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“The whole is greater than the sum of the parts.”
– Aristotle, Metaphysics
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Variants of Principal Component Pursuit

PCP and its Variants

Given Y = Lo + So with Lo low-rank and So sparse, PCP solves:

minimize ‖L‖∗ + λ‖S‖1 subject to L+ S = Y . (1)

• λ can be adaptive to the density ρs of So, for the range 0 ≤ ρs < 1.

• Signs of So can be deterministic, with guaranteed success up to
density 1

2ρs.

• If Y = Lo +Oo with Oo column sparse, we solve instead:

min
L,S
‖L‖∗ + λ‖O‖2,1 subject to L+O = Y . (2)

with ‖O‖2,1 =
∑n2

i ‖Oi‖2. This is known as sparse outlier pursuit.1

1Robust PCA via outlier pursuit, Xu, Caramanis, and Sanghavi, IEEE Transactions
on Information Theory, 2012.
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Stable Principal Component Pursuit

Low-rank Matrix Recovery with Noise

Consider the measurement model with additive noise:

Y = Lo + So +Zo, (3)

where Zo is a small error term ‖Zo‖F ≤ ε for some ε > 0.

Naturally, we solve a relaxed version to PCP (1):

min
L,S
‖L‖∗ + λ‖S‖1 subject to ‖Y −L− S‖F ≤ ε. (4)

where we choose λ = 1/
√
n.

This combines classic PCA and robust PCA.
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Stable Principal Component Pursuit

Stability of PCP

Theorem (Stability of PCP to Bounded Noise)

Under the same assumptions of PCP, that is, Lo obeys the incoherence
conditions and the support of So is uniformly distributed of size m. Then
if Lo and So satisfy

rank(Lo) ≤
ρrn

ν log2 n
and m ≤ ρsn2, (5)

with ρr, ρs > 0 being sufficiently small numerical constants, with high
probability in the support of So, for any Zo with ‖Zo‖F ≤ ε, the solution
(L̂, Ŝ) to the convex program (4) satisfies

‖L̂−Lo‖2F + ‖Ŝ − So‖2F ≤ Cε2, (6)

where the constant C =
(
16
√
5n+

√
2
)2

(which is not tight).
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Stable Principal Component Pursuit

Other Variants

If the magnitude of the low-rank component Lo is bounded, one could
obtain better estimates by solving a Lasso-type program:

min
L,S
‖L‖∗ + λ ‖S‖1 +

µ
2 ‖L+ S − Y ‖2F subject to ‖L‖∞ < α. (7)

The same analysis also applies to the stable version of the outlier pursuit
program (2):

min
L,O
‖L‖∗ + λ ‖O‖2,1 +

µ
2 ‖L+O − Y ‖2F subject to ‖L‖∞ < α. (8)

Both programs recover stable estimates for L and S with an error less
than Cε2 where C does not depend on n.2

2Noisy matrix decomposition via convex relaxation: optimal rates in high dimensions,
Agarwal, Negahban, and Wainwright. The Annals of Statistics, 2012.
Ma (EECS Department, UC Berkeley) EECS208, Fall 2021 October 7, 2021 6 / 16



Compressive Principal Component Pursuit

Low-rank Matrix Recovery with Compressive
Measurements

We are given only compressive linear measurements
of a corrupted low-rank matrix:

Y
.
= PQ[Lo + So], (9)

where PQ is a projection operator onto a subspace:

Q ⊆ Rn1×n2 .

Consider the natural convex program

min ‖L‖∗ + λ‖S‖1 subject to PQ[L+ S] = Y , (10)

which is known as compressive principal component pursuit (CPCP).
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Compressive Principal Component Pursuit

Example: Transformed Low-rank Texture (Ch. 15)
An image of a low-rank texture from
an arbitrary view: I ◦ τ = L+E.
To find out the correct deformation τ , solve:

min
L,E,τ

‖L‖∗ + λ‖E‖1 subject to I ◦ τ = L+E.

But this is nonlinear/nonconvex! Linearizing w.r.t. the deformation:

I ◦ τ +∇I · dτ ≈ L+E,

Let Q be the left kernel of the Jacobian ∇I: PQ[∇I] = 0, so we have:

PQ[I ◦ τ ] = PQ[L+E]. (11)

Hence incrementally solve dτ via a convex program (CPCP):

min
L,E,dτ

‖L‖∗ + λ‖E‖1 subject to PQ[I ◦ τ ] = PQ[L+E]. (12)
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Compressive Principal Component Pursuit

Theoretical Guarantee for CPCP

Theorem (Compressive PCP)

Let Lo,So ∈ Rn1×n2 , with n1 ≥ n2, and suppose that Lo 6= 0 is a rank-r,
ν-incoherent matrix with r ≤ crn2

