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Structured Nonlinear Low-Dimensional Models

Sparsity in Convolution and Deconvolution

@ Convolution for Image Modeling
@® Convolution and Circulant Matrix

© The Blind Short-and-Sparse Deconvolution

“The mathematical sciences particularly exhibit order, symmetry, and
limitations; and these are the greatest forms of the beautiful.”
— Aristotle, Metaphysica
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Importance of Mathematical Modeling

If you formulate a problem correctly,
you have more than halfway solved it!
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Sparsity in Appearance of Image Patches
Patch-level image modeling

(e.g. denoising or super-resolution)
with a sparsifying dictionary:

Ijteh = A x =+ z (1)

dictionary sparse noise

Dictionary learning: the motifs or atoms of the dictionary are unknown:

Y = A X. (2)

data  dictionary sparse

® Band-limited signals: A = F, the Fourier transform (JPEG);
® Piecewise smooth: A = W, the wavelet transforms (JPEG2000);

® For natural images A can be learned from patch samples Y.
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Convolution for Image Modeling

Sparsity in Occurrence of Patch Motif(s)

The same motif a € A occurs at a sparse number of locations
(il’jl)a sy (Zk’]k) in space:

>

The overall observation y can be modeled as a superposition of translated
versions of the motif a, one for each of locations (ig, j¢):

k
Z ]7 Za’ i — Z[, .j£7 ) + Z(Z.7j7 6). (3)

data ¢—1 translated motif noise

One could generalize this to multiple motifs.
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Convolution for Image Modeling

Modeling Translational Occurrence by Convolution

Define a two-dimensional sparse signal € R“*" which takes on value 1
at locations (ig, j¢) and zero elsewhere:

y(,ne)=a(, e)xxz + z(,-e). (4)

Combining these equations for all energy levels e, the observed data y is a
convolution of the motif @ and a field x of sparse spikes:

= a_* x + oz, (5)

Yy . . 2
data  motif  sparse spikes noise

x could also take different values other than 1 to model the intensity or
weight of the motif at each location.

The sparse occurrence/convolution model does generalize to other
transformation groups, such as rotation etc.
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Convolution for Image Modeling

Modeling Translational Occurrence by Convolution

Examples: Neuron, Camera, and Microscopy
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The sparse occurrence/convolution model does generalize to other
transformation groups, such as rotation etc.
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Convolution and Circulant Matrix

Background: Convolution and Circulant Matrix

Given a vector a = [ag, a1, ...,a,—1]" € R™, we may arrange all its
circularly shifted versions in a circulant matrix form as

aq Ap—1 ce a9 ai
ai ao Gp—1 - a2
A = circ(a) = : ap ap e R™™. (6)
Ap—2 an—1
L Ap—1 Ap—2 c. ajq aq ]

It is easy to see that the multiplication of such a circulant matrix A with a
vector x gives a (circular) convolution Az = a ® x with:
n—1

((l ® w)z = Z Lji4n—jmodn-
=0

(7)

Fact: all circulant matrices share the same set of eigenvectors!
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Convolution and Circulant Matrix

Background: Eigenvectors of Circulant Matrices
Let i = v/—1 and w, := exp(—22') and we define the matrix:

n

Wwl Wl w9 w?

Wwl oWl w2 w1
1 S : .
Fo=—11: : " : : e C™™. (8)
\/ﬁ W0 W2 wﬁ"’2)2 W= (n=1)
W0 Wil L (D) wgnfl)Q

F,, is known as the discrete Fourier transform (DFT), with F, F;f = I.

Theorem (Eigenvectors of Circulant Matrix)

Ann x n matrix A € C"*™ s a circulant matrix if and only if it is
diagonalizable by the unitary matrix F:

F;AF, =D, or A=F,D.F), (9)
where Dy, is a diagonal matrix of (possibly complex) eigenvalues.
Probably the reason why our brain computes in spectral domain.
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The Blind Short-and-Sparse Deconvolution

The Blind Deconvolution Problem

Problem: how to recover both the motif a and sparse spikes & from the
observed data y:

= a_* x + oz, (10)

Yy . . :
data  motif  sparse spikes noise

This problem is under-determined (Why?).
We need to leverage low-dimensional structure in both a and x by
assuming a short-and-sparse model (studied in the 90's):

@ a is spatially localized, i.e., it is a short signal, whose spatial extent is
small compared to that of y;

® x is sparse, since it contains only one nonzero entry for each instance
of the motif in y. (Why not dense?)
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Solution by Optimization
Simultaneously recover both a and x by the bilinear Lasso (BL):

I};‘gl peL(a,x) = 5|y —ax x||% + Alx|l; suchthat ac A (11)
’ data fidelity x sparse a short

Ambiguity due to a scaling-shift symmetry:

