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“Learners need endless feedback more than
they need endless teaching.”
— Grant Wiggins
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Motivation: Objectives of Learning from Data

High-Dim Data with Mixed Low-Dim Structures

Figure: High-dimensional Real-World Data: X = [x1,...,x,,] in R” lying on
a mixture of low-dimensional submanifolds UY_, M; C RP.

The main objective of learning from (samples of) real-world data:

Find a most compact and simple representation of the data.
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Fitting Class Labels via a Deep Network

D R*
R f(z,0) o 0
0 1 0
T — :
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Figure: Black Box Classification: y is the class label of & represented as a
“one-hot” vector in R*. To learn a nonlinear mapping f(-,0) : © > y, say
modeled by a deep network, using cross-entropy (CE) loss.

min CE(9,.y) = ~E[(y.loglf(,0))] ~ —- 3w loglf (@ 0)). (1)

Prevalence of neural collapse during the terminal phase of deep learning training,
Papyan, Han, and Donoho, 2020.
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Represent Multi-class Multi-dimensional Data

Given samples

X =[z1,...,x,] CRP RY
from a mixture of -,
k submanifolds: M = U?=1Mj, f(@,0)

seek a good representation
Z = [z1,...,2m) C RY through
a continuous mapping:
f(xz,0): x e RP — z € R
Goals of “re-present” the data:
® from non-parametric (samples) to more compact (models).
® from nonlinear structures in X to linear in Z C UleSj.

® from separable X to maximally discriminative Z.
What constitutes a good representation? (why a DNN?)
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Seeking a Linear Discriminative Representation (LDR)

Desiderata: Representation z = f(x, ) have the following properties:

@ Within-Class Compressible: Features of the same class/cluster should
be highly compressed in a low-dimensional linear subspace.

@® Between-Class Discriminative: Features of different classes/clusters
should be in highly incoherent linear subspaces.

©® Maximally Informative Representation: Dimension (or variance) of
features for each class/cluster should be as large as possible.

Is there a principled measure for all such properties, together?
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LDR Representation via Principle of Rate Reduction Theoretical justification

Compactness Measure for Linear/Gaussian Representation
Theorem (Ma, TPAMI'07)

The number of bits needed to encode data X = [x1,xa, ..., x,,] € RP*™
up to a precision ||x — &||2 < € is bounded by:

D D
L(X,e) = (m; >logdet <I+ WXXT) .

This can be derived from constructively quantifying SVD of X or by
sphere packing vol(X) as samples of a noisy Gaussian source.

Linear subspace

Gaussian source  gyey
T; = Ubi

gi1é1

D
Uy RD R
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LDR Representation via Principle of Rate Reduction Theoretical justification

Compactness Measure for Linear/Gaussian Representation

If X is not (piecewise) linear or Gaussian, consider a nonlinear mapping:

c RDXm f(m’e)

X =[z1,...,2n) Z(0) = [z1, 22, ..., 2m] € R™,

The average coding length per sample (rate) subject to a distortion e:

1 d
R(Z,¢) = ; logdet (I + WZZT> . (2)

Rate distortion is an intrinsic
measure for the volume of all features.

vol(Z)
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Uz
Compactness Measure for Mixed Linear Representations

The features Z of multi-class data

X =X1UX,U--UX CU_M;.

may be partitioned into multiple subsets:

vol(Z')

Z=7Z1UZyU---UZ, cU_S;.

W.r.t. this partition, the average coding rate is:

R¢(Z,e | I0) :Z logdet< ZHjZT), (3)
7j=1

L4
tr(IIj)eQ

where IT = {I1; € Rmxm};?:l encode the membership of the m samples
in the k classes: the diagonal entry II;(i,¢) of II; is the probability of
sample i belonging to subset j. Q@ ={IT | II; = I,II; > 0.}
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LDR Representation via Principle of Rate Reduction Theoretical justification

Measure for Linear Discriminative Representation (LDR)

A Fundamental Idea: maximize the difference between the coding rate
of all features and the average rate of features in each of the classes:

k
1 d tr(TI, d
AR(Z,ILe) = 3 log det <I+ EZZT) - jr;imf) log det (I+ WZH]-ZT) )
J

Jj=1

R He
This difference is called rate reduction:
® |arge R: expand all features Z as large as possible.

® Small R°: compress each class Z; as small as possible.

