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“Premature optimization is the root of all evil.”
– Donald Knuth, The Art of Computer Programming
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Objectives of Nonconvex Optimization

Nonconvex Optimization

Consider the problem of
minimizing a general nonlinear function:

min
x

f(x), x ∈ C. (1)

In the worst case, even finding
a local minimizer can be NP-hard1.

Nonconvex problems that
arise from natural physical, geometrical,
or statistical origins typically have
nice structures, in terms of symmetries!

1Some NP-complete problems in quadratic and nonlinear programming, K.G Murty
and S. N. Kabadi, 1987
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Objectives of Nonconvex Optimization

Objectives
Hence typically people seek to work with relatively benign
(gradient/Hessian Lipschitz continuous) functions:

∀x,y ∥∇f(y)−∇f(x)∥2 ≤ L1∥y − x∥2 (2)

with benign objectives:

1 convergence to some critical point x⋆ such that: ∇f(x⋆) = 0;
2 the critical point x⋆ is second-order stationary: ∇2f(x⋆) ⪰ 0.

Example: in general f could have irregular second-order stationary points:
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Objectives of Nonconvex Optimization

Objectives

Hence typically people seek to work with relatively benign
(gradient/Hessian Lipschitz continuous) functions with benign objectives:

1 convergence to some critical point x⋆ such that: ∇f(x⋆) = 0;

2 the critical point x⋆ is second-order stationary: ∇2f(x⋆) ⪰ 0.

Example: a function φ with symmetry only has regular critical points:
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Gradient Descent and Newton’s Method

Gradient Descent (GD)
Function class:
∇f Lipschitz continuous with constant L1.

First-order oracle:
the gradient ∇f(x) of the function f(x).

The gradient descent iteration:

xk = xk−1 − γk∇f(xk−1). (3)

xk := argmin
x

{
f(xk−1) + ⟨∇f(xk−1),x− xk−1⟩+

L1

2
∥x− xk−1∥22

}
.

Proposition (Convergence Rate of GD for Nonconvex Functions)

The gradient descent scheme with the step size γk = 1/L1 converges to a
critical point x⋆. Furthermore, for the gradient norm at the best iterate
min0≤i≤k−1 ∥∇f(xi)∥2 ≤ ϵg, the number of iterations k = O(ϵ−2

g ).
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Gradient Descent and Newton’s Method

Newton’s Method (strong convex)

Function class: f strongly convex and ∇2f Lipschitz continuous with L2.

The second-order oracle: the gradient ∇f(x) and the Hessian ∇2f(x).

The Newton iteration:

xk+1 = xk −
[
∇2f(xk)

]−1∇f(xk). (4)

Proposition (Convergence Rate of Newton’s Method)

Let f(x) be strongly convex, with λmin(∇2f(x)) ≥ λ > 0 for all x, and
assume that ∇2f is Lipschitz continuous with constant L2, and let x⋆ be
the (unique) minimizer of f over Rn. Assuming ∥x0 − x⋆∥2 < 2λ

L2
, the

iterates xk converge to x⋆, with quadratic rate.

Unfortunately, for high-dim problems, impossible to compute ∇2f .
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Gradient Descent and Newton’s Method

Cubic Regularized Newton’s Method (nonconvex)
Function class: f nonconvex and ∇f/∇2f Lips. continuous with L1/L2.

The second-order oracle: the gradient ∇f(x) and the Hessian ∇2f(x).
Consider the local cubic surrogate:

f̂(y,x)
.
= f(x)+⟨∇f(x),y−x⟩+ 1

2 (y−x)∗∇2f(x)(y−x)+ L2

6 ∥y−x∥32 . (5)

The cubic Newton iteration:

xk+1 = argmin
y

f̂(y,xk). (6)

Theorem (Convergence Rate of Cubic Newton’s Method)

Suppose f(x) is bounded from below. Then the sequence {xk} generated
by the cubic regularized Newton step (6) converges to a non-empty set of
limit points X⋆ of SOS points. For ∥∇f(xk)∥2 ≤ ϵg, the number of

iterations k = O(ϵ
−3/2
g ).

