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Complete Dictionary Learning

Assumes data Y is generated by an orthogonal complete dictionary Do and
sparse coefficients Xo:

Y = DoXo,

where Xo follows a Bernoulli Gaussian model:

Xo = Ω ◦G1, Ωi,j ∼iid Ber(θ), Gi,j ∼iid N (0, 1).

Reduced to find the sparsest direction in a subspace:

1 Do is complete =⇒ row(Y ) = row(Xo)

2 Rows of Xo form a sparse basis of row(Y ).

3 Find x1, the sparsest vector in the subspace row(Y ).

4 Find xi, the sparsest vector in row(Y )\{x1, , . . . ,xi−1}.
5 Recover Do by: Do = Y X∗

o(XoX
∗
o)

−1.

1◦ denote element-wise product: ∀A,B ∈ Rn×m, {A ◦B}i,j = ai,jbi,j
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Complete Dictionary Learning – Prior Arts

R
p

sparsest?

Finding the sparsest vector in row(Y ) can be
näıvely formulated as

min
q
∥q∗Y ∥0 , s. t. q ̸= 0.

Or minimize the ℓ1 norm on a sphere [SQW17,
BJS18]:

min
q
∥q∗Y ∥1 , s. t. ∥q∥2 = 1.

Or maximize the ℓ4 norm:

max
q
∥q∗Y ∥44 , s. t. ∥q∥2 = 1.

Solving the same optimization n times (high computation cost)!
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Intuition for ℓ4 Norm Maximization

Figure: ℓ1-,ℓ2-, and ℓ4-spheres in R2

Minimizing ℓ1 norm or maximizing ℓ4

norm both promote sparsity or spiki-
ness:

argmin
q∈Sn

∥q∥1 ⇔ argmin
q∈Sn

∥q∥0 .

argmax
q∈Sn

∥q∥4 ⇔ argmin
q∈Sn

∥q∥0 .

Solving the same optimization n times (high computation cost)!
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Intuition for ℓ4 Norm Maximization [ZYL+19]

Consider finding the whole dictionary by the following nonconvex program:

max
A∈O(n;R)

f(A) = ∥AY ∥44 , (1)

which is equivalent to

max
A∈O(n;R)

∥X∥44 , s. t. Y = A∗X, (2)

where maximizing ℓ4 norm with spherical constraints is promoting “spiki-
ness” [ZKW18].
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Related Works of ℓ4 Norm

• Spherical Harmonic Analysis [SW81, Lu87].

• Independent Component Analysis (ICA) [HO97, HO00]

• Sum of Square (SoS) [BKS15, MSS16, SS17]

• Blind Deconvolution [ZKW18, LB18]
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Main Results I

Relation to a Deterministic Objective
∀θ ∈ (0, 1), let Xo ∈ Rn×p, xi,j ∼iid BG(θ), Do ∈ O(n;R) is any orthog-
onal matrix, and Y = DoXo. Then ∀A ∈ O(n;R), the expectation of
∥AY ∥44 is determined by function over O(n;R):

1

3pθ
EXo ∥AY ∥44 = (1− θ) ∥ADo∥44 + θn. (3)

Global Maxima of the Deterministic Objective

W ⋆ ∈ argmax
W∈O(n;R)

∥W ∥44 ⇐⇒ W ⋆ ∈ SP(n) (4)

Global maxima of ∥ADo∥44 are the correct dictionaries
(up to signed permutation)!
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Main Results II

Correctness of Global Optimal
∀θ ∈ (0, 1), let Xo ∈ Rn×p, xi,j ∼iid BG(θ), Do ∈ O(n;R) is any or-

thogonal matrix, and Y = DoXo. Suppose Â⋆ is a global maximizer of
optimization:

max
A
∥AY ∥44 , s. t. A ∈ O(n;R), (5)

then for any ε ∈ [0, 1], there exists a signed permutation matrix P ∈ SP(n),

such that 1
n

∥∥∥Â∗
⋆ −DoP

∥∥∥2
F
≤ Cε, with probability at least 1 − 1

p , when

p = Ω(θn2 lnn/ε2), for a constant C > 4
3θ(1−θ) .

