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Structured Nonlinear Low-Dimensional Models
Transform Invariant/Equivariant Low-Rank Texture

@ Low-Rank Models for Images
@ Image Inpainting as Matrix Completion

© Transform Invariant Low-Rank Textures

O Applications of TILT

“What humans do with the language of mathematics is to describe
patterns.”
— Lynn A. Steen
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Importance of Mathematical Modeling

If you formulate a problem correctly,
you have more than halfway solved it!
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Low-Rank Models for Images

Example: Rank Conditions for Multiple-View Geometry

Geometric and algorithmic foundations for 3D Reconstruction from images.

::::::: SCIPLINARY APPLIED MATHEMATICS

An Invitation to
3-D Vision

From Images to Geometric Models

Yi Ma
Stefano Soatto
Jana Kosecka
Shankar S. Sastry

All multi-view incidence conditions among points, lines, planes and
symmetric objects are captured by the same rank condition (Ma, 2003):

rank(M) =1 (or 2). (1)
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Low-Rank Models for Images

Example: Rank Conditions for Photometric Stereo
Geometric and algorithmic foundations for 3D Reconstruction from images.

(b) structured lights (c) photometric stereo

Images of a (Lambertian) object under different lighting conditions, viewed
as columns of a matrix, always satisfy a rank condition (Chapter 14):

rank(M) = 3. (2)
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Low-Rank Models for Images

Example: Low-Rank Structures in a Single Image

Low-dimensional structures arise at all spatial scales even in an individual
image, especially that of man-made objects.

(a) a calibration rig (d) a door

== ILLINOIS ===

a8

(h) a face

(e) a license plate (f) characters

Be aware though: only at a rectified view and without any occlusion!
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Mathematical Model for Low-Rank Image (Regions)

An image (region) I,(z,y) can be explicitly factorized as as the
combination of 7 rank-1 functions:

Z wi(z) - vy (3)

Symmetry: two low-rank textures equivalent if they are scaled and
translated versions of each other:

I (z,y) ~ a- I(ax +t1,by + t2),

for some «,a,b,c € Ry t1,t2 € R.
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Image Inpainting as Matrix Completion

Image Inpainting as Matrix Completion

Example: Low-rank image inpainting as matrix completion:

mliln rank(L) s.t. L(i,5) = I,(i,7) V(i,j) € Q. (4)
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Image Inpainting as Matrix Completion

Image Inpainting as Matrix Completion
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Is low-rank the only low-dim structure in such images?

I(z,y) = Zuz(x)vz(y) =UV".
i=1

U and V might themselves be sparse in some bases
U = B1X1, V = BQXQZ

I,= B X, X;B; = BiW,B;, with W, = X; X sparse.
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Image Inpainting as Matrix Completion

Image Inpainting as Matrix Completion

Impose low-rank and sparse structures simultaneously (not RPCA!):
IL%I‘} rank(L) + \|W o s.t. Pq[L] =Pqll]l, L=B,WB;. (5)
Relaxation to a corresponding convex program (why?):

min [W, +MW[, st Po[BiIWB] =Polll.  (6)

Reformulation for a better optimization algorithm:

ming w || L|l« + AM[|W|1 st. L=W, Po[BiWB;|="PqllI]. (7)

Note that the above problem can be solved by ALM + ADMM!
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Image Inpainting as Matrix Completion

Image Inpainting: Improved Performance
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(a) Input image (b) Sparse + Low-rank (c¢) Low-rank only

Ma (EECS Department, UC Berkeley) EECS208, Fall 2021 November 9, 2021 11/27




Image Inpainting as Matrix Completion

Image Recovery
Robustness to corruption I = I, + E, for unknown sparse E,:

min [Wil. + A[Wh +al Bl st Pa[BiWB; + E] = Pall]. (8)

Figure: Left: Low-rank; Middle: Microsoft; Right: Adobe.
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Deformation and Corruption
In practice, the observe image I is typically a transformed version of the
(rectified) low-rank image I,: I o 7(xz,y) = I,(x,y) or

I(z,y)=I,or Yz,y) =L, (" (z,y)), 7€G
,\"& R 8

.

«—

(a) Low-rank texture I,

Ma (EECS Department, UC Berkeley)

(b) Its image I under a different
viewpoint
Note: the observed image might also be corrupted: I = (I, + E,) o7 !
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Algorithm Development

Original problem: transformed low-rank and sparse decomposition

min rank(L) + 7| El|lp subjectto Ior =L+ E. (9)

T

Relaxation: use convex surrogates for rank and sparsity

irlén |IL|[« + A|E|1 subjectto Ior=L+E. (10)
IRk \—/—/ %/_/
’ convex still nonlinear!

