Computational Principles for High-dim Data Analysis (Lecture Twelve)

Yi Ma

EECS Department, UC Berkeley

October 7, 2021

Ma (EECS Department, UC Berkeley)

EECS208, Fall 2021

Decomposing Low-Rank and Sparse Matrices (Principal Component Pursuit: Extensions)

- 1 Variants of Principal Component Pursuit
- 2 Stable Principal Component Pursuit
- 3 Compressive Principal Component Pursuit
- 4 Matrix Completion with Corrupted Entries
- **5** Summary and Generalizations

"The whole is greater than the sum of the parts." – Aristotle, Metaphysics

< □ > < 同 > < 三 > < 三 >

PCP and its Variants

Given $Y = L_o + S_o$ with L_o low-rank and S_o sparse, PCP solves:

minimize $\|L\|_* + \lambda \|S\|_1$ subject to L + S = Y. (1)

- λ can be adaptive to the density ρ_s of S_o , for the range $0 \le \rho_s < 1$.
- Signs of S_o can be deterministic, with guaranteed success up to density $\frac{1}{2}\rho_s$.
- If $Y = L_o + O_o$ with O_o column sparse, we solve instead:

$$\min_{\boldsymbol{L},\boldsymbol{S}} \|\boldsymbol{L}\|_* + \lambda \|\boldsymbol{O}\|_{2,1} \quad \text{subject to} \quad \boldsymbol{L} + \boldsymbol{O} = \boldsymbol{Y}. \tag{2}$$

with $\|\boldsymbol{O}\|_{2,1} = \sum_{i=1}^{n_2} \|\boldsymbol{O}_i\|_2$. This is known as sparse outlier pursuit.¹

¹Robust PCA via outlier pursuit, Xu, Caramanis, and Sanghavi, *IEEE Transactions* on Information Theory, 2012.

Ma (EECS Department, UC Berkeley)

EECS208, Fall 2021

Low-rank Matrix Recovery with Noise

Consider the measurement model with additive noise:

$$Y = L_o + S_o + Z_o, \tag{3}$$

where Z_o is a small error term $||Z_o||_F \leq \epsilon$ for some $\epsilon > 0$.

Naturally, we solve a relaxed version to PCP (1):

$$\min_{\boldsymbol{L},\boldsymbol{S}} \|\boldsymbol{L}\|_* + \lambda \|\boldsymbol{S}\|_1 \quad \text{subject to} \quad \|\boldsymbol{Y} - \boldsymbol{L} - \boldsymbol{S}\|_F \le \epsilon. \tag{4}$$

where we choose $\lambda = 1/\sqrt{n}$.

This combines classic PCA and robust PCA.

- 小田 ト イヨト イヨ

Stability of PCP

Theorem (Stability of PCP to Bounded Noise)

Under the same assumptions of PCP, that is, L_o obeys the incoherence conditions and the support of S_o is uniformly distributed of size m. Then if L_o and S_o satisfy

$$\operatorname{rank}(\boldsymbol{L}_o) \le \frac{\rho_r n}{\nu \log^2 n} \quad and \quad m \le \rho_s n^2,$$
 (5)

with $\rho_r, \rho_s > 0$ being sufficiently small numerical constants, with high probability in the support of S_o , for any Z_o with $||Z_o||_F \le \epsilon$, the solution (\hat{L}, \hat{S}) to the convex program (4) satisfies

$$\|\hat{\boldsymbol{L}} - \boldsymbol{L}_o\|_F^2 + \|\hat{\boldsymbol{S}} - \boldsymbol{S}_o\|_F^2 \le C\epsilon^2,$$
(6)

where the constant $C = (16\sqrt{5}n + \sqrt{2})^2$ (which is not tight).

