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Recovering Signals from (Linear) Measurements

y
observation

= A
measurement matrix

x
unknown

. (1)

y ∈ Rm, x ∈ Rn, A ∈ Rm×n,m� n.

Different “structures” in x:
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Applications

Applications
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Applications Medical Imaging

Application I: Magnetic Resonance Imaging (Chap. 10)

Figure: Left: Key components. Right: The three-axis gradient coils.
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Applications Medical Imaging

Mathematical Model of MRI
Simplified mathematical model for MRI:

y = F [I](u) =
∫
v
I(v) exp(−i 2πu∗v) dv, u,v ∈ R2 (2)

y =

 y1
...
ym

 =

 F [I](u1)
...

F [I](um)

 .
= FU[I], m� N2. (3)

Figure: Recovering MRI image from Fourier measurements.
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Applications Medical Imaging

Exploit Structures of MRI Images
Express I as a superposition of basis functions Ψ = {ψ1, . . . ,ψN2}:

I
image

=

N2∑
i=1

ψi
i-th basis signal

× xi.
i-th coefficient

(4)

Approximate I with the k largest coefficients J = {i1, . . . , ik}:
I

target image
≈ Ĩk =

∑
i∈J

ψixi.

superposition of k basis functions

(5)

Figure: MRI image and its wavelet coefficients
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Applications Medical Imaging

Recovering Image from a Under-determined Linear System

y
observed Fourier coefficients

= FU[I],

= FU

[
ψ1x1 + · · · +ψN2xN2

]
,

= FU[ψ1]x1 + · · · + FU[ψN2 ]xN2 ,

=
[
FU[ψ1] | · · · | FU[ψN2 ]

]
matrix A ∈ Rm×N2

, m� N2.

x,

= Ax. (6)

x is sparse or approximately sparse!

I ≈
∑
i∈J

ψixi = Ψ
N2 ×N2 matrix

x,
sparse vector

(7)

where xi = 0 for i /∈ J, and k = |J| � N2.
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Applications Image Processing

Application II: Image Denoising

Inoisy = Iclean
target image

+ z.
noise

(8)

Break Iclean into patches y1clean, . . . ,ypclean:

yi = yiclean + zi = A
patch dictionary

× xi
sparse coefficient vector

+ zi. (9)

Figure: Left: input image; middle: denoised; right: dictionary for image patches.

Sparse representation for color image restoration, Mairal, Elad, and Sapiro. TIP, 2008
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Applications Image Processing

Application II: Image Super-Resolution
Given a pair of corresponding low-resolution and high-resolution
dictionaries (Alow,Ahigh):

yilow = Alowxi
Lifting−−−−−−−→ yihigh = Ahighxi. (10)

Figure: Super resolution for face images

Image Super-Resolution via Sparse Representation of Raw Image Patches, Yang, Wright,
Huang, and Yi Ma, CVPR, 2008.
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Applications Face Recognition

Application III: Robust Face Recognition (Chap. 13)

y
observation

= yo
clean data

+ e
sparse error

∈ Rm. (11)

Concatenate gallery images of n subjects into a large “dictionary”:

B = [B1 | B2 | · · · | Bn]
all training images

∈ Rm×n, n =
∑
i

ni. (12)
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Applications Face Recognition

Application III: Robust Face Recognition (Chap. 13)
Find sparse solutions (x, e) to the linear system:

y = Bx+ e = [B, I] [ xe ] . (13)

Robust Face Recognition via Sparse Representation, Wright, Yang, Ganesh, Sastry, and
Ma, TPAMI, 2009.
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Applications Face Recognition

Robust Face Recognition: Rigorous Justification

Dense Error Correction via `1 Minimization, Wright and Ma, Trans. Info. Theory, 2010.
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Applications Face Recognition

Many Many Applications...

Part III of the Textbook:

• Magnetic Resonnance Imaging (Chapter 10)

• Wideband Spectrum Sensing (Chapter 11)

• Scientific Imaging Problems (Chapter 12)

• Robust Face Recognition (Chapter 13)

• Robust Photometric Stereo (Chapter 14)

• Structured Texture Recovery (Chapter 15)

• Deep Networks for Classification (Chapter 16)

Your final projects?
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Recovering a Sparse Signal Norms for Sparsity

How to Find a Sparse Solution x?

y = A
m×n, m�n

× x.
k sparse

(14)
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Recovering a Sparse Signal Norms for Sparsity

Vector Spaces and Linear Algebra

Topics in Linear Algebra (Appendix A):

• Vector Space, Linear Independence, Basis

• Linear Mappings, Subspaces,
Matrix Representation

• Linear Systems and Conjugate Gradient
(over-determined, under-determined)

• Eigenvalue Decomposition
and Singular Value Decomposition

• Norms and Matrix Norms
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Recovering a Sparse Signal Norms for Sparsity

Norms

A norm on a vector space V over R is a function ‖ · ‖ : V→ R that is

1 positive definite: ‖x‖ ≥ 0, and ‖x‖ = 0 if and only if x = 0;

2 nonnegatively homogeneous:

‖αx‖ = |α|‖x‖, ∀x ∈ V, α ∈ R;

3 subadditive: ‖·‖ satisfies the triangle inequality

‖x+ y‖ ≤ ‖x‖+ ‖y‖, ∀x,y ∈ V.

Example: for V = (Rn,R), a p-norm:

‖x‖p
.
=

(∑
i

|xi|p
)1/p

, p ∈ [1,∞]. (15)
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Recovering a Sparse Signal Norms for Sparsity

Sparse Vectors and Norms

Figure: The `p balls.