Unfortunately, for high-dim problems, impossible to compute ∇2f .
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First Order Methods for Nonconvex Problems

Gradient and Negative Curvature Descent

An Intuitive Example: potential energy surface in Chemistry.
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First Order Methods for Nonconvex Problems Gradient and Negative Curvature Descent (Inexact)

Gradient and Negative Curvature Descent

Function class: f nonconvex and ∇f/∇2f Lips. continuous with L1/L2.

The oracle: gradient ∇f(x) and a negative eigenvector e of ∇2f(x).

Hybrid gradient and negative curvature descent:

• if ∥∇f(xk)∥2 ≥ ϵg = (2L1ϵ)
1/2, then xk+1 = xk − 1

L1
∇f(xk);

• else if −λk(∇2f(x)) ≥ ϵH =
(
1.5L2

2ϵ
)1/3

, then xk+1 = xk +
2λk
L2

ek.

Theorem (Convergence of Gradient and Negative Curvature Descent)

The above hybrid gradient and negative curvature descent scheme
converges to a second-order stationary point x⋆ with the desired precision
in function value ϵ in no more than k = (f(x0)− f(x⋆))/ϵ iterations. Or
in terms of ∥∇f(xk)∥2 ≤ ϵg, k = O(ϵ−2

g ).

The same convergence rate as GD, but converges to an SOS point!
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First Order Methods for Nonconvex Problems Gradient and Negative Curvature Descent (Inexact)

Compute Negative Curvature: the Power Iteration

Want to compute negative curvature direction e
without Hessian H

.
= ∇2f(x):

He = λmin(H)e or Ae = λmax(A)e,

with A
.
= I − L−1

1 H ≻ 0.

Power iteration:

λ̂k+1 =
⟨Ax,x⟩
⟨x,x⟩

, x = Akb,

where Aib can be approximated for a small t > 0 with:

Ab =
[
I − L−1

1 H
]
b ≈ b− (tL1)

−1
(
∇f(x+ tb)−∇f(x)

)
.

Two gradient evaluations per iteration.
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First Order Methods for Nonconvex Problems Gradient and Negative Curvature Descent (Inexact)

Compute Negative Curvature: the Lanczos Method
The Krylov information:

K
.
=

[
b,Ab,A2b, . . . ,Akb

]
.

The Lanczos method:

λ̂k+1 = max
x

⟨Ax,x⟩
⟨x,x⟩

, x ∈ span(K).

Proposition (Convergence Rate of Lanczos)

Use the Lanczos procedure to find the largest eigenvalue of I − L−1
1 H

starting from a random unit vector. Then, for any ϵλ > 0 and δ ∈ (0, 1),
with a probability at least 1− δ the procedure outputs a unit vector e′

such that (e′)∗He′ ≤ λmin(H) + ϵλ in at most number of iterations:

min
{
n, log(n/δ

2)

2
√
2

√
L1
ϵλ

}
.

In terms of the first-order oracle, complexity of the inexact gradient
and negative curvature descent is k ≤ O(ϵ−2

g ).
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First Order Methods for Nonconvex Problems Negative Curvature and Newton Descent (Inexact)

Negative Curvature and Newton Descent

Consider a nonconvex program:

min
x

f(x).

Quadratic regularized Newton:

sk = argmin
s

f(xk) + ⟨∇f(xk), s⟩+
1

2
s∗∇2f(xk)s+

λ

2
∥s∥22 (7)

= −[∇2f(xk) + λI]−1∇f(xk). (8)

The Levenberg-Marquardt iteration:

xk+1 = xk −
[
∇2f(xk) + λI

]−1∇f(xk). (9)

LM is very popular for solving nonlinear least squares problems.
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First Order Methods for Nonconvex Problems Negative Curvature and Newton Descent (Inexact)

Negative Curvature and Newton Descent
Function class: f nonconvex and ∇f/∇2f Lips. continuous with L1/L2.

The oracle: gradient ∇f(x) and ∇2f(x) (to be approximated).

Hybrid curvature and Newton descent (why flip order?):

• if −λk(∇2f(x)) ≥ ϵH =
(
3L2

2ϵ
)1/3

, then xk+1 = xk +
2λk
L2

ek;

• else if ∥∇f(xk)∥2 ≥ ϵg = 38/3L
1/3
2 ϵ2/3/2, then xk+1 = xk + γksk.