イロト イボト イヨト イヨト

Other Variants

If the magnitude of the low-rank component L_o is bounded, one could obtain better estimates by solving a *Lasso-type* program:

$$\min_{\boldsymbol{L},\boldsymbol{S}} \left\| \boldsymbol{L} \right\|_* + \lambda \left\| \boldsymbol{S} \right\|_1 + \frac{\mu}{2} \left\| \boldsymbol{L} + \boldsymbol{S} - \boldsymbol{Y} \right\|_F^2 \quad \text{subject to} \quad \left\| \boldsymbol{L} \right\|_\infty < \alpha.$$
(7)

The same analysis also applies to the stable version of the *outlier pursuit* program (2):

$$\min_{\boldsymbol{L},\boldsymbol{O}} \|\boldsymbol{L}\|_* + \lambda \|\boldsymbol{O}\|_{2,1} + \frac{\mu}{2} \|\boldsymbol{L} + \boldsymbol{O} - \boldsymbol{Y}\|_F^2 \quad \text{subject to} \quad \|\boldsymbol{L}\|_{\infty} < \alpha.$$
(8)

Both programs recover stable estimates for L and S with an error less than $C\epsilon^2$ where C does not depend on $n.^2$

²Noisy matrix decomposition via convex relaxation: optimal rates in high dimensions, Agarwal, Negahban, and Wainwright. *The Annals of Statistics*, 2012. $\Xi \rightarrow 4\Xi \rightarrow 300$

Low-rank Matrix Recovery with Compressive Measurements

We are given only compressive linear measurements of a corrupted low-rank matrix:

$$\boldsymbol{Y} \doteq \mathcal{P}_{\mathsf{Q}}[\boldsymbol{L}_o + \boldsymbol{S}_o], \tag{9}$$

where \mathcal{P}_{Q} is a projection operator onto a subspace:

 $\mathsf{Q} \subseteq \mathbb{R}^{n_1 \times n_2}.$

Consider the natural convex program

 $\min \|\boldsymbol{L}\|_* + \lambda \|\boldsymbol{S}\|_1 \quad \text{subject to} \quad \mathcal{P}_{\mathsf{Q}}[\boldsymbol{L} + \boldsymbol{S}] = \boldsymbol{Y}, \tag{10}$

which is known as compressive principal component pursuit (CPCP).

< □ > < □ > < □ > < □ > < □ > < □ >

Example: Transformed Low-rank Texture (Ch. 15)

An image of a low-rank texture from an arbitrary view: $I \circ \tau = L + E$. To find out the correct deformation τ , solve:

 $\min_{\boldsymbol{L},\boldsymbol{E},\tau} \|\boldsymbol{L}\|_* + \lambda \|\boldsymbol{E}\|_1 \quad \text{subject to} \quad \boldsymbol{I} \circ \tau = \boldsymbol{L} + \boldsymbol{E}.$

But this is nonlinear/nonconvex! Linearizing w.r.t. the deformation:

$$\boldsymbol{I} \circ \boldsymbol{\tau} + \nabla \boldsymbol{I} \cdot d\boldsymbol{\tau} \approx \boldsymbol{L} + \boldsymbol{E},$$

Let Q be the left kernel of the Jacobian ∇I : $\mathcal{P}_{\mathsf{Q}}[\nabla I] = 0$, so we have:

$$\mathcal{P}_{\mathsf{Q}}[\boldsymbol{I}\circ\tau] = \mathcal{P}_{\mathsf{Q}}[\boldsymbol{L}+\boldsymbol{E}]. \tag{11}$$

Hence incrementally solve $d\tau$ via a convex program (CPCP):

$$\min_{\boldsymbol{L},\boldsymbol{E},d\tau} \|\boldsymbol{L}\|_* + \lambda \|\boldsymbol{E}\|_1 \quad \text{subject to} \quad \mathcal{P}_{\mathsf{Q}}[\boldsymbol{I} \circ \tau] = \mathcal{P}_{\mathsf{Q}}[\boldsymbol{L} + \boldsymbol{E}]. \tag{12}$$

・ロト ・四ト ・ヨト ・ヨト

Theoretical Guarantee for CPCP

Theorem (Compressive PCP)