Slogan: similarity contracts and dissimilarity contrasts!
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Ul T
Interpretation of MCR?: Sphere Packing and Counting

S

vol(Z')

i)
Example: two subspaces S; and S in R2.
® log #(green spheres + blue spheres) = rate of span of all samples R.
® log #(green spheres) = rate of the two subspaces R°.
® log #(blue spheres) = rate reduction gain AR.
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LDR Representation via Principle of Rate Reduction Theoretical justification

Principle of Maximal Coding Rate Reduction (MCR?)
[Yu, Chan, You, Song, Ma, NeurlPS2020]

Learn a mapping f(x, ) (for a given partition II):

f(,0)

X Z(0) 2 AR(Z(6),11,¢) (4)

so as to Maximize the Coding Rate Reduction (MCR?):
max AR(Z(9),I1,¢) = R(Z(0),e) — R°(Z(0),¢ | II),
subject to || Z;(0)||F = m;, IT € Q. (5)

Since AR is monotonic in the scale of Z, one needs to:
normalize the features z = f(x,0) so as to compare Z() and Z(¢')!

Batch normalization, Sergey loffe and Christian Szegedy, 2015.

Layer normalization'16, instance normalization’16; group normalization'18...

Ma (EECS Department, UC Berkeley) Data Transcription & Rate Reduction November 30, 2021 12 /61



Uz
Theoretical Justification of the MCR? Principle

Theorem (Informal Statement [Yu et.al., NeurlPS2020])

Suppose Z* = Z7 U ---U Z] is the optimal solution that maximizes the
rate reduction (5). We have:

® Between-class Discriminative: As long as the ambient space is
adequately large (d > Z?:l d;), the subspaces are all orthogonal to
each other, i.e. (ZZ-*)TZ; =0 fori#j.

® Maximally Informative Representation: As long as the coding
precision is adequately high, i.e., €* < min, {%3—;} each subspace

J
achieves its maximal dimension, i.e. rank(Z7) = d;. In addition, the
largest d; — 1 singular values of Z7 are equal.

A new slogan, beyond Aristotle:
The whole is to be maximally greater than the sum of the parts!
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LDR Representation via Principle of Rate Reduction Experimental results

Experiment |: Supervised Deep Learning

Experimental Setup: Train f(x, ) as ResNet18 on the CIFAR10
dataset, feature z dimension d = 128, precision €2 = 0.5.
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Figure: (a). Evolution of R, R°, AR during the training process; (b). Training

loss versus testing loss.
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LDR Representation via Principle of Rate Reduction Experimental results

Visualization of Learned Representations Z
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Figure: PCA of learned representations from MCR? and cross-entropy.

No neural collapse!
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LDR Representation via Principle of Rate Reduction Experimental results

Visualization - Samples along Principal Components
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Figure: Top-10 “principal” images for class - “Bird” and “Ship” in the CIFAR10.
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LDR Representation via Principle of Rate Reduction Experimental results

Experiment Il: Robustness to Label Noise

Table 1: Classification results with features learned with labels corrupted at different levels.

| RATIO=0.1

RATIO=0.2 RATIO=0.3 RATI0O=0.4 RATIO=0.5
CE TRAINING 90.91% 86.12% 79.15% 72.45% 60.37%
MCR? TRAINING 91.16 % 89.70% 88.18% 86.66 % 84.30%
: o o) B o

Number of iterations

(a) AR(Z(6),I1,¢)

o 5000 10000 0 20000

Number of iterations

25000

(b) R(Z(0),¢)

o 3000 10000 13000

Number of iterations

(c) B(Z(0),¢ | 1I)

20000

Figure: Evolution of R, R®, AR of MCR? during training with corrupted labels.

Represent only what can be jointly compressed.
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o S
ReduNet: A White-box Deep Network from MCR?

A white-box, forward-constructed, deep neural network from maximizing
the rate reduction based on projected gradient flow:

Z=n- ?ZR st. Zc Sl

DA R
Zin =Zitn-

ReduNet: A Whitebox Deep Network from Rate Reduction (JMLR'21):
https://arxiv.org/abs/2105.10446
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Transcription: Close the Loop of Encoding and Decoding

From One-sided to Bi-directional Representation

f(,0)

MCR?: X Z(0): meaxAR(Z(Q),H,e).