With nearly minimal # samples, w.h.p., global maxima of ∥AY ∥44
are arbitrarily close to the correct dictionary!
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⋆ −DoP

∥∥∥2
F
≤ Cε, with probability at least 1 − 1

p , when

p = Ω(θn2 lnn/ε2), for a constant C > 4
3θ(1−θ) .

With nearly minimal # samples, w.h.p., global maxima of ∥AY ∥44
are arbitrarily close to the correct dictionary!

Ma (EECS Department, UC Berkeley) EECS208, Fall 2021 October 26, 2021 9 / 46



Optimization Algorithm

The program:

max
A

f(A)
.
= ∥AY ∥44 , s. t. A ∈ O(n;R)

seems to be the worst case for optimization:

• concave objective;

• geometric constraints;

• very high dimensional.

Try projected (Riemannian) gradient descent anyway:

At+1 = PO(n)[At + α∇f(At)] = PO(n)[At + α 4(AtY )◦3Y ∗︸ ︷︷ ︸
∂At

].

A happy accident: observed that this converges faster as α→∞!

(Why? something to do with power iteration... later...)
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The MSP Algorithm I

We propose a novel algorithm, with Matching, Stretching (or Sparsifying)
and Projection (MSP) to maximize ∥AY ∥44:

Algorithm 1 MSP Algorithm on ℓ4 Dictionary Learning

1: Initialize A0 ∈ O(n,R) ▷ Initialize A0 for iteration
2: for t = 0, 1, ...
3: ∂At = 4(AtY )◦3Y ∗ ▷ Matching and Stretching2

4: UΣV ∗ = svd(∂At)
5: At+1 = UV ∗ ▷ Project A onto orthogonal group
6: end for
7: Output At+1, ∥At+1Y ∥44 /3npθ, ∥At+1Do∥44 /n

2∇A ∥AY ∥44 = 4(AY )◦3Y ∗
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A Few Interpretations

NOT Gradient Descent!

“Fixed point” interpretation:

At+1 = PO(n)[∂At] = PO(n)[(AtY )◦3Y ∗].

“Deep learning” interpretation: δAt+1 = At+1A
∗
t and Zt = AtY ,

δAt+1 = PO(n)[(Zt)
◦3Z∗

t ], X ← δAt+1δAt . . . δA1︸ ︷︷ ︸
forward constructed layers!

Y .

“Stochastic batch” variation:

δAt+1 = PO(n)[(Z̃t)
◦3Z̃

∗
t ], Z̃t ⊆ Zt.
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The MSP Algorithm II

Since ∥ADo∥44 has a linear relation with 1
npEXo ∥AY ∥44, a similar algorithm

also can be applied to maximize ∥ADo∥44:

Algorithm 2 MSP Algorithm on ℓ4 over Orthogonal Group

1: Initialize A0 ∈ O(n,R) ▷ Initialize A0 for iteration
2: for t = 0, 1, ...
3: ∂At = 4(AtDo)

◦3D∗
o ▷ Matching and Stretching

4: UΣV ∗ = svd(∂At)
5: At+1 = UV ∗ ▷ Project A onto orthogonal group
6: end for
7: Output At+1, ∥At+1Do∥44 /n
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One Run of the MSP Algorithm

Figure: One run of the MSP algorithm for maximizing ∥ADo∥44 over orthogonal
group O(3) with Do = I.

Ma (EECS Department, UC Berkeley) EECS208, Fall 2021 October 26, 2021 14 / 46



Convergence Guarantee of the MSP Algorithm

Theorem (Local Convergence of the MSP Algorithm)

Given an orthogonal matrix A ∈ O(n;R), let A′ denote the output of
the MSP Algorithm 2 after one iteration: A′ = UV ∗, where UΣV ∗ =
SVD(A◦3). If ∥A− I∥2F = ε, for ε < 0.579, then we have ∥A′ − I∥2F <

∥A− I∥2F and ∥A′ − I∥2F < O(ε3).