A
AR
i %0
-1 1 A . i ?
5 o
] = asiao) * a~Ls_g[m)
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The Blind S

and-Sparse Deconvolution

Taxonomy of Symmetric Nonconvex Problems

Ma (EECS Department

Nonconvex Problems with Discrete Symmetries

Eigenvector Computation Dictionary Learning
Magimize a quadratic form Approzimate a given matriz Y
over the sphere. as Y = AX, with X sparse

max,cgn-1 3% Ax. min aca,x S1Y — AX[|% + NI X1
Symmetry: @ — —x Symmetry: (A, X)— (AT, XT*)
G={+1} G =5P(n)
Tensor Decomposition Short-and-Sparse Deconvolution
Determine components a; of an orthogonal Recover a short a and a sparse
decomposable tensor T =3, ai ® a; @ a; ® a; from their convolution y = a ® .

maxx eo(n) >i T(@i, @i @i, ). ming,e 3y —a®z|3 + Al
Symmetry: X > XT Symmetry: (a,a) > (asr(a], a~1s_r [z])
G=P(n) G =27y xR or G=2Zp x {£1}
C Berkeley) EECS208, Fall 2021




The Blind Short-and-Sparse Deconvolution

Symmetry in Short-and-Sparse Deconvolution
Letting s, denote a shift by 7 pixels, we have

y=s;lalxs_;[x] =axzx, with |alp=1. (12)
—_———

normalization
If a is shift incoherent:

ps = max [{a, s-[a])| =0, or circla)~1T.
7#0 e’
~ ~~ isometry
incoherence

the bilinear Lasso loss in (11) can be approximated as
2
sly—axz|p = sllylli+slaxzli - (y,axx)
syl + sllzlE — (v, axx). (13)
This gives:
epBL(a @) = 5llyllE+5lzlf — (y.axz) + Azl alr =1 (14)
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The Blind Short-and-Sparse Deconvolution

Landscape of the Objective Function

Geometry of the approximate bilinear Lasso (ABL) objective:

paBL(@. @) = 5llylF + sllzlf — (y,axa) + Azl ac A (15)

-

(c) multiple shifts

-

(a) a single shift s¢, [@o] (b) two shifts s¢, [ao], se,[ao]

Notice: equivalent (symmetric) solutions are local minimizers, and there
is negative curvature in symmetry breaking directions.
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Sparsity and Shift-Coherence Tradeoff

Solving the sparse-and-short deconvolution (SaSD) from:
min gL (a,x) = 3 [ly —ax* x||% + A|x|l; suchthat ac A (16)
a,r

A sparsity-coherence tradeoff: Smaller u (ag) allows higher 6(x).
(a) spiky (easiest) (b) generic (easy) (c) lowpass (difficult)

s = 0 s R n~1/2 ts & constant

TTATOTQ . I ?
! *U,MTL b

3/4

172

0~n~ 0~n~

Figure: In order of increasing difficulty: (a) when ag is a Dirac delta function,
ps(ag) = 0; (b) when aq is uniform on the sphere S"~1, its shift-coherence is
roughly p1s(ao) ~ n~=1/2; (c) when ayq is low-pass, p;(ag) — const. as n grows.
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Alternating Descent Algorithm for SaSD

Solving the sparse-and-short deconvolution (SaSD) from:
min g (a, ) = 3 |ly —a*z|5 + A|z[1 suchthat ac A (17)
a,xr
Fix a and take a proximal gradient step on x.
Gradient w.rt. @ Vey(a,x) =t,ax*(axx —y). (18)

Proximal gradient:  y11 = prox,, [Tk — tVai(ak, zr)] . (19)

Fix  and take a projected gradient step on a € A and |ja| = 1.
Gradient w.rt.a: Vay(a,x) =t &+ (axx —y). (20)

Proximal gradient: ayy1 = Palar — Vet (ak, Tri1)] - (21)
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Additional Heuristics

In practice, the kernel a might not be so shift incoherent.

Better Optimization Algorithm: Momentum Acceleration

wy, = T+ - (Tp — TR-1), (22)
| —
inertial term
Tpy1 = Proxy , [wy — txVath(ay, wy)] . (23)

Better Optimization Strategy: Homotopy Continuation
Gradually decreasing \,, to produce the solution path {(dn, Ty )\n)} By
ensuring that @ remains sparse along the solution path.

Better Initialization: from the Data
Small pieces of y are superpositions of a few shifted copies of ag. One
could select a small window of ¢ and then normalizes it to initialize a.
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The Blind Short-and-Sparse Deconvolution

An Example of Scanning Tunneling Microscopy

Short and Sparse Deconvolution on Real NaFeAs Data'l

This dataset y consists of measurements across a 100 x 100nm? area at
FE = 41 different bias voltages.

15mV

60 mV

150

-150

200

100

200

NaFeAs @ T=26K Real FT of Observation

Recovered

Activation Map X

Recovered Kernel A

Real FT of A

=

-2

! Dictionary learning in Fourier-transform scanning tunneling spectroscopy, Sky
Cheung et. al., Nature Communications, 2020.
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Assignments

® Reading: Section 7.3.3 and Chapter 12.
® Written Homework #4.
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