Features learned are more interpretable, independent, rich, and robust.
However:

Need to choose a proper feature dimension d.

How good are the learned representation Z7

Anything missing, anything unexpected: dim(X) = dim(Z)?
Can we go from the feature Z back to the data X7?

Is an LDR adequate to generate real-world (visual) data?

Can we find a bi-directional (auto-encoding) data representation:

X f(=z,0) Z(G) g(zm) X—x? (6)
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Low-dim Representation for High-Dim Data

Assumption: the data X lies on a low-dimensional submanifold X C M
or multiple ones: X C Ule./\/tj in a high-dimensional space € RP:

RD

Goal: seeking a low-dim representation Z in R% (d < D) for the data X
on low-dim submanfiolds such that:

(z,0)

X cR? 1Dz crd B, % & X eRP. (7)
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Transcription: Close the Loop of Encoding and Decoding [WAWelICE B ReTeToR toldy, (1] EYTeT))
Problem Formulation

Desiderata for a good representation:

® Geometry: f and g are continuous and approximately isometric.
¢ Auto Encoding/Embedding for the data X:

g(f(M)) =M, or g(f(M;))=M,;. (8)
Caveats: we do not know dim(M) nor d; = dim(M,). Often
d>dim(./\/l) ofr d>di+do+---+dp.

Structure of the learned Z C f(M) often remains “hidden” in R
® So further wish the feature Z explicitly simple, say an LDR:

. e S
fIM) = S or
S
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Transcription: Close the Loop of Encoding and Decoding A closed-Loop formulation

Three Classic Simpler Cases

One low-dim linear subspace: Principal Component Analysis (PCA)
xcs? YV zcst VX csP. (9)

Multiple linear subspaces: Generalized PCA (GPCA)!

X C U?lej M U?lej' C Sj M) X C U;?:lSj. (10)

One low-dim nonlinear submanifold: Nonlinear PCAZ2

X cMmP I@0 g gl 9= % o D, (11)

The most general (likely the most important) case:

(z:m)

79 %
X C U?Zle _f(i)__) U?lej C Sj g—) X C U?:le- (12)

! Generalized principal component analysis, R. Vidal, Yi Ma, and S. Sastry, 2005.
2Nonlinear PCA using autoassociative neural networks, M. Krammer, 1991.
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A closed-Loop formulation
Principal Component Analysis (Auto Encoding)

One low-dim linear subspace: principal component analysis (PCA)
xcs?P V' izcst VyxcsPh. (13)

Solve the following optimization problem:
min | X — X2 st. X=vVvTX, VeO(D,ad). (14)
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A closed-Loop formulation
Principal Component Analysis (Auto Encoding)

One low-dim linear subspace: principal component analysis (PCA)
T ~
XxXcsP Y s zcst Y X csh.
Solve the following optimization problem:

min | X — X2 st. X=vVvTX, VeO(D,ad).

One low-dim nonlinear submanifold: Nonlinear PCA

X cMmP 1@ o gd 9= % o D,

Solve the following optimization problem:
min || X - X[ st X =g(f(X,n).0).
(R S —
d(X,X)?
What is the right distance d(X, X), say for images?
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Transcription: Close the Loop of Encoding and Decoding [WAWelICE B ReTeToR toldy, (1] EYTeT))

Auto Encoding and its Difficulties

Nonlinear PCA: Auto-encoding (AE) (Krammer'91)

(z.m)

@9 | 7 cgd 9=,

X cmP L0 X c MP, (17)
Assuming a generative model: p(x|z,©) and p(z, ©), maximal likelihood:
maxP(X,0) ~p(@,0) = [ plalz Op(z0)dz. (18

is in general intractable, so is to compute the true posterior

P(Z|X7 @) ~ p(z|m, @) = p($|z, @)p(Z, @)/p(m7 @) (19)
Instead optimize certain variational lower bounds (VAE):3

max _,DKL(ﬁ(z‘:u U),P(% 6)) + Eﬁ(z\:c,n) [logp(ac]z, @)] . (20)
——

surrogate

3 Auto-Encoding Variational Bayes, D. Kingma and M. Welling; 2014.
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GAN and its Caveats
Learning generative models via discriminative approaches? (Tu'2007)
Generative Adversarial Nets (GAN) (Goodfellow'2014):

7z 9= % x =0 g (21)