Theorem

Assume {xk} are generated by the hybrid negative curvature and Newton
descent. Then in at most

k ≤ f(x0)− f(x⋆)

ϵ
(10)

iterations, xk will be an an approximate second-order stationary point such
that ∥∇f(xk)∥2 ≤ ϵg, λmin(∇2f(xk)) ≥ −ϵH .
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First Order Methods for Nonconvex Problems Negative Curvature and Newton Descent (Inexact)

Conjugate Gradient Descent

Need to compute ek and sk without knowing ∇2f(x). Notice that, similar
to ek, to find sk we need solve: [∇2f(xk) + λI]︸ ︷︷ ︸

A

sk = −∇f(xk)︸ ︷︷ ︸
y

.

A special case of the quadratic minimization problem: minx ∥y −Ax∥22.

Conjugate gradient descent:2 Initialize the residual ri and descent
direction di as: d0 = r0 = y −Ax0. Then for i = 0, 1, 2, . . .:

Conjugate Gradient:



αi =
r∗
i ri

d∗
iAdi

,

xi+1 = xi + αidi,
ri+1 = ri − αiAdi,

βi+1 =
r∗
i+1ri+1

r∗
i ri

,

di+1 = ri+1 + βi+1di.

2An introduction to the conjugate gradient method without the agonizing pain,
Jonathan Shewchuk, Technical report, Carnegie Mellon University, 1994.
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First Order Methods for Nonconvex Problems Negative Curvature and Newton Descent (Inexact)

Negative Curvature and Newton Descent: Complexity

Theorem (Complexity of Approximate Conjugate Gradient)

To solve As = y with ϵHI ⪯ A ⪯ (L1 + 2ϵH)I, the conjugate gradient
method computes an s′ that satisfies∥∥(∇2f(xk) + 2ϵH)sk +∇f(xk)

∥∥
2
≤ 1

2
ϵH∥sk∥2

in at most O
(
ϵ
−1/2
H log( 1

ϵH
)
)
iterations.

With the first-order oracle, complexity of the inexact negative curvature

and newton descent achieves the best known rate: k ≤ O(ϵ
−7/4
g ).
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First Order Methods for Nonconvex Problems Gradient Descent with Small Random Noise

Gradient Descent with Small Random Noise
Function class: f nonconvex and ∇f/∇2f Lips. continuous with L1/L2.

The oracle: gradient ∇f(x) and small random noise.

The Langevin dynamics with noisy gradient flow:

ẋ(t) = −1

2
∇f(x(t)) +

√
λn(t), (11)

Probability density of x converges to the Gibbs measure:

pλ(x) = Cλ exp
(
− 1

λ
f(x)

)
. (12)

Lemma (Laplace’s Method: Scalar Case)

Suppose f(x) is a twice continuously differentiable function with a unique
maximizer x0 and f ′′(x0) < 0. Then we have

lim
λ→0

∫
e

1
λ
f(x)dx = e

1
λ
f(x0)

√
2πλ

−f ′′(x0)
∝

∫
e

1
λ
f(x)δ(x− x0)dx. (13)
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First Order Methods for Nonconvex Problems Gradient Descent with Small Random Noise

The Laplace Method

Theorem (Laplace Method: Multivariate and Multiple Global Minimizers)

Let f(x) be a function with at least quadratic growth as x → ∞.
Suppose f(x) has multiple global non-degenerate minimizers at
x1
⋆, . . . ,x

N
⋆ and they are all non-degenerate. Then in the limit λ ↓ 0, the

density pλ(x) converges to

p0(x) =

∑N
i=1 aiδ(x− xi

⋆)∑N
i=1 ai

, with ai = det[H(xi
⋆)]

−1/2, (14)

where H(x) = ∇2f(x) is the Hessian of the function f(x).

When all global minimizers make a continuous
submanifold M, pλ(x) converges to a density
on M given by:

p0(x) =
det[H(x)]−1/2∫

M det[H(y)]−1/2dy
, x ∈ M.
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First Order Methods for Nonconvex Problems Gradient Descent with Small Random Noise

Noisy Gradient with Langevin Monte Carlo

Function class: ∇f Lipschitz continuous with constant L1.

First-order oracle: the gradient ∇f(x) and small noise n.

