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Structured Nonlinear Low-Dimensional Models
Transform Invariant/Equivariant Low-Rank Texture

1 Low-Rank Models for Images

2 Image Inpainting as Matrix Completion

3 Transform Invariant Low-Rank Textures

4 Applications of TILT

“What humans do with the language of mathematics is to describe
patterns.”

– Lynn A. Steen
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Importance of Mathematical Modeling

If you formulate a problem correctly,
you have more than halfway solved it!
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Low-Rank Models for Images

Example: Rank Conditions for Multiple-View Geometry
Geometric and algorithmic foundations for 3D Reconstruction from images.

All multi-view incidence conditions among points, lines, planes and
symmetric objects are captured by the same rank condition (Ma, 2003):

rank(M) = 1 (or 2). (1)

Ma (EECS Department, UC Berkeley) EECS208, Fall 2021 November 9, 2021 4 / 27



Low-Rank Models for Images

Example: Rank Conditions for Photometric Stereo
Geometric and algorithmic foundations for 3D Reconstruction from images.

Images of a (Lambertian) object under different lighting conditions, viewed
as columns of a matrix, always satisfy a rank condition (Chapter 14):

rank(M) = 3. (2)
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Low-Rank Models for Images

Example: Low-Rank Structures in a Single Image

Low-dimensional structures arise at all spatial scales even in an individual
image, especially that of man-made objects.

Be aware though: only at a rectified view and without any occlusion!
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Low-Rank Models for Images

Mathematical Model for Low-Rank Image (Regions)

An image (region) Io(x, y) can be explicitly factorized as as the
combination of r rank-1 functions:

Io(x, y)
.
=

r∑
i=1

ui(x) · vi(y). (3)

Symmetry: two low-rank textures equivalent if they are scaled and
translated versions of each other:

Io(x, y) ∼ α · Io(ax+ t1, by + t2),

for some α, a, b, c ∈ R+, t1, t2 ∈ R.
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Image Inpainting as Matrix Completion

Image Inpainting as Matrix Completion

Example: Low-rank image inpainting as matrix completion:

min
L

rank(L) s.t. L(i, j) = Io(i, j) ∀(i, j) ∈ Ω. (4)
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Image Inpainting as Matrix Completion

Image Inpainting as Matrix Completion

Is low-rank the only low-dim structure in such images?

Io(x, y) =

r∑
i=1

ui(x)vi(y) = UV ∗.

U and V might themselves be sparse in some bases
U = B1X1,V = B2X2:

Io = B1X1X
∗
2B

∗
2

.
= B1WoB

∗
2 , with Wo = X1X

∗
2 sparse.
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Image Inpainting as Matrix Completion

Image Inpainting as Matrix Completion

Impose low-rank and sparse structures simultaneously (not RPCA!):

min
L,W

rank(L) + λ∥W ∥0 s.t. PΩ[L] = PΩ[I], L = B1WB∗
2 . (5)

Relaxation to a corresponding convex program (why?):

min
W
∥W ∥∗ + λ∥W ∥1 s.t. PΩ[B1WB∗

2 ] = PΩ[I]. (6)

Reformulation for a better optimization algorithm:

minL,W ∥L∥∗ + λ∥W ∥1 s.t. L = W , PΩ[B1WB∗
2 ] = PΩ[I]. (7)

Note that the above problem can be solved by ALM + ADMM!
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Image Inpainting as Matrix Completion

Image Inpainting: Improved Performance
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Image Inpainting as Matrix Completion

Image Recovery
Robustness to corruption I = Io +Eo for unknown sparse Eo:

min
W
∥W ∥∗ + λ∥W ∥1 + α∥E∥1 s.t. PΩ[B1WB∗

2 +E] = PΩ[I]. (8)

Figure: Left: Low-rank; Middle: Microsoft; Right: Adobe.
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Transform Invariant Low-Rank Textures

Deformation and Corruption

In practice, the observe image I is typically a transformed version of the
(rectified) low-rank image Io: I ◦ τ(x, y) = Io(x, y) or:

I(x, y) = Io ◦ τ−1(x, y) = Io
(
τ−1(x, y)

)
, τ ∈ G.

Note: the observed image might also be corrupted: I = (Io +Eo) ◦ τ−1.
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Transform Invariant Low-Rank Textures

Algorithm Development

Original problem: transformed low-rank and sparse decomposition

min
L,E,τ

rank(L) + γ∥E∥0 subject to I ◦ τ = L+E. (9)

Relaxation: use convex surrogates for rank and sparsity

min
L,E,τ

∥L∥∗ + λ∥E∥1︸ ︷︷ ︸
convex

subject to I ◦ τ = L+E︸ ︷︷ ︸
still nonlinear!