A minimax game between generator and discriminator:

H%in max Ep(z) [logd(x,0)] + Ep) [1 — log d(gA(z, n),0)]. (22)
T~ Pg

This is equivalent to minimize the Jensen-Shannon divergence:

Dys(p,pg) = D (pll (0 +1g)/2) + Drr(pgll(0 +1g)/2).  (23)

But the J-S divergence is extremely difficult,
if not impossible, to compute and optimize.
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Transcription: Close the Loop of Encoding and Decoding [WAWelICE B ReTeToR toldy, (1] EYTeT))
GAN and its Caveats

An Example: distance between distributions in high-dim space with
non-overlapping low-dim supports. (always the case in high-dim!)

R G— toke

Figure 1: These plots show p(Po,Po) as a function of 0 when p is the EM distance (left
plot) or the JS divergence (right plot). The EM plot is continuous and provides a usable
gradient everywhere. The JS plot is not continuous and does not provide a usable gradient.

Real and fake disuibution when 0 = 1

Replace D g with the Earth-Mover distance or Wasserstein-1 distance:

Wl(papg) = el'il{gp )E(w,y)Nw[Hm - yHl]- (24)
™ g

® Hard to compute Dyg(p,pg) or Wi(p,pg) accurately and efficiently.

® Either Djg or W7 has no closed-form even between two Gaussians!
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Transcription: Close the Loop of Encoding and Decoding [WAWelICE B ReTeToR toldy, (1] EYTeT))

Rate Reduction as Distance between Subspace Gaussians

Rate reduction AR = log #(blue spheres) gives a closed-form distance
between two (non-overlapping) subspace Gaussians S; and S5!

S

vol(Z')

vol(Z)
A good measure for the (LDR-like) features Z, but what about d(X, X)?

f(,0)

b's , 7z B % (25)

Question: do we ever need to measure in the data x space?
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Transcription: Close the Loop of Encoding and Decoding [WAWelICE B ReTeToR toldy, (1] EYTeT))

A New Closed-Loop Formulation
Goal: Transcribe the data X C U?Zle onto an LDR Z C UleSj:

fM;)=8; with §LS; and g(f(M;))=M,;. (26)
linear discriminative auto-embedding

Is it possible to measure everything internally in the feature space?

f(m»e) o f(m79)

X 7z BN % Z. (27)
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Measure Data Difference through Their Features
Measure difference in X; and X through their features Z; and Z;:

f(a,0) g(z,m) Xj f(x,0) Zj7 j=1,...,k. (28)

X; Z;

with the rate reduction measuring the error:

AR(Z;,Z;) = R(Z; U Z;) — %(R(Zj) +R(Z))), j=1,....k (29)
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Transcription: Close the Loop of Encoding and Decoding [WAWelICE B ReTeToR toldy, (1] EYTeT))

Measure Data Difference through Their Features
Measure difference in X; and X through their features Z; and Z;:
f(,0)

A~

z, =N, %, JCN g =1k (28)
with the rate reduction measuring the error:

AR(Z;,Z;) = R(Z;U Z;) — %(R(Zj) +R(Zj), j=1,...,k (29)

X

Decoder/controller g minimizes the difference between X and X:

k k
d(X,X) = n%inz AR(Z;,Z;) = mninz AR(Zj, f(9(Zj,n).0)).
=1 =1
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Transcription: Close the Loop of Encoding and Decoding [WAWelICE B ReTeToR toldy, (1] EYTeT))

Measure Data Difference through Their Features
Measure difference in X; and Xj through their features Z; and Zj:

x; L&D, g, 9C0  %, J@O g =1,k (28)

with the rate reduction measuring the error:

AR(Z;,Z;) = R(Z;U Z;) — %(R(Zj) +R(Zj), j=1,...,k (29)

Decoder/controller g minimizes the difference between X and X:
) k R k
d(X,X) = n%inz AR(Z;,Z;) = min > AR(Z;, f(9(Z;,n),6)).
j=1 j=1
Encoder/sensor f amplifies any difference between X and X:
k
d(X,X) = m@aXZAR(Zj, = maxz AR(f(X;,0), f(X;,0)).
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Transcription: Close the Loop of Encoding and Decoding [WAWelICE B ReTeToR toldy, (1] EYTeT))

Dual Roles of the Encoder and Decoder

The encoder f needs to be a discriminative sensor that can discern and
amplify any error between the distributions between X and X.