Figure: Cubic Function from ℓ4. Figure: Thresholding from ℓ1.
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Convergence Guarantee of the MSP Algorithm

Theorem (Local Convergence of the MSP Algorithm)

Given an orthogonal matrix A ∈ O(n;R), let A′ denote the output of
the MSP Algorithm 2 after one iteration: A′ = UV ∗, where UΣV ∗ =
SVD(A◦3). If ∥A− I∥2F = ε, for ε < 0.579, then we have ∥A′ − I∥2F <

∥A− I∥2F and ∥A′ − I∥2F < O(ε3).

Generalization to all Signed Permutation Matrices

The Identity can be generalized to any signed permutation matrix!

Ma (EECS Department, UC Berkeley) EECS208, Fall 2021 October 26, 2021 16 / 46



MSP algorithm in Maximizing ∥AY ∥44

Figure: The value of 1
3npθ ∥AY ∥44 and

1
n ∥ADo∥44 in two experiments with different

settings: left: n = 50, p = 20000, θ = 0.3, right: n = 100, p = 40000, θ =
0.3. The MSP algorithm converges quickly and smoothly with dozens of
iterations.
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MSP algorithm in Maximizing ∥AY ∥44

Figure: Initial value and final value of 1
3npθ ∥AY ∥44 and 1

n ∥ADo∥44 for dictionary
learning, with n = 100, p = 40000, θ = 0.3, left: with initial values; right: without
initial values. All 100 trials converge to the global optima within statistical
errors.
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Phase Transition of the MSP algorithm

Figure: Phase transition plot of average normalized error
∣∣∣1− ∥ADo∥44 /n

∣∣∣ for 10
trials of MSP algorithm 1 with n = 50. Red area indicates large error and blue area
small error. Plot shows results for varying p versus θ. The algorithm successes
even when θ is up to 0.6!
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Phase Transition of the MSP algorithm

Figure: Phase transition plot of average normalized error
∣∣∣1− ∥ADo∥44 /n

∣∣∣ for 10
trials of MSP algorithm 1 with θ = 0.5. Red area indicates large error and blue
area small error, left: n from 10 to 100 and p from 103 to 104, right: changing
n from 100 to 103 and p from 104 to 105. The number of samples p
needed is quadratic in n.
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Optimal Choice of ℓ2k Norm

Figure: Experiments with different ℓ2k norm. Left: Maximizing ∥A∥2k2k for different

order k. Right: Average normalized error of
∣∣∣1− ∥ADo∥2k2k /n

∣∣∣ for maximizing

∥AY ∥2k2k for 20 trials, with n = 10, varying k and p. ℓ4 strikes a good
balance between convergence and concentration.
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Comparison with the State of the Art

KSVD Subgradient MSP (Ours)

Trials Error Time Error Time Error Time

(a) 12.35% 51.2s 0.27% 35.6s 0.34% 0.4s

(b) 8.63% 244.4s 0.28% 354.9s 0.34% 1.5s

(c) 6.15% 684.9s 1.28% 6924.6s 0.35% 7.6s

(d) 8.61% 1042.3s N/A > 12h 0.35% 48.0s

(e) 13.07% 5401.9s N/A > 12h 0.35% 374.2s

Table: Comparison experiments with KSVD [AEB+06] and Subgradient method
[BJS18] in different trials of dictionary learning: (a) n = 25, p = 1× 104, θ = 0.3;
(b) n = 50, p = 2 × 104, θ = 0.3; (c) n = 100, p = 4 × 104, θ = 0.3; (d)
n = 200, p = 4× 104, θ = 0.3; (e) n = 400, p = 16× 104, θ = 0.3. Recovery error

is measured as
∣∣1 − ∥ADo∥44 /n

∣∣. All experiments are conducted on a 2.7 GHz
Intel Core i5 processor (CPU of a 13-inch Mac Pro 2015).
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MSP on the MNIST Dataset [LBB+98]

Figure: Bases learned from the MNIST dataset. Left: Some selected “meaningful” bases
learned through MSP; Right: Top bases learned through PCA.
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MSP on the MNIST Dataset [LBB+98]

Figure: Reconstruction result comparison between MSP and PCA using different number
of bases.
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MSP on the MNIST Dataset [LBB+98]

Figure: Reconstruction result comparison between MSP and PCA using different number
of bases.
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Generalization to Stiefel Manifold [ZMZM20]

Figure: ℓ1-,ℓ2-, and ℓ4-spheres in R2

Given data matrix Y ∈ Rn×p, recall
the ℓ4 dictionary learning

max
A∈O(n;R)

1

4
∥AY ∥44 , (6)

where the orthogonality constraint
A ∈ O(n;R) can be viewed as enforc-
ing orthogonality constraint of n unit
vectors.