Langevin Monte Carlo:

xk+1 = xk −
1

L1
∇f(xk) +

√
2λ/L1nk. (15)

Proposition (Noisy Gradient Descent)

Considering the above noisy gradient descent scheme (15), if
∥∇f(xk)∥2 ≥ (2L1ϵ)

1/2, then we have

E[f(xk+1) | xk] ≤ f(xk)− ϵ+ λ. (16)

Descent when ∥∇f(xk)∥2 > (2L1λ)
1/2; explore stability otherwise.
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First Order Methods for Nonconvex Problems Gradient Descent with Small Random Noise

Effect of Noisy Gradient around a Saddle Point

Consider a standard quadratic function:
f(x) = 1

2x
∗Hx for a constant H ∈ Rn×n,

with the smallest eigenvalue λmin < 0,
and the Lipschitz constant L1 = maxi |λi(H)|.

The Langevin dynamics becomes:

xk+1 = xk −
1

L1
∇f(xk) +

√
2λ/L1nk

= (I − L−1
1 H)︸ ︷︷ ︸

A

xk +
√

2λ/L1︸ ︷︷ ︸
b

nk. (17)

Since λmax(A) = 1− λmin(H)/L1 > 1, this is an unstable linear
dynamic system with random noise as the input:

xk+1 = Axk + bnk. (18)
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First Order Methods for Nonconvex Problems Gradient Descent with Small Random Noise

Escaping Saddle Point
Therefore, the accumulated dynamics:

xk+1 = Ak+1x0 + b

k∑
i=0

Ak−ini. (19)

Ak+1x0 and Ak−ini are powers of the matrix A
applied to random vectors (assuming x0 random too).

Question: which direction survives in power iteration?

Proposition (Escaping Saddle Point via Noisy Gradient Descent)

Consider the noisy gradient descent via the Langevin dynamics (17) for
the function f(x) = 1

2x
∗Hx, starting from x0 ∼ N (0, σ2I). Then after

k ≥ logn−log(|λmin|/L1)
2 log(1+|λmin|/L1)

steps, we have

E[f(xk+1)− f(x0)] ≤ −λ. (20)
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First Order Methods for Nonconvex Problems Hybrid Noisy (Perturbed) Gradient Descent

Hybrid Noisy Gradient Descent

Function class: f nonconvex and ∇f/∇2f Lips. continuous with L1/L2.

The oracle: gradient ∇f(x) and small noise n.

Hybrid noisy gradient descent:

• if ∥∇f(xk)∥2 ≥ ϵg, then xk+1 = xk − 1
L1

∇f(xk);

• else x0
k = xk, and negative curvature descent with noisy gradients:

for i = 0, 1, 2, . . . , kmax = O(log n)

xi+1
k = xi

k −
1

L1
∇f(xi

k) +
√

2ϵ/L1n
i,

where ni ∼ N (0, I).

Complexity: To guarantee ∥∇f(x)∥ ≤ ϵg, the number of total gradient
evaluations needed is O(ϵ−2

g ), up to a log(n) factor.3

3Perturbed accelerated gradient descent reduces to O(ϵ
−7/4
g ).

Ma (EECS Department, UC Berkeley) EECS208, Fall 2021 October 28, 2021 22 / 24



First Order Methods for Nonconvex Problems Hybrid Noisy (Perturbed) Gradient Descent

Summary

Table: Oracles and complexities (up to log factors) of different optimization
methods. Complexity is measured in terms of the number of oracles accessed
before attaining a prescribed accuracy ∥∇f(x⋆)∥ ≤ ϵg.

Methods Oracles Stat. Points Complexity

Vanilla gradient descent first-order first-order O(ϵ−2
g )

Cubic Regularized Newton second-order second-order O(ϵ−1.5
g )

Gradient/negative curvature first-order second-order O(ϵ−2
g )

Negative curvature/Newton first-order second-order O(ϵ−1.75
g )

Hybrid noisy gradient first-order second-order O(ϵ−2
g )

Perturbed accelerated gradient first-order second-order O(ϵ−1.75
g )

The (probably only) two fundamental ideas for first-order optimization:
Gradient Descent and Acceleration.

Power Iteration for Inexact Newton Descent.
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First Order Methods for Nonconvex Problems Hybrid Noisy (Perturbed) Gradient Descent

Assignments

• Reading: Section 9.1 - 9.5 of Chapter 9.

• Programming Homework #3.
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