Reason: for a fixed encoder f, the decoder g can easily produce an
ambiguous decoding such that the error between Z and Z is zero!

zeR?
Sz = Img(s:c)
g(z) x € RP
xr
\/\ Img(S;)
Null space of f
gof#Id,but fog=1d
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Transcription: Close the Loop of Encoding and Decoding A closed-Loop formulation

Dual Roles of the Encoder and Decoder

f is both an encoder and sensor; and g is both a decoder and controller.
They form a closed-loop feedback control system:

9(z,m)
R?

f

° o .01 0o

A closed-loop notion of “self-consistency” between X and X is given by
a pursuit-evasion game between f as a “evader” and g as a “pursuer”:
k

D(X, X) = minmax >  AR(f(X;,0), f(9(f(X;,0),1).0)). (30)
Jj=1

Z;(0) Z;(0,m)
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s ey
Overall Objective: Self-Consistency & Parsimony

The overall minimax game between the encoder f and decoder g:
® f maximizes the rate reduction of the features Z of the data X;

® g minimizes the rate reduction of the features Z of the decoded X.

A minimax program to learn a multi-class LDR for data X = U;‘?:lXj:

k
min max AR(f(X,0)) + AR(M(X.0,1)) + Z AR(f(X;,0),h(X;,0,7m))

g N 7=1 . .
Expansive encode Compressive decode Contrastive & Contractive

with h(z) = f o go f(x), or equivalently

k
min max AR(Z(0)) + AR(Z(0,m)) + > _ AR(Z;(0), Z;(0,n)).
j=1
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s ey
Overall Objective: Self-Consistency & Parsimony

The overall minimax game between the encoder f and decoder g:
® f maximizes the rate reduction of the features Z of all the data X

® ¢ minimizes the rate reduction of the features Z of the decoded X.

A minimax program to learn a one-class LDR for data X:

Binary: min AR(f(X,0),h(X,0,1))
N

Contrastive & Contractive
or equivalently

Binary: min max AR(Z(9), Z(0, n)).
"
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Transcription: Close the Loop of Encoding and Decoding [WAWelICE B ReTeToR toldy, (1] EYTeT))

Characteristics of the Overall Objective

k

min max AR(Z(0)) + AR(Z(0,m)) + > _ AR(Z;(0), Z;(0,n)).
j=1

e Simplicity: all terms are uniformly rate reduction on features.

e Excplicit: distribution of learned features Z is an LDR.

e A feedback loop of encoding and decoding networks is all needed.

® No need or any direct explicit distance between X and X.

® No need to specify a prior or surrogate target distribution.

® No approximation by lower or upper bounds.

® No heuristics or regularizing terms.

Self-consistency and Parsimony are all you need to model X7
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Transcription: Close the Loop of Encoding and Decoding Empirical verification

Empirical Verification on Visual Data

Experimental Setup:

e Datasets: MNIST, CIFAR10, STL-10, CelebA faces, LSUN bedroom,
ImageNet

Network architectures: basic DCGAN & ResNet (not customized).

Feature space: the same 128-dim regardless of data resolution or size

¢ Quantization precision: the same €2 = 0.5.
e Optimizer: Adam with the same hyperparameters 51 = 0, 52 = 0.9.

® Linear rate: the same initial 0.00015 with linear decay.

No other regularization, heuristics, or engineering tricks.
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Transcription: Close the Loop of Encoding and Decoding Empirical verification

Empirical Verification: Fair Comparison to Baselines

Method ‘ GAN GAN (LDA-Binary) VAE-GAN LDA-Binary LDA-Multi
MNIST ISt | 2.08 1.95 2.21 2.02 2.07
FID | |24.78 20.15 33.65 16.43 16.47
CIFAR-10 ISt | 7.32 7.23 7.11 8.11 7.13
D | |26.06 22.16 43.25 19.63 23.91

Table: Quantitative comparison on MNIST and CIFAR-10. Average Inception
scores (IS) and FID scores. 1 means higher is better. | means lower is better.