Let $L_o, S_o \in \mathbb{R}^{n_1 \times n_2}$, with $n_1 \ge n_2$, and suppose that $L_o \ne 0$ is a rank-r, ν -incoherent matrix with $r \le \frac{c_r n_2}{\nu \log^2 n_1}$, and $\operatorname{sign}(S_o)$ is iid Bernoulli-Rademacher with nonzero probability $\rho < c_{\rho}$. Let $Q \subset \mathbb{R}^{n_1 \times n_2}$ be a random subspace of dimension

$$\dim(\mathbf{Q}) \geq C_{\mathbf{Q}} \cdot (\rho n_1 n_2 + n_1 r) \cdot \log^2 n_1 \tag{13}$$

distributed according to the Haar measure, independent of sign(S_o). Then with probability at least $1 - Cn_1^{-9}$ in (sign(S_o), Q), the solution to

$$\min \left\| \boldsymbol{L} \right\|_{*} + \lambda \left\| \boldsymbol{S} \right\|_{1} \quad s.t. \quad \mathcal{P}_{\mathsf{Q}}[\boldsymbol{L} + \boldsymbol{S}] = \mathcal{P}_{\mathsf{Q}}[\boldsymbol{L}_{o} + \boldsymbol{S}_{o}] \tag{14}$$

with $\lambda = 1/\sqrt{n_1}$ is unique, and equal to $(\mathbf{L}_o, \mathbf{S}_o)$. Above, c_r, c_ρ, C_Q, C are positive numerical constants.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Incomplete and Corrupted Low-rank Matrix

Imagine we only observe a fraction entries of a corrupted matrix $\mathbf{Y} = \mathbf{L}_o + \mathbf{S}_o$ on a support $O \sim Ber(\rho_o)$. Hence the measurement model is:

$$\mathcal{P}_{\mathsf{O}}[\boldsymbol{Y}] = \mathcal{P}_{\mathsf{O}}[\boldsymbol{L}_o + \boldsymbol{S}_o] = \mathcal{P}_{\mathsf{O}}[\boldsymbol{L}_o] + \boldsymbol{S}'_o.$$

A natural convex program to solve here is:

minimize
$$\|L\|_* + \lambda \|S\|_1$$

subject to $\mathcal{P}_{\mathsf{O}}[L+S] = \mathcal{P}_{\mathsf{O}}[Y].$ (15)

This combines matrix completion and robust PCA.

Theoretical Guarantee

Theorem (Matrix Completion with Corruptions)

Suppose L_o is $n \times n$, obeys the incoherence conditions. Suppose $\rho_0 > C_0 \frac{\nu r \log^2 n}{n}$ and $\rho_s \leq C_s$, and let $\lambda = \frac{1}{\sqrt{\rho_0 n \log n}}$. Then the optimal solution to the convex program (15) is exactly L_o and S'_o with probability at least $1 - Cn^{-3}$ for some constant C, provided the constants C_0 is large enough and C_s is small enough.

- Robust PCA: If $\rho_0 = 1$, the above condition $1 > C_0 \frac{\nu r \log^2 n}{n}$ gives $r < C_0^{-1} n \nu^{-1} (\log n)^{-2}$ for small enough C_0^{-1} , the condition for robust PCA.
- Matrix Completion: if $\rho_s = 0$, the above theorem guarantees perfect recovery as long as $\rho_0 > C_0 \frac{\nu r \log^2 n}{n}$ for large enough C_0 , the condition for matrix completion.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Example: Photometric Stereo (Ch. 14)

Recovering 3D shape of an object from images under different lightings.

Input images

Summary: Sparse & Low-Rank

Sparse v.s. Low-rank	Sparse Vector	Low-rank Matrix
Low-dimensionality of	individual signal x	a set of signals X
Low-dim measure	ℓ^0 norm $\ oldsymbol{x}\ _0$	$rank(oldsymbol{X})$
Convex surrogate	ℓ^1 norm $\ oldsymbol{x}\