Can we further reduce computa-
tion complexity if we are only in-
terested in the top k(1 ≤ k ≤ n)
bases?
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Generalization to Stiefel Manifold

Consider generalized Dictionary Learning from orthogonal group to Stiefel
manifold St(k, n;R):3

max
W

1

4
∥W ∗Y ∥44 s. t.W ∈ St(k, n;R) ⊂ Rn×k. (7)

The MSP Algorithm can also be generalized to finding the top k bases:

W t+1 = PSt(k,n;R) [∇Wϕ(W t)] = U tV
∗
t , (8)

where U tΣtV
∗
t = SVD[Y (Y ∗W t)

◦3].

3For any 1 ≤ k ≤ n, St(k, n;R)
.
= {W ∈ Rn×k : W ∗W = Ik}.
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Relation with Geometric Interpretation of PCA

For data matrix Y ∈ Rn×p:

• PCA aims at finding the top (k) left singular vector(s) of Y :

max
W

1

2
∥W ∗Y ∥2F s. t. W ∈ St(k, n;R)

can be considered as finding a direction (a k-dimensional subspace) in
row(Y ) where Y has the largest ℓ2 (Frobenius) norm.

• ℓ4-Norm maximization

max
W

1

4
∥W ∗Y ∥44 s. t. W ∈ St(k, n;R)

aims at finding a direction (a k-dimensional subspace) in row(Y ) where
the projection of Y has the largest ℓ4-norm.
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Relation with Statistical Interpretation of PCA

View each column yj , j ∈ [p] of data matrix Y as an n dimensional random
vector that are i.i.d. drawn from a distribution of random variable y. Let

Y c denote the centered Y :Y c
.
= Y

[
I − 1

p11
∗
]
. Then:

• maxW∈St(k,n;R)
1
2 ∥W

∗Y c∥2F finds the top k uncorrelated projections
of y with largest sample variance.

• maxW∈St(k,n;R)
1
4 ∥W

∗Y c∥44 finds the top k uncorrelated projections

of y with largest 4th order moments.

Ma (EECS Department, UC Berkeley) EECS208, Fall 2021 October 26, 2021 29 / 46



Relation with ICA and 4th Order Moment

In Independent Component Analysis (ICA) [HO97, HO00], finding maxi-
mizer or minimizer of kurtosis:

kurt(w∗y) = E[w∗y]4 − 3 ∥w∥42 (9)

can identify one independent component of y.

Importance of 4th Order Statistics

• The 4th order statistics carries more “abnormal” information regarding
nonnormality [Hub85, DeC97, CZY17]

• The distributions of real data (images) are usually not Gaussian
[LPM03, HHH09].
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Fixed-Point Style Algorithms

• PCA
• Optimization: max

w∈Sn−1
φ(w)

.
=

1

2
∥w∗Y ∥22

• Algorithm: wt+1 = PSn−1 [∇wφ(wt)] =
Y Y ∗wt

∥Y Y ∗wt∥2• ICA
• Optimization:

max
w∈Sn−1

ψ(w)
.
=

1

4
kurt[w∗y] =

1

4
E [w∗y]

4 − 3

4
∥w∥42

• Algorithm:

wt+1 = PSn−1 [∇wψ(wt)] =
E
[
y (y∗wt)

3
]
− 3 ∥wt∥22 wt∥∥∥E

[
y (y∗wt)

3
]
− 3 ∥wt∥22 wt

∥∥∥
2

• DL
• Optimization:

max
W∈St(k,n;R)