Input
VAE-GAN

LDR-Binary

LDR-Multi

(b) CIFA

Py

-10 (c) ImageNet

Figure: Qualitative comparison on MNIST, CIFAR-10 and ImageNet.
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Transcription: Close the Loop of Encoding and Decoding Empirical verification

Empirical Verification on Visual Data
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Figure: Visualizing the alignment between Z and Z: |Z7 Z|.
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Empirical verification

Transcription: Close the Loop of Encoding and Decoding

Empirical Verification: Comparison on MNIST
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Figure: Reconstruction results of different methods with the input data.
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Empirical Verification: MNIST PCAs

The feature z in each of the k principal subspaces can be modeld as a
degenerate Gau55|an from the PCA Z; = V;%; UT

zjwij—i-anoévé, where nlNN(O,l), ji=1,...,k. (31)
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(a) ACGAN (b) InfoGAN (c) LDR-Multi
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Transcription: Close the Loop of Encoding and Decoding Empirical verification

Empirical Verification: Interpolation between Samples
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Figure: Images generated from interpolating between samples in different classes.
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Empirical Verification: Transformed MNIST
Original data X and their decoded version X on transformed MNIST.
SON/ PANY

\N=Jszsec />

> g oaM DOy

iolololojolojololololmm /L1171 /1/1/1/1/ I L2 1R PR IR0
Aooadanonon NNNNNNNNNN BEEBEnEEnEan
IAAOLOIAIOINOI O /LT L/ L/ L/ L/ L I 2L 2l 27 L)
iololalzlolclolololommm 0L d Ll ] I D D IV
CSEENENEREE Uanuanuonn BEHEBARPRERER
olojolojololojololomm LD DL D L] e zizlagz]alz]z]2]2]z]
lololololololojololONmm LLILILITIRILIL/DL] [ o olo]olala]ols]o]?]
RQrAAv ez NN R R R RN % % pd pd Y B e 2

(c) Components of “0"

Ma (EECS Department, UC Berkeley)

(d) Components of “1”

(e) Components of “2"

November 30, 2021

41/61



sIl!IIIIIEI

Empirical Verification: “Principal Images” of CIFAR10

Ma

(EECS Department, UC Berkeley)

Data Transcription & Rate Reduction



Transcription: Close the Loop of Encoding and Decoding

Empirical Verification: “Principal Images of CIFAR10
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Empirical Verification: “Principal Images” of CIFAR10
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Figure: Reconstructed images X from features Z close to the principal
components learned for each of the 10 classes of CIFAR-10.

Different classes are disentangled as principal subspaces.
Visual attributes are disentangled as principal components.
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Transcription: Close the Loop of Encoding and Decoding Empirical verification

Empirical Verification: Principal Components of CelebA

Visual attributes are disentangled as principal components.
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Figure: Sampling along the 9-th, 19-th, and 23-th principal components of the

learned features Z seems to manipulate the visual attributes for generated
images, on the CelebA dataset.
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Transcription: Close the Loop of Encoding and Decoding Empirical verification

Empirical Verification: CelebA Random Generation

Ma (EECS Department, UC Berkeley) Data Transcription & Rate Reduction November 30, 2021 46 /61



Transcription: Close the Loop of Encoding and Decoding Empirical verification

Empirical Verification: CelebA Input X
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(a) Original X

Figure: Visualizing the original & and corresponding decoded & results on Celeb-A
dataset. The LDR model is trained from LDR-Binary.
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Transcription: Close the Loop of Encoding and Decoding Empirical verification

Empirical Verification: CelebA Decoded X

(a) Decoded X

Figure: Visualizing the original  and corresponding decoded & results on Celeb-A
dataset. The LDR model is trained from LDR-Binary.

Ma (EECS Department, UC Berkeley) Data Transcription & Rate Reduction November 30, 2021 48 /61



Transcription: Close the Loop of Encoding and Decoding Empirical verification

Empirical Verification: LSUN Bedroom Input X

(a) Original X

Figure: Visualizing the original & and corresponding decoded & results on
LSUN-bedroom dataset. The LDR model is trained from LDR-Binary.
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Empirical Verification: LSUN Bedroom Decoded X

(a) Decoded X

Figure: Visualizing the original « and corresponding decoded & results on
LSUN-bedroom dataset. The LDR model is trained from LDR-Binary.
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Transcription: Close the Loop of Encoding and Decoding Empirical verification

Empirical Verification: ImageNet 10-Class Input X

a) Original X
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Empirical Verification: ImageNet 10-Class Decoded X
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b) Decoded X
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Transcription: Close the Loop of Encoding and Decoding Empirical verification

Empirical Verification: ImageNet Feature Similarity
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Figure: Visualizing feature alignment: (a) among features |Z " Z|, (b) between
features and decoded features |Z T Z|. These results obtained after 200,000
iterations.
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Transcription: Close the Loop of Encoding and Decoding Empirical verification

Empirical Verification: Quantitative
Table: Comparison on CIFAR-10, STL-10, and ImageNet.

CIFAR-10 STL-10 ImageNet

Method

ISt FIDy | ISt FID) | ISt FID)
GAN based methods
DCGAN 6.6 - 7.8 - - -
SNGAN 74 293 | 9.1 401 - 48.73
CSGAN 81 196 - - - -
LOGAN 8.7 17.7 - - - -
VAE/GAN based methods
VAE 3.8 11538 - - - -
VAE/GAN 74 398 - - - -
NVAE - 50.8 - - - -
DC-VAE 8.2 179 | 81 419 - -
LDR-Binary (ours) 81 196 | 84 38.6 | 7.74 46.95
LDR-Multi (ours) 71 239 | 7.7 457 | 644 5551
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Empirical Verification: Ablation Study

Training the ImageNet with networks of different width.

channel#=1024 channel#=512 channel#=256
BS=1800 success success success
BS=1600 success success success
BS=1024 failure success success
BS=800 failure failure success
BS=400 failure failure failure

Table: Ablation study on ImageNet about tradeoff between batch size (BS) and
network width (channel #).
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Empirical Verification: Other Ablation Studies

min max AR(Z(0)) + AR(Z Z AR(Z;(9), Z;(0,7)).

Other ablations studies:

® the importance of the closed loop.
® the importance of rate reduction versus cross entropy.
® the three terms in the objective function.

® sensitivity to spectral normalization.

choices in feature dimension or channel number.

see details in the paper https://arxiv.org/abs/2111.06636
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Conclusions and Open Problems

Conclusions: Closed-Loop Transcription to an LDR

RP m \ R¢
\ : o010 \
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® universality: embedding real-world data to a simple and explicit
linear discriminative representation.

® parsimony: a good tradeoff in rate reduction via a minimax game
between an encoder and a decoder.

e feedback: a closed-loop feedback control system between a sensor
and a controller.

o self-consistency: without the need for a distance or surrogate in the
external data space.
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Open Mathematical Problems

For the closed-loop minimax rate reduction program:

A~

k
mninmeax AR(Z(9)) + AR(Z(G,n)) + Z AR(Z;(9),Z;(6,n)).
j=1

® optimality: characterization of the equilibrium points.

e convergence of the closed-loop control problem (infinite-dim).

® deformable manifold learning for the support of the distributions.
¢ optimal density of the distribution (Brascamp-Lieb inequalities).

® guarantees for approximate sample-wise auto-encoding.

¢ correct model selection (no under or over fitting).
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Conclusions and Open Problems

Open Directions: Extensions and Connections

® How to scale up to hundreds and thousands of classes?

Better feedback for generative quality and discriminative property?

Whitebox architectures for closed-loop transcription (ReduNet like)?

Internal computational mechanisms for memory forming (Nature)?

Closed-loop transcription to other types of low-dim structures?
(dynamical, symbolical, logical, graphical...)

The principles of parsimony and feedback shall always rule!
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Conclusions and Open Problems

References: Learning via Compression and Rate Reduction
@ Closed-Loop Data Transcription to an LDR via Minimaxing Rate Reduction
https://arxiv.org/abs/2111.06636

@® RedulNet: A Whitebox Deep Network from Rate Reduction (JMLR'21):
https://arxiv.org/abs/2105.10446

© Representation via Maximal Coding Rate Reduction (NeurlPS'20):
https://arxiv.org/abs/2006.08558

@ Classification via Minimal Incremental Coding Length (NIPS 2007):
http://people.eecs.berkeley.edu/~yima/psfile/MICL_SJIS.pdf

@ Clustering via Lossy Coding and Compression (TPAMI 2007):
http://people.eecs.berkeley.edu/~yima/psfile/Ma-PAMIO7 .pdf
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Parsimony and feedback are all you need to learn
a compact and simple model for real-world data?

Thank you!

Questions, please?
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