. (10)

Linearization to deal with nonlinearity: I ◦ τ +∇I · dτ ≈ L+E and

min
L,E,dτ

∥L∥∗ + λ∥E∥1 subject to I ◦ τ +∇I · dτ = L+E. (11)

Note: this is exactly a Compressive PCP problem (in Chapter 5)!
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Transform Invariant Low-Rank Textures

The TILT Algorithm

INPUT: Input image I ∈ Rw×h, initial transformation τ ∈ G (affine or
projective), and a weight λ > 0.
WHILE not converged DO

Step 1: Normalization and compute Jacobian:

I ◦ τ ← I ◦ τ
∥I ◦ τ∥F

; ∇I ← ∂

∂ζ

(
vec(I ◦ ζ)
∥vec(I ◦ ζ)∥2

)∣∣∣
ζ=τ

; (12)

Step 2 (inner loop): Solve the linearized CPCP problem:

(L⋆,E⋆, dτ⋆) ← argminL,E,dτ ∥L∥∗ + λ∥E∥1
subject to I ◦ τ +∇I · dτ = L+E;

(13)

Step 3: Update the transformation: τ ← τ + dτ⋆;
END WHILE
OUTPUT: Converged solution L⋆, E⋆, τ⋆ to problem (10).
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Transform Invariant Low-Rank Textures

Inner Loop of TILT

Apply ALM + ADMM to solve the inner loop CPCP problem (13):

INPUT: The current (deformed and normalized) image I ◦ τ ∈ Rm×n

and its Jacobian ∇I against current deformation τ (from the outer
loop), and λ > 0.
Initialization: k = 0,Y0 = 0,E0 = 0, dτ0 = 0, µ0 > 0, ρ > 1;
WHILE not converged DO

(Uk,Σk,Vk) = SVD
(
I ◦ τ +∇I · dτk −Ek + µ−1

k Yk

)
;

Lk+1 = Uksoft(Σk, µ
−1
k )V ∗

k ;
Ek+1 = soft(I ◦ τ +∇I · dτk −Lk+1 + µ−1

k Yk, λµ
−1
k );

dτk+1 = (∇I)†(−I ◦ τ +Lk+1 +Ek+1 − µ−1
k Yk);

Yk+1 = Yk + µk(I ◦ τ +∇I · dτk+1 −Lk+1 −Ek+1);
µk+1 = ρµk;

END WHILE
OUTPUT: Converged solution (L⋆, E⋆, dτ⋆) to problem (11).
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Applications of TILT

Rectifying Planar Low-Rank Textures

Io is on a planar surface and I is seen from a different view:

I(x, y) = Io ◦ τ−1(x, y) = Io
(
τ−1(x, y)

)
where τ is any planar homography H ∈ GL(3):

τ(x, y) =

uv
1

 ∼
h11 h12 h13
h21 h22 h23
h31 h32 h33

xy
1

 . (14)
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Applications of TILT

Empirical Observations: large range of attraction
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Applications of TILT

Rectifying Generalized Cylinder Surfaces

In practice, very often the low-rank texture Io does not lie on a planar
surface, instead say on a cylindrical surface:

The overall deformation consists of composition of three mappings:

• from a flat 2D plane to the 3D cylindrical surface (shape);

• from the surface to the image plane (camera pose and projection);

• from the image plane to the pixel coordinates (intrinsic calibration).
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Applications of TILT

Rectifying Generalized Cylinder Surfaces

Then Io = I ◦ g where the transformation g from the texture coordinates
Io(x, y) to the image coordinates I(u, v) is a composition of the three
mappings specified above:

g : (x, y) 7→ (Xc, Yc, Zc) 7→ (xn, yn) 7→ (u, v). (15)

Hence we solve the following nonlinear optimization problem:

min
L,E,c,R,T

∥L∥∗ + λ∥E∥1 s.t. I ◦ g = L+E. (16)

As in TILT, this can be solved iteratively from its linearized version:

min
L,E,dg

∥L∥∗ + λ∥E∥1 s.t. I ◦ g +∇Ig · dg = L+E, (17)
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Applications of TILT

Empirical Results
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Applications of TILT

Camera Calibration
Three most important factors in robotics and augmented reality:

calibration, calibration, calibration!
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Applications of TILT

Camera Calibration: from a calibration rig to the image

Extrinsic parameters τi (camera pose – different for each image i):

rotation R ∈ SO(3) and translation T ∈ R3.

Intrinsic parameters τ0 (focal length etc. – common for all images):

K
.
=

fx θ ox
0 fy oy
0 0 1

 ∈ R3×3. (18)

Lens distortion τ0 (radial distortion etc. – common for all images):
r

.
=

√
x2n + y2n,

f(r)
.
= 1 + kc(1)r

2 + kc(2)r
4 + kc(5)r

6,

pd =

[
f(r)xn + 2kc(3)xnyn + kc(4)(r

2 + 2x2n)
f(r)xn + 2kc(4)xnyn + kc(3)(r

2 + 2y2n)

]
.

(19)
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Applications of TILT

Camera Calibration

Multiple images Ii of the calibration rig Io at different views τi are related
by:

Ii ◦ (τ0 ◦ τi) = Io +Ei, i = 1, 2, . . . , N. (20)

min

N∑
i=1

∥Li∥∗ + ∥Ei∥1, s.t. Ii ◦ (τ0 ◦ τi) = Li +Ei, Li = Lj . (21)

Or min ∥Lc∥∗ + ∥Lr∥∗ + λ∥E∥1, s.t. Ii ◦ (τ0 ◦ τi) = Li +Ei. (22)
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Applications of TILT

Calibration Results
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Applications of TILT

Summary

A good idea deserves a good implementation.

The better the idea, the better should be the implementation.
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Applications of TILT

Assignments

• Reading: Chapter 15.

• Programming Homework #4.
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