ϕ(W )
.
=

1

4
∥W ∗Y ∥44

• Algorithm:
W t+1 = PSt(k,n;R) [∇Wϕ(W t)] = U tV

∗
t ,

where U tΣtV
∗
t = SVD[Y (Y ∗W )◦3].
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Relations to PCA, ICA, and MSP

Objectives Constraint Sets Algorithms

Power Iter. φ(w)
.
= 1

2
∥w∗Y ∥22 w ∈ Sn−1 wt+1 = PSn−1 [∇wφ(wt)]

FastICA ψ(w)
.
= 1

4
kurt[w∗y] w ∈ Sn−1 wt+1 = PSn−1 [∇wψ(wt)]

MSP ϕ(W )
.
= 1

4
∥W ∗Y ∥44 W ∈ St(k, n;R) W t+1 = PSt(k,n;R) [∇Wϕ(W t)]

Table: Similarities among fixed-point algorithms for: PCA (Power iteration), ICA
(FastICA), and DL (MSP).
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Different Type of Imperfect Measurements I

Noisy Measurements: Y N := Y + G, G ∈ Rn×p is matrix with gi,j ∼iid

N (0, η2) and η > 0 the variance of the noise.

Proposition (Objective with Small Noise)

∀θ ∈ (0, 1), let Xo ∈ Rn×p, xi,j ∼iid BG(θ), Do ∈ O(n;R) is any orthogonal
matrix, and Y = DoXo. For any orthogonal matrix W ∈ O(n;R) and any
random Gaussian matrix G ∈ Rn×p, gi,j ∼iid N (0, η2) independent of Xo, let

Y N = Y +G denote the data with noise. Then the expectation of ∥W ∗Y N∥44 is:

1

np
EXo,G ∥W

∗Y N∥44 = 3θ(1− θ)
∥W ∗Do∥44

n
+ Cθ,η,

where Cθ,η is a constant depending on θ and η.
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Different Type of Imperfect Measurements II

Measurements with Outliers: Y O := [Y ,G′], where Y O contains extra columns
(G′ ∈ Rn×τp)4 that is generated from an independent Gaussian process g′i,j ∼iid

N (0, 1), and τ controls the portion of the outliers, w.r.t. the clean data size p.

Proposition (Objective with Outliers)

∀θ ∈ (0, 1), let Xo ∈ Rn×p, xi,j ∼iid BG(θ), Do ∈ O(n;R) is any orthogonal
matrix and Y = DoXo. For any orthogonal matrix W ∈ O(n;R) and any random
Gaussian matrix G′ ∈ Rn×τp, g′i,j ∼iid N (0, 1) independent of Xo, let Y O =

[Y ,G′] denote the data with outliers G′. Then the expectation of ∥W ∗Y O∥44 is:

1

np
EXo,G′ ∥W ∗Y O∥44 = 3θ(1− θ)

∥W ∗Do∥44
n

+ Cθ,

where Cθ is a constant depending on θ.

4When τp is not an integer, τp is rounded to the closest integer.
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N (0, 1), and τ controls the portion of the outliers, w.r.t. the clean data size p.

Proposition (Objective with Outliers)

∀θ ∈ (0, 1), let Xo ∈ Rn×p, xi,j ∼iid BG(θ), Do ∈ O(n;R) is any orthogonal
matrix and Y = DoXo. For any orthogonal matrix W ∈ O(n;R) and any random
Gaussian matrix G′ ∈ Rn×τp, g′i,j ∼iid N (0, 1) independent of Xo, let Y O =

[Y ,G′] denote the data with outliers G′. Then the expectation of ∥W ∗Y O∥44 is:

1

np
EXo,G′ ∥W ∗Y O∥44 = 3θ(1− θ)

∥W ∗Do∥44
n

+ Cθ,

where Cθ is a constant depending on θ.

4When τp is not an integer, τp is rounded to the closest integer.
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Different Type of Imperfect Measurements III
Measurements with Sparse Corruptions: Y C := Y + σB ◦ S, where σ > 0
controls the scale of corrupting entries, B ∈ Rn×p is a Bernoulli matrix with
bi,j ∼iid Ber(β), where β ∈ (0, 1) controls the ratio of the sparse corruptions, and
entries si,j of S ∈ Rn×p are i.i.d. drawn from a Rademacher distribution:

si,j =

{
1 with probability 1/2

−1 with probability 1/2
.

Proposition (Objective with Sparse Corruptions)

∀θ ∈ (0, 1), let Xo ∈ Rn×p, xi,j ∼iid BG(θ), Do ∈ O(n;R) is any orthogonal
matrix and Y = DoXo. For any orthogonal matrix W ∈ O(n;R) and any
random Bernoulli matrix B ∈ Rn×p, bi,j ∼iid Ber(β) independent of Xo, let
Y C = Y + σB ◦ S denote the data with sparse corruptions, and S ∈ Rn×p is
defined as (35). Then the expectation of ∥W ∗Y C∥44 is:

1

np
EXo,B,S ∥W ∗Y C∥44 = 3θ(1− θ)

∥W ∗Do∥44
n

+ σ4β(1− 3β)
∥W ∥44
n

+ Cθ,σ,β ,

where Cθ,σ,β is a constant depending on θ, σ and β.
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Numerical Experiments I

Figure: n = 50, p =
20, 000, θ = 0.3, varying
η2 from 0.1 to 0.4

Figure: n = 50, p =
20, 000, θ = 0.3, varying
τ from 0.1 to 0.4

Figure: n = 50, p =
20, 000, θ = 0.3, σ = 1,
varying β from 0.1 to 0.4

Figure: Normalized ∥W ∗Do∥44 /n of the MSP algorithm for dictionary learning,
using imperfect measurements Y N ,Y O,Y C , respectively.
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Numerical Experiments II

Figure: Noise:
n = 50, θ = 0.3

Figure: Outliers:
n = 50, θ = 0.3

Figure: Corruptions:
n = 50, θ = 0.3

Figure: Average normalized error |1− ∥W ∗Do∥44 /n| of 10 random trials for the
MSP Algorithm: (a) Varying sample size p and variance of noise η2; (b) Varying
sample size p and Gaussian Outlier ratio τ ; (c) Varying sample size p and sparse
corruption ratio β, with fixed σ = 1.
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Real Image Data: MNIST

Figure: Top Bases learned from imperfect measurements of MNIST.
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Real Image Data: Single Image

Figure: The top 12 bases learned from all 16× 16 patches of Barbara, both with (right)
and without (left) Gaussian noise. The noisy image is produced by adding Gaussian noise
to the clean image, resulting in SNR of 5.87.

Figure: The top 12 bases learned from all 8× 8× 3 color patches of the clean and noisy
image, respectively. Here, the SNR of the noisy image is 6.56.
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Real Image Data: Single Image

(a)

(b)

(c)

Figure: Representations of three 16 × 16
patches from Barbara w/ and w/o noise.
Each selected patch is visualized, both w/
and w/o noise, and the top 6 corresponding
bases are shown.

(a)

(b)

(c)

Figure: Representations of three 8 × 8 ×
3 patches from duck w/ and w/o noise.
Each selected patch is visualized, both w/
and w/o noise, and the top 6 corresponding
bases are shown.
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Real Image Data: CIFAR-10

Figure: All 8×8×3 = 192 bases learned from 100, 000 random 8×8 colored patches sam-
pled from the CIFAR-10 data-set. (a) Learned Bases from clean CIFAR-10; (b) Learned
Bases from CIFAR-10 with Gaussian noise, SNR = 6.23; (c) Learned Bases from CIFAR-
10 with 20% of Gaussian outliers; (d) Learned Bases from CIFAR-10 with 50% of sparse
corruptions.
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Summary

[ZYL+19]:

• The MSP algorithm solves complete dictionary learning holistically.

• The sample complexity Ω(n2 lnn) corroborates with experiments.

• Special symmetries help nonconvex optimization.

[ZMZM20]:

• The MSP algorithm is a fixed-point type algorithm just like Power-iteration [Jol11]
and FastICA [HO97].

• The MSP algorithm is robust to stable to noise, robust to outliers and resilient to
sparse corruptions.
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Thanks! & Questions?
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