and Decoding A closed-Loop formulation

Dual Roles of the Encoder and Decoder

The encoder f needs to be a discriminative sensor that can discern and
amplify any error between the distributions between X and X̂.

Reason: for a fixed encoder f , the decoder g can easily produce an
ambiguous decoding such that the error between Z and Ẑ is zero!
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Transcription: Close the Loop of Encoding and Decoding A closed-Loop formulation

Dual Roles of the Encoder and Decoder
f is both an encoder and sensor; and g is both a decoder and controller.
They form a closed-loop feedback control system:

A closed-loop notion of “self-consistency” between X and X̂ is given by
a pursuit-evasion game between f as a “evader” and g as a “pursuer”:

D(X, X̂)
.
= min

η
max

θ

k∑
j=1

∆R
(
f(Xj , θ)︸ ︷︷ ︸

Zj(θ)

, f(g(f(Xj , θ), η), θ)︸ ︷︷ ︸
Ẑj(θ,η)

)
. (30)
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Transcription: Close the Loop of Encoding and Decoding A closed-Loop formulation

Overall Objective: Self-Consistency & Parsimony

The overall minimax game between the encoder f and decoder g:

• f maximizes the rate reduction of the features Z of the data X;

• g minimizes the rate reduction of the features Ẑ of the decoded X̂.

A minimax program to learn a multi-class LDR for data X = ∪k
j=1Xj :

min
η

max
θ

∆R
(
f(X, θ)

)︸ ︷︷ ︸
Expansive encode

+∆R
(
h(X, θ, η)

)︸ ︷︷ ︸
Compressive decode

+

k∑
j=1

∆R
(
f(Xj , θ), h(Xj , θ, η)

)︸ ︷︷ ︸
Contrastive & Contractive

with h(x)
.
= f ◦ g ◦ f(x), or equivalently

min
η

max
θ

∆R
(
Z(θ)

)
+∆R

(
Ẑ(θ, η)

)
+

k∑
j=1

∆R
(
Zj(θ), Ẑj(θ, η)

)
.
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Transcription: Close the Loop of Encoding and Decoding A closed-Loop formulation

Overall Objective: Self-Consistency & Parsimony

The overall minimax game between the encoder f and decoder g:

• f maximizes the rate reduction of the features Z of all the data X;

• g minimizes the rate reduction of the features Ẑ of the decoded X̂.

A minimax program to learn a one-class LDR for data X:

Binary: min
η

∆R
(
f(X, θ), h(X, θ, η)

)︸ ︷︷ ︸
Contrastive & Contractive

or equivalently

Binary: min
η

max
θ

∆R
(
Z(θ), Ẑ(θ, η)

)
.
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Transcription: Close the Loop of Encoding and Decoding A closed-Loop formulation

Characteristics of the Overall Objective

min
η

max
θ

∆R
(
Z(θ)

)
+∆R

(
Ẑ(θ, η)

)
+

k∑
j=1

∆R
(
Zj(θ), Ẑj(θ, η)

)
.

• Simplicity: all terms are uniformly rate reduction on features.

• Excplicit: distribution of learned features Z is an LDR.

• A feedback loop of encoding and decoding networks is all needed.

• No need or any direct explicit distance between X and X̂.

• No need to specify a prior or surrogate target distribution.

• No approximation by lower or upper bounds.

• No heuristics or regularizing terms.

Self-consistency and Parsimony are all you need to model X?
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Transcription: Close the Loop of Encoding and Decoding Empirical verification

Empirical Verification on Visual Data

Experimental Setup:

• Datasets: MNIST, CIFAR10, STL-10, CelebA faces, LSUN bedroom,
ImageNet

• Network architectures: basic DCGAN & ResNet (not customized).

• Feature space: the same 128-dim regardless of data resolution or size

• Quantization precision: the same ϵ2 = 0.5.

• Optimizer: Adam with the same hyperparameters β1 = 0, β2 = 0.9.

• Linear rate: the same initial 0.00015 with linear decay.