Linearization to deal with nonlinearity: To7+ VI -dr =~ L+ FE and

rr}ﬂi% |L||« + A||E||; subjectto IToT+VI-dr=L+E. (11)

IEnd]

Note: this is exactly a Compressive PCP problem (in Chapter 5)!
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The TILT Algorithm

INPUT: Input image I € R¥*" initial transformation 7 € G (affine or
projective), and a weight A > 0.
WHILE not converged DO

Step 1: Normalization and compute Jacobian:

Tor e prms VI“ag(nvec(Iog)Hg i 12

Step 2 (inner loop): Solve the linearized CPCP problem:

(Ly, E,,dry) < argming gqr || L« + M| E|:
subjectto TorT+ VI .-dr=L+ E;

Step 3: Update the transformation: 7 < 7 + d7y;
END WHILE
OUTPUT: Converged solution L,, E,, 7, to problem (10).
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Inner Loop of TILT

Apply ALM + ADMM to solve the inner loop CPCP problem (13):

INPUT: The current (deformed and normalized) image I o 7 € R"™*"
and its Jacobian VI against current deformation 7 (from the outer
loop), and A\ > 0.
Initialization: £k =0,Yy =0,FEy=0,drg =0,0 > 0,p > 1,
WHILE not converged DO

(Uk, E, Vi) =SVD(I o7 + VI - drj, — Ey, + 1, ' Yy,);

Lj1 = Upsoft(Sy, u, Vi

Eyy 1 =soft(Ior+ VI -dr, — Lgyq1 + u,;lYk, )\,u,,;l);

dripr = (VD) (=T o7+ L1 + By — ' Vi),

Yiri =Y+ o+ VI-dryy — Ly — Epy1);

Bk+1 = Pk,
END WHILE
OUTPUT: Converged solution (L., E,, dr,) to problem (11).
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Rectifying Planar Low-Rank Textures

(a) Low-rank texture I, (b) Its image I under a different
viewpoint

I, is on a planar surface and I is seen from a different view:
I(I, y) =10 7-_1(55’ y) =1, (7_—1(1,’ y))
where 7 is any planar homography H € GL(3):

u hit hi2 hig| |z
T(x,y) = |v| ~ |har h22 hos| |y
1 ha1 hza hsz| |1
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Applications of TILT

Empirical Observations: large range of attraction
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Rectifying Generalized Cylinder Surfaces

In practice, very often the low-rank texture I, does not lie on a planar
surface, instead say on a cylindrical surface:

The overall deformation consists of composition of three mappings:
¢ from a flat 2D plane to the 3D cylindrical surface (shape);
¢ from the surface to the image plane (camera pose and projection);

e from the image plane to the pixel coordinates (intrinsic calibration).
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Applications of TILT

Rectifying Generalized Cylinder Surfaces

Then I, = I o g where the transformation g from the texture coordinates
I,(z,y) to the image coordinates I(u,v) is a composition of the three
mappings specified above:
g : (x7y) = (X67Y67 ZC) = (xnayn) = (’U,, U)' (15)
Hence we solve the following nonlinear optimization problem:
i L.+ M| E t. Tog=L+ E. 16
g L.+ AlElL st Tog=L+ (16)

As in TILT, this can be solved iteratively from its linearized version:

min ||L|«+ A|E|:1 st. Tog+VI,-dg=L+E, (17)
L.,E dg
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Applications of TILT

Empirical Results
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Applications of TILT

Camera Calibration

Three most important factors in robotics and augmented reality:
calibration, calibration, calibration!

‘-

Figure 15.10 Left: typical image of a fisheye camera. Right: image of a perspective
camera.

Figure 15.11 Left two: Images of a typical calibration rig. Right: Corners need to be
marked (or detected) for conventional calibration methods.
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Applications of TILT

Camera Calibration: from a calibration rig to the image

Extrinsic parameters 7; (camera pose — different for each image 1):

rotation R € SO(3) and translation T € R3.

Intrinsic parameters 7 (focal length etc. — common for all images):

Je 0 o0z
K=|0 f, o R,
0 0 1

Lens distortion 7 (radial distortion etc. — common for all images):

Fr) = 14 ko(D)r? + ko (2)r* + ke(5)r5,

oy = | L0+ 2ke(3)znyn + ke(4)( + 2a,)
a F(r)an + 2ke(4)znyn + ke(3)(r* + 297) | ©
Ma (EECS Department, UC Berkeley) EECS208, Fall 2021 November 9, 2021

(18)

(19)

23 /27



Applications of TILT

Camera Calibration

£

-

Multiple images I; of the calibration rig I,, at different views 7; are related
by:
Lo(rpory)=I1,+E;, i=1,2,...,N. (20)

N
min Z HLZ”* + ”EzHI; st. Io (7'0 o Ti) =L;,+F;, L;,= Lj. (21)
=1

Or min || L¢||« + | Lr|l« + M| E1, st. Lio(room)=L;+ E;. (22)
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Applications of TILT

Calibration Results

Ma (EECS Department, UC Berkeley) EECS208, Fall 2021 November 9, 2021 25/27



Applications of TILT

Summary

A good idea deserves a good implementation.

The better the idea, the better should be the implementation.

Ma (EECS Department, UC Berkeley) EECS208, Fall 2021 November 9, 2021 26 /27



Assignments

® Reading: Chapter 15.

® Programming Homework #4.
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