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“Since the fabric of the universe is most perfect and the work of
a most wise Creator, nothing at all takes place in the universe in which
some rule of maximum or minimum does not appear.”

– Leonhard Euler
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Constrained Optimization

Optimization Challenges for Structured Data Recovery

min
x∈Rn

F (x)
.
= f(x)︸︷︷︸

smooth convex

+ g(x).︸ ︷︷ ︸
nonsmooth convex

(1)

• Challenge of Scale: scale algorithms to when n is very large.

Second order methods =⇒ First order methods... (2)

• Nonsmoothness: first order methods are slow for nonsmooth.

O(1/
√
k) =⇒ O(1/k) =⇒ O(1/k2) =⇒ O(e−αk) (3)

• Equality Constraints: augmented Lagrange multiplier (ALM).

• Separable Structures: alternating direction of multipliers method
(ADMM).
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Augmented Lagrangian Multipliers

Linear Equality Constrained Optimization

Problem:
min
x

g(x) subject to Ax = y, (4)

where

• g : Rn → R is a (probably nonsmooth) convex function,

• A ∈ Rm×n and y ∈ range(A) (so that the problem is feasible).

A Natural Attempt: solve the unconstrained by penalizing the constraint:

x̂(µ) = arg min
x

g(x) + µ
2 ‖Ax− y‖

2
2 for a large µ. (5)

• Pros: As µ→ +∞, x̂(µ)→ x? (the “continuation method”).

• Cons: The rate of convergence depends on L = µ‖A‖22.
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Augmented Lagrangian Multipliers

Lagrange Multiplier Method
A More Principled Approach:

Definition (The Lagrange Duality)

The Lagrangian function of the constrained problem (4):

L(x,λ)
.
= g(x) + 〈λ,Ax− y〉, (6)

where λ ∈ Rm is a vector of Lagrange multipliers. This gives a dual
function:

d(λ)
.
= inf

x
g(x) + 〈λ,Ax− y〉. (7)

Fact (credited to Lagrange): ∃λ? such that the optimal solution (x?,λ?)
is a saddle point of the Lagrangian:

sup
λ

inf
x
L(x,λ) = sup

λ
inf
x

g(x) + 〈λ,Ax− y〉 = sup
λ
d(λ). (8)
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Augmented Lagrangian Multipliers

Dual Ascent Algorithm for the Lagrangian

Fact: If
x′(λ) = arg min

x
g(x) + 〈λ,Ax− y〉,

then Ax′(λ)− y is a supergradient ∂d(λ) of the concave dual d(λ) at λ.

(Actually this is true for the dual function of general constraints h(x) = 0:
d(λ) = minx g(x) + λTh(x). Why? )

A Natural Attempt to find the saddle point (x?,λ?) is via dual ascent:

xk+1 = arg min
x
L(x,λk), (9)

λk+1 = λk + tk+1(Axk+1 − y). (10)

• For certain problem classes, this converges to the optimal (x?,λ?).

• However, unfortunately it fails for problems in our settings.
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Augmented Lagrangian Multipliers

An Example of Failure

Consider the basis pursuit problem:

min
x
‖x‖1 subject to Ax = y. (11)

One can show that

inf
x
‖x‖1 + 〈λ,Ax− y〉 =

{
−∞ ‖A∗λ‖∞ > 1,

−〈λ,y〉 ‖A∗λ‖∞ ≤ 1.
(12)

Whenever the dual ascent step (10) happens to produce a λ such that
‖A∗λ‖∞ > 1, the algorithm will break down.

The reason is g(x) here is not “strongly”
convex to dominate the linear term 〈λ,Ax〉.

Ma (EECS Department, UC Berkeley) EECS208, Fall 2021 October 14, 2021 7 / 24



Augmented Lagrangian Multipliers

Augmented Lagrange Multiplier

One way out: combining (5) and (4), consider the Augmented
Lagrangian [Hestenes’69, Powell’69]:

Lµ(x,λ)
.
= g(x) + 〈λ,Ax− y〉+

µ

2
‖Ax− y‖22 . (13)

Can be regarded as the Lagrangian for the penalized constrained problem

min
x
g(x) +

µ

2
‖Ax− y‖22︸ ︷︷ ︸

strongly convex

subject to Ax = y, (14)

which has the same optimal solution as the un-penalized problem.

Ma (EECS Department, UC Berkeley) EECS208, Fall 2021 October 14, 2021 8 / 24



Augmented Lagrangian Multipliers

Augmented Lagrange Multiplier

Apply dual ascent to Lµ(x,λ) with a particular step size tk+1 = µ,

xk+1 ∈ arg min
x
Lµ(x,λk), (15)

λk+1 = λk + µ (Axk+1 − y). (16)

Fact: xk+1 always minimizes the unaugmented Lagrangian L(x,λk+1) at
λ = λk+1, because:

0 ∈ ∂Lµ(xk+1,λk),

= ∂g(xk+1) +A∗λk + µA∗(Axk+1 − y),

= ∂g(xk+1) +A∗λk+1,

= ∂L(xk+1,λk+1).

λk+1 is always feasible, no bad behaviors!
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Augmented Lagrangian Multipliers

Augmented Lagrange Multiplier

Augmented Lagrange Multipler (ALM)

Problem Class: minx g(x) subject to Ax = y.
with g : Rn → R convex and coercive, y ∈ range(A).

Basic Iteration: set

Lµ(x,λ) = g(x) + 〈λ,Ax− y〉+ µ
2 ‖Ax− y‖

2
2 .

Repeat:
xk+1 ∈ arg min

x
Lµ(x,λk),

λk+1 = λk + µ (Axk+1 − y).

Convergence Guarantee:

{xk} converges to an optimal solution at a rate O(1/k).
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Augmented Lagrangian Multipliers

ALM for Basis Pursuit

Augmented Lagrange Multipler (ALM) for BP

1: Problem: minx ‖x‖1 subject to y = Ax,
given y ∈ Rm and A ∈ Rm×n. The augmented Lagrangian is:

Lµ(x,λ) = ‖x‖1 + 〈λ,Ax− y〉+ µ
2 ‖Ax− y‖

2
2 .

2: Input: x0 ∈ Rn, λ0 ∈ Rm, and β > 1.
3: for (k = 0, 1, 2, . . . ,K − 1) do
4: xk+1 ← arg minLµk(x,λk) using APG.
5: λk+1 ← λk + µk(Axk+1 − y).
6: µk+1 ← min{βµk, µmax}.
7: end for
8: Output: x? ← xK .
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Augmented Lagrangian Multipliers

ALM for Principal Component Pursuit

Augmented Lagrange Multipler (ALM) for PCP

1: Problem: minL,S ‖L‖∗ + λ‖S‖1 subject to L+ S = Y ,
given Y and λ > 0. The augmented Lagrangian:

Lµ(L,S,Λ) = ‖L‖∗ + λ ‖S‖1 + 〈Λ,L+S−Y 〉+
µ

2
‖L+S−Y ‖2F .

2: Input: L0,S0,Λ0 ∈ Rm×n and β > 1.
3: for (k = 0, 1, 2, . . . ,K − 1) do
4: {Lk+1,Sk+1} ← arg minLµk(L,S,Λk) (APG? how? later...)
5: Λk+1 ← Λk + µk(Lk+1 + Sk+1 − Y ).
6: µk+1 ← min{βµk, µmax}.
7: end for
8: Output: L? ← LK ,S? ← SK .
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Alternating Direction Method of Multipliers

Optimization with Separable Structures

Example: Principal Component Pursuit

min
L,S
‖L‖∗ + λ ‖S‖1 subject to L+ S = Y . (17)

A general two-term separable optimization program:

min
x,z

g(x) + h(z) subject to Ax+Bz = y, (18)

where g and h are convex functions, and y ∈ range([A | B]).

The Lagrangian L(x, z,λ) has clear separable structures:

L(x, z,λ) = g(x) + h(z) + 〈λ,Ax+Bz − y〉, (19)

= g(x) + 〈λ,Ax〉︸ ︷︷ ︸
x dependent

+h(z) + 〈λ,Bz〉︸ ︷︷ ︸
z dependent

+〈λ,−y〉. (20)

Ma (EECS Department, UC Berkeley) EECS208, Fall 2021 October 14, 2021 13 / 24



Alternating Direction Method of Multipliers

Optimization with Separable Structures

The augmented Lagrangian Lµ(x, z,λ) is:

Lµ(x, z,λ) = g(x) + h(z) + 〈λ,Ax+Bz − y〉+
µ

2
‖Ax+Bz − y‖22 .

The alternating directions method of multipliers (ADMM) conducts a
simple, alternating iteration:

zk+1 ∈ arg min
z
Lµ(xk, z,λk), (21)

xk+1 ∈ arg min
x
Lµ(x, zk+1,λk), (22)

λk+1 = λk + µ (Axk+1 +Bzk+1 − y) . (23)

This is also known as the Gauss-Seidel iteration.

ADMM converges at a rate of O(1/k). (proof no picnic1)

1On the Douglas-Rachford splitting method and the proximal point algorithm for
maximal monotone operators. J. Eckstein and D. Bertsekas, 1992.
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Alternating Direction Method of Multipliers

ADMM for Principal Component Pursuit

PCP: min
L,S
‖L‖∗ + λ ‖S‖1 subject to L+ S = Y . (24)

The augmented Lagrangian is

Lµ(L,S,Λ) = ‖L‖∗+λ ‖S‖1 + 〈Λ,L+S−Y 〉+ µ

2
‖L+S−Y ‖2F . (25)

Lk+1 = arg min
L
Lµ(L,Sk,Λk)

= arg min
L
‖L‖∗ +

µ

2

∥∥L+ Sk − Y + µ−1Λk

∥∥2

F
+ ϕ(Sk,Λk)

= proxµ−1‖·‖∗

[
Y − Sk − µ−1Λk

]
. (26)

Sk+1 = arg min
S
Lµ(Lk+1,S,Λk)

= arg min
S
λ ‖S‖1 +

µ

2

∥∥S +Lk+1 − Y + µ−1Λk

∥∥2

F
+ ϕ(Lk+1,Λk)

= proxλµ−1‖·‖1

[
Y −Lk+1 − µ−1Λk

]
. (27)
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Alternating Direction Method of Multipliers

ADMM Algorithm for PCP
1: Problem: minL,S Lµ(L,S,Λ), given Y , λ, µ > 0.
2: Input: L0,S0,Λ0 ∈ Rm×n.
3: for (k = 0, 1, 2, . . . ,K − 1) do
4: Lk+1 ← proxµ−1‖·‖∗

[
Y − Sk − µ−1Λk

]
.

5: Sk+1 ← proxλµ−1‖·‖1

[
Y −Lk+1 − µ−1Λk

]
.

6: Λk+1 ← Λk + µ(Lk+1 + Sk+1 − Y ).
7: end for
8: Output: L? ← LK ;S? ← SK .
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Alternating Direction Method of Multipliers

Multiple Separable Terms and Consensus Optimization
Machine Learning: Minimizing loss

∑
i L(yi,x) over samples y1, . . . ,yp.

We can partition the data to N batches, each on a machine:

min
x

N∑
j=1

fj(x) with fj(x) =
∑
i∈Ij

L(yi,x). (28)

Convert to a consensus problem with separable variables:

min
{xj}

N∑
j=1

fj(xj) subject to xj = z, j = 1, . . . , N. (29)

Augmented Lagrangian:

Lµ(x, z,λ) =

N∑
j=1

fj(xj) + 〈λj ,xj − z〉+
µ

2
‖xj − z‖22. (30)
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Alternating Direction Method of Multipliers

Multiple Separable Terms and Consensus Optimization

Apply ADMM to the augmented Lagrangian Lµ(x, z,λ):

xj,k+1 = arg min
xj

{
fj(xj) +

µ

2

∥∥xj−zk+
1

µ
λj,k

∥∥2

2

}
, (parallel) (31)

zk+1 =
1

N

N∑
j=1

(
xj,k+1 +

1

µ
λj,k

)
, (aggregate) (32)

λj,k+1 = λj,k + µ
(
xj,k+1 − zk+1

)
. (broadcast) (33)

ADMM for ALM is well suited for distributed implementation!