No other regularization, heuristics, or engineering tricks.
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Empirical Verification: Fair Comparison to Baselines

Method GAN GAN (LDA-Binary) VAE-GAN LDA-Binary LDA-Multi

MNIST
IS ↑ 2.08 1.95 2.21 2.02 2.07

FID ↓ 24.78 20.15 33.65 16.43 16.47

CIFAR-10
IS ↑ 7.32 7.23 7.11 8.11 7.13

FID ↓ 26.06 22.16 43.25 19.63 23.91

Table: Quantitative comparison on MNIST and CIFAR-10. Average Inception
scores (IS) and FID scores. ↑ means higher is better. ↓ means lower is better.

(a) MNIST (b) CIFAR-10 (c) ImageNet

Figure: Qualitative comparison on MNIST, CIFAR-10 and ImageNet.
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Empirical Verification on Visual Data

(a) MNIST (b) CIFAR10 (c) ImageNet

Figure: Visualizing the alignment between Z and Ẑ: |Z⊤Ẑ|.

(a) MNIST X (b) MNIST X̂ (c) CIFAR10 X (d) CIFAR10 X̂ (e) ImageNet X (f) ImageNet X̂

Figure: Visualizing the auto-encoding property: x ≈ x̂ = g ◦ f(x).
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Empirical Verification: Comparison on MNIST

(a) Original X

(b) VAE-GAN X̂ (c) BiGAN X̂ (d) LDR-Binary X̂ (e) LDR-Multi X̂

Figure: Reconstruction results of different methods with the input data.
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Empirical Verification: MNIST PCAs
The feature z in each of the k principal subspaces can be modeld as a
degenerate Gaussian from the PCA Zj = VjΣjU

T
j :

zj ∼ z̄j +

rj∑
l=1

nj
lσ

l
jv

l
j , where nj

l ∼ N (0, 1), j = 1, . . . , k. (31)

(a) ACGAN (b) InfoGAN (c) LDR-Multi
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Empirical Verification: Interpolation between Samples

Figure: Images generated from interpolating between samples in different classes.
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Empirical Verification: Transformed MNIST
Original data X and their decoded version X̂ on transformed MNIST.

(c) Components of “0” (d) Components of “1” (e) Components of “2”

Figure: The reconstructed images X̂ from the features Z best aligned along
top-8 principal components on the transformed MNIST dataset. Each row
represents a different principal component.
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Empirical Verification: “Principal Images” of CIFAR10

Ma (EECS Department, UC Berkeley) Data Transcription & Rate Reduction November 30, 2021 42 / 61



Transcription: Close the Loop of Encoding and Decoding Empirical verification

Empirical Verification: “Principal Images” of CIFAR10
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Empirical Verification: “Principal Images” of CIFAR10

Figure: Reconstructed images X̂ from features Z close to the principal
components learned for each of the 10 classes of CIFAR-10.

Different classes are disentangled as principal subspaces.
Visual attributes are disentangled as principal components.
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Empirical Verification: Principal Components of CelebA

Visual attributes are disentangled as principal components.

(a) Hat (b) Hair Color (c) Glasses

Figure: Sampling along the 9-th, 19-th, and 23-th principal components of the
learned features Z seems to manipulate the visual attributes for generated
images, on the CelebA dataset.
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Empirical Verification: CelebA Random Generation
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Empirical Verification: CelebA Input X

(a) Original X

Figure: Visualizing the original x and corresponding decoded x̂ results on Celeb-A
dataset. The LDR model is trained from LDR-Binary.
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Empirical Verification: CelebA Decoded X̂

(a) Decoded X̂

Figure: Visualizing the original x and corresponding decoded x̂ results on Celeb-A
dataset. The LDR model is trained from LDR-Binary.
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Empirical Verification: LSUN Bedroom Input X

(a) Original X

Figure: Visualizing the original x and corresponding decoded x̂ results on
LSUN-bedroom dataset. The LDR model is trained from LDR-Binary.
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Empirical Verification: LSUN Bedroom Decoded X̂

(a) Decoded X̂

Figure: Visualizing the original x and corresponding decoded x̂ results on
LSUN-bedroom dataset. The LDR model is trained from LDR-Binary.
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Empirical Verification: ImageNet 10-Class Input X

(a) Original X
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Empirical Verification: ImageNet 10-Class Decoded X̂

(b) Decoded X̂
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Empirical Verification: ImageNet Feature Similarity

(c) |Z⊤Z| (d) |Z⊤Ẑ|

Figure: Visualizing feature alignment: (a) among features |Z⊤Z|, (b) between
features and decoded features |Z⊤Ẑ|. These results obtained after 200,000
iterations.
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Empirical Verification: Quantitative
Table: Comparison on CIFAR-10, STL-10, and ImageNet.