`∞ norm or the “cube” norm:

‖x‖∞ = max
i
|xi|. (16)

`2 norm or the “Euclidean norm”:

‖x‖2 =
√∑

i

|xi|2 =
√
x∗x. (17)

`1 norm:
‖x‖1 =

∑
i

|xi|, (18)

`p unit ball:
Bp

.
= {x | ‖x‖p ≤ 1} 0 < p ≤ ∞. (19)

Example: relative volumes of the `p balls when n is large.
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Recovering a Sparse Signal The `0 Norm

Measure of Sparsity: the `0 Norm

`0 “norm”:
‖x‖0 = #{i | x(i) 6= 0}. (20)

Not a norm, and only subadditive:

∀x, x′,
∥∥x+ x′

∥∥
0
≤ ‖x‖0 +

∥∥x′∥∥
0
. (21)

“Limit” of `p-norm as p↘ 0:

lim
p↘0
‖x‖pp =

n∑
i=1

lim
p↘0
|x(i)|p =

n∑
i=1

1x(i)6=0 = ‖x‖0. (22)
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Recovering a Sparse Signal Minimizing the `0 for the Sparsest Solution

Minimizing the `0 Norm

Given y = Axo, to find xo as the sparsest solution to y = Ax, we can:

x̂ = argmin ‖x‖0 s.t. Ax = y. (23)

The “support” of the nonzero entries:

supp(x) = {i | x(i) 6= 0} ⊂ {1, . . . , n}, k = |supp(xo)|. (24)

Brute force exhaustive search:

AIxI = y? ∀I ⊆ {1, . . . , n}, |I| ≤ k. (25)
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Recovering a Sparse Signal Minimizing the `0 for the Sparsest Solution

Uniqueness of the Sparsest Solution

Definition (Kruskal Rank)

The Kruskal rank of a matrix A, written as krank(A), is the largest
number r such that every subset of r columns of A is linearly independent.

Theorem (`0 Recovery)

Suppose that y = Axo, with

‖xo‖0 ≤
1
2 krank(A). (26)

Then xo is the unique optimal solution to the `0 minimization problem

min ‖x‖0 s.t. Ax = y. (27)

Proof: Ax̂ = y ⇒ A (x̂− xo) = Ax̂−Axo = y − y = 0.
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Recovering a Sparse Signal Minimizing the `0 for the Sparsest Solution

Minimizing the `0 Norm: Exhaustive Search

Algorithm (`0 Minimization via Exhaustive Search):

1: Input: a matrix A ∈ Rm×n and a vector y ∈ Rm.
2: for k = 0, 1, 2, . . . , n,
3: for each I ⊆ {1, . . . , n} of size k,
4: if the system of equations AIz = y has a solution z,
5: set xI = z, xIc = 0.
6: return x.
7: end if
8: end for
9: end for

Example: computational complexity in finding the sparsest solution via
the exhaustive search algorithm.
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Recovering a Sparse Signal Minimizing the `0 for the Sparsest Solution

Minimizing the `0 Norm: Simulations

Solve: min ‖x‖0 s.t. Ax = y. (28)

A is of size 5× 12. Fraction of success across 100 trials.
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Recovering a Sparse Signal Computational Complexity of `0 Minimization

Computational Complexity of `0 Minimization

Theorem (Hardness of `0 Minimization)

The `0-minimization problem min ‖x‖0 s.t. Ax = y is (strongly) NP-hard.

Proof: Reducible to an Exact 3-Set Cover (E3C) problem.

1 2 3

4 5 6



1
1
1
1
1
1


y

=



1 1 0 0
1 0 0 0
1 0 0 1
0 1 1 0
0 1 1 1
0 0 1 1


A


1
0
1
0


x

Figure: Exact 3-Set Cover as a Sparse Representation Problem. Left: a universe
S = {1, . . . , 6} and four subsets U1, . . . ,U4 ⊆ S. {U1,U3} is an exact 3-set cover.
Right: the same problem as a linear system of equations. The columns of A are the
incidence vectors for the sets U1,U2,U3,U4. The Exact 3-Cover {U1,U3} corresponds
to a solution x to the system Ax = y with only m/3 = 2 nonzero entries.
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Recovering a Sparse Signal Computational Complexity of `0 Minimization

Computational Complexity of `p Minimization (0 < p < 1)

Theorem (Hardness of `p Minimization)

For any fixed 0 < p < 1, the `p-minimization problem

min ‖x‖pp subject to Ax = y

is (strongly) NP-hard.

Corollary (Hardness of Smoothed `p Minimization)

For any fixed 0 < p < 1 and ε > 0, the smoothed `p-minimization problem
min ‖x+ ε‖pp s.t. Ax = y is (strongly) NP-hard.

Nevertheless, computing a local minimizer of the problem can be done in
polynomial time. (... what about `1?)

A Note on the Complexity of Lp Minimization, D. Ge, X. Jiang, and Y. Ye,

Mathematical Programming, vol. 129, 2011.

Ma (EECS Department, UC Berkeley) EECS208, Fall 2021 August 31, 2021 25 / 27



Recovering a Sparse Signal Computational Complexity of `0 Minimization

Two Fundamental Questions

To find the correct k-sparse solution to the under-determined linear system:

y = A
m×n, m�n

× x,
k sparse

(29)

we want to know:

1 sample complexity: how many measurements are needed for the
problem to become computationally tractable? (Part I)

2 computational complexity: once tractable, what is the precise
computational complexity in finding the correct solution? (Part II)

“It is quite probable that our mathematical insights and understandings
are often used to achieve things that could in principle also be achieved com-
putationally – but where blind computation without much insight may turn
out to be so inefficient that it is unworkable.”

– Roger Penrose, Shadows of the Mind
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Recovering a Sparse Signal Computational Complexity of `0 Minimization

Assignments

• Reading: Section 2.1 and 2.2 of Chapter 2.

• Reading: Appendix B.

• Written Homework # 1.
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