ν log2 n1
, and sign(So) is iid

Bernoulli-Rademacher with nonzero probability ρ < cρ. Let Q ⊂ Rn1×n2

be a random subspace of dimension

dim(Q) ≥ CQ · (ρn1n2 + n1r) · log2 n1 (13)

distributed according to the Haar measure, independent of sign(So). Then
with probability at least 1− Cn−91 in (sign(So),Q), the solution to

min ‖L‖∗ + λ ‖S‖1 s.t. PQ[L+ S] = PQ[Lo + So] (14)

with λ = 1/
√
n1 is unique, and equal to (Lo,So). Above, cr, cρ, CQ, C are

positive numerical constants.
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Matrix Completion with Corrupted Entries

Incomplete and Corrupted Low-rank Matrix

Imagine we only observe a fraction entries
of a corrupted matrix Y = Lo + So on a support
O ∼ Ber(ρo). Hence the measurement model is:

PO[Y ] = PO[Lo + So] = PO[Lo] + S′o.

A natural convex program to solve here is:

minimize ‖L‖∗ + λ‖S‖1
subject to PO[L+ S] = PO[Y ].

(15)

This combines matrix completion and robust PCA.
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Matrix Completion with Corrupted Entries

Theoretical Guarantee

Theorem (Matrix Completion with Corruptions)

Suppose Lo is n× n, obeys the incoherence conditions. Suppose

ρ0 > C0
νr log2 n

n and ρs ≤ Cs, and let λ = 1√
ρ0n logn

. Then the optimal

solution to the convex program (15) is exactly Lo and S′o with probability
at least 1− Cn−3 for some constant C, provided the constants C0 is large
enough and Cs is small enough.

• Robust PCA: If ρ0 = 1, the above condition 1 > C0
νr log2 n

n gives
r < C−10 nν−1(log n)−2 for small enough C−10 , the condition for
robust PCA.

• Matrix Completion: if ρs = 0, the above theorem guarantees perfect

recovery as long as ρ0 > C0
νr log2 n

n for large enough C0, the
condition for matrix completion.
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Matrix Completion with Corrupted Entries

Example: Photometric Stereo (Ch. 14)
Recovering 3D shape of an object from images under different lightings.
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Summary and Generalizations

Summary: Sparse & Low-Rank

Sparse v.s. Low-rank Sparse Vector Low-rank Matrix

Low-dimensionality of individual signal x a set of signals X

Low-dim measure `0 norm ‖x‖0 rank(X)

Convex surrogate `1 norm ‖x‖1 nuclear norm ‖X‖∗
Compressive sensing y = Ax Y = A(X)

Stable recovery y = Ax+ z Y = A(X) +Z

Error correction y = Ax+ e Y = A(X) +E

Recovery of mixed structures PQ[Y ] = PQ[Lo + So] +Z

“An idea which can be used once is a trick. If one can use
it more than once it becomes a method.”

– George Pólya and Gábor Szegö
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Summary and Generalizations

General Low-Dim Structures (Ch. 6)

Definition (Atomic Gauge)

The atomic gauge associated with a dictionary D is the function

‖x‖D
.
= inf

{
k∑
i=1

αi

∣∣∣∣∣ α1, . . . , αk ≥ 0, d1, . . . ,dk ∈ D s.t.
∑
i

αidi = x

}
.

To recover xo from y = A(xo), solve the convex minimization problem:

min
x
‖x‖D subject to A[x] = y. (16)

Let D denote the descent cone of the atomic norm ‖ · ‖D at xo. Then

• P[(16) recovers xo] ≤ C exp
(
−c (δ(D)−m)2

n

)
, m ≤ δ(D);

• P[(16) recovers xo] ≥ 1− C exp
(
−c (m−δ(D))2

n

)
, m ≥ δ(D).

Here δ(D) is the statistical dimension of D.
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Summary and Generalizations

Limitations of the Convex/Linear Framework

• Limitations of Convexification (Ch. 7): for example,

Y = A(X)

where X is simultaneously sparse and low-rank, the convex relaxation
λ1‖X‖1 + λ2‖X‖∗ is not optimal.

• Nonlinearity due to Domain Transformation (Ch. 15): for example,

Y = I

where I ◦ τ = L+ S for a low-rank L and sparse S.

• Nonlinearity due to Nonlinear Observation (Ch. 16):

Y = g(X)

for some nonlinear function g(·) and low-dim X.

We will deal with nonconvex and nonlinearity in later lectures.
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Summary and Generalizations

Assignments

• Reading: Section 5.4 - 5.6 of Chapter 5.

• Programming Homework #3.
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