Method
CIFAR-10 STL-10 ImageNet

IS↑ FID↓ IS↑ FID↓ IS↑ FID↓
GAN based methods

DCGAN 6.6 - 7.8 - - -

SNGAN 7.4 29.3 9.1 40.1 - 48.73

CSGAN 8.1 19.6 - - - -

LOGAN 8.7 17.7 - - - -

VAE/GAN based methods

VAE 3.8 115.8 - - - -

VAE/GAN 7.4 39.8 - - - -

NVAE - 50.8 - - - -

DC-VAE 8.2 17.9 8.1 41.9 - -

LDR-Binary (ours) 8.1 19.6 8.4 38.6 7.74 46.95

LDR-Multi (ours) 7.1 23.9 7.7 45.7 6.44 55.51
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Empirical Verification: Ablation Study

Training the ImageNet with networks of different width.

channel#=1024 channel#=512 channel#=256

BS=1800 success success success

BS=1600 success success success

BS=1024 failure success success

BS=800 failure failure success

BS=400 failure failure failure

Table: Ablation study on ImageNet about tradeoff between batch size (BS) and
network width (channel #).
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Empirical Verification: Other Ablation Studies

min
η

max
θ

∆R
(
Z(θ)

)
+∆R

(
Ẑ(θ, η)

)
+

k∑
j=1

∆R
(
Zj(θ), Ẑj(θ, η)

)
.

Other ablations studies:

• the importance of the closed loop.

• the importance of rate reduction versus cross entropy.

• the three terms in the objective function.

• sensitivity to spectral normalization.

• choices in feature dimension or channel number.

• · · ·
see details in the paper https://arxiv.org/abs/2111.06636
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Conclusions and Open Problems

Conclusions: Closed-Loop Transcription to an LDR

• universality: embedding real-world data to a simple and explicit
linear discriminative representation.

• parsimony: a good tradeoff in rate reduction via a minimax game
between an encoder and a decoder.

• feedback: a closed-loop feedback control system between a sensor
and a controller.

• self-consistency: without the need for a distance or surrogate in the
external data space.
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Open Mathematical Problems

For the closed-loop minimax rate reduction program:

min
η

max
θ

∆R
(
Z(θ)

)
+∆R

(
Ẑ(θ, η)

)
+

k∑
j=1

∆R
(
Zj(θ), Ẑj(θ, η)

)
.

• optimality: characterization of the equilibrium points.

• convergence of the closed-loop control problem (infinite-dim).

• deformable manifold learning for the support of the distributions.

• optimal density of the distribution (Brascamp-Lieb inequalities).

• guarantees for approximate sample-wise auto-encoding.

• correct model selection (no under or over fitting).
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Open Directions: Extensions and Connections

• How to scale up to hundreds and thousands of classes?

• Better feedback for generative quality and discriminative property?

• Whitebox architectures for closed-loop transcription (ReduNet like)?

• Internal computational mechanisms for memory forming (Nature)?

• Closed-loop transcription to other types of low-dim structures?
(dynamical, symbolical, logical, graphical...)

The principles of parsimony and feedback shall always rule!
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References: Learning via Compression and Rate Reduction

1 Closed-Loop Data Transcription to an LDR via Minimaxing Rate Reduction
https://arxiv.org/abs/2111.06636

2 ReduNet: A Whitebox Deep Network from Rate Reduction (JMLR’21):
https://arxiv.org/abs/2105.10446

3 Representation via Maximal Coding Rate Reduction (NeurIPS’20):
https://arxiv.org/abs/2006.08558

4 Classification via Minimal Incremental Coding Length (NIPS 2007):
http://people.eecs.berkeley.edu/~yima/psfile/MICL_SJIS.pdf

5 Clustering via Lossy Coding and Compression (TPAMI 2007):
http://people.eecs.berkeley.edu/~yima/psfile/Ma-PAMI07.pdf
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Parsimony and feedback are all you need to learn
a compact and simple model for real-world data?

Thank you!

Questions, please?
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