Note: there are many other variants to further improve efficiency and
scalability: accelerated, asynchronous, stochastic... but convergence
guarantee is not a picnic.
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More Scalable Algorithms

Frank-Wolfe Algorithm2

Optimizing a smooth, convex function over a compact convex set:

min
x
f(x), subject to x ∈ C (34)

which has a finite diameter:

diam(C)
.
= max{

∥∥x− x′∥∥
2
| x,x′ ∈ C}. (35)

Two examples:

• Sparse vector recovery:

min
x

1
2 ‖Ax− y‖

2
2 , subject to ‖x‖1 ≤ τ. (36)

• Low-rank matrix completion:

min
X

1
2 ‖PΩ[X]− Y ‖2F , subject to ‖X‖∗ ≤ τ. (37)

2“An algorithm for quadratic programming,” M. Frank and P. Wolfe, Naval Research
Logistics Quarterly, 1956.
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More Scalable Algorithms

Franke-Wolfe Algorithm
Find a point vk by solving a constrained optimization:

vk ∈ arg min
v∈C
〈v,∇f(xk)〉. (complexity?) (38)

We then set

xk+1 = xk + γk(vk − xk) = (1− γk)xk + γkvk ∈ C, (39)

where γk ∈ (0, 1) is a specially chosen step size.

Theorem (Convergence of Frank-Wolfe)

Let x0,x1, . . . denote the sequence of iterates generated by the
Frank-Wolfe method, with step size γk = 2

k+2 . Then

f(xk)− f(x?) ≤
2Ldiam2(C)

k + 2
. (40)
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More Scalable Algorithms

Frank-Wolfe for Matrix Completion

Fact: given a matrix G with SVD G = UΣV ∗ =
∑n1

i=1 uiσivi, we have

V? = −τu1v
∗
1 = arg min

V
〈V ,G〉 subject to ‖V ‖∗ ≤ τ. (41)

Frank-Wolfe for Matrix Completion:

1: Problem: given Y = PΩ[Xo +Z] ∈ Rn1×n2 and Ω ⊆ [n1]× [n2],

min
X

1
2 ‖PΩ[X]− Y ‖2F subject to ‖X‖∗ ≤ τ.

2: Input: X0 ∈ Rn1×n2 satisfying ‖X0‖∗ ≤ τ .
3: for (k = 0, 1, 2, . . . ,K − 1) do
4: (u1, σ1,v1)← LeadSV (PΩ [Xk − Y ]) (power iteration).
5: Vk ← −τu1v

∗
1.

6: Xk+1 ← k
k+2Xk + 2

k+2Vk.
7: end for
8: Output: X? ←XK .
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More Scalable Algorithms

Franke-Wolfe for Noisy Sparse Recovery
1: Problem: given y = Axo + z ∈ Rm, A ∈ Rm×n,

min
x

1
2 ‖Ax− y‖

2
2 subject to ‖x‖1 ≤ τ.

2: Input: x0 ∈ Rn satisfying ‖x0‖1 ≤ τ .
3: for (k = 0, 1, 2, . . . ,K − 1) do
4: rk ← Axk − y.
5: ik ← arg maxi |a∗i rk| (matching pursuit).
6: σ ← sign

(
a∗ikrk

)
.

7: vk ← −τσeik .
8: xk+1 ← k

k+2xk + 2
k+2vk.

9: end for
10: Output: x? ← xK .

Note: Many greedy variants of the Franke-Wolfe algorithm: Macthing
Pursuit (MP), Orthogonal Matching Pursuit (OMP), Compressed
Sampling Matching Pursuit (COSAMP), BLITZ, CELER etc.
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More Scalable Algorithms

Other Ideas for Better Scalability

Typical optimization problem: minx f(x) = 1
m

∑m
i=1 hi(x), x ∈ Rn.

Complexity = per iteration cost×# of iterations.

• Block Coordinate Descent reduces dependency on the dimension n:

O(n)→ O(n1/2).

• Stochastic Gradient Descent (with variance reduction) reduces
dependency on sample size m:

O(m)→ O(m1/2).

• Acceleration Schemes reduce the number of iterations k:

O(ε−2)→ O(ε−1/2).

Nonconvex programs are a different story... (later, Chapter 9).
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More Scalable Algorithms

Assignments

• Reading: Section 8.4 - 8.6 of Chapter 8.

• Programming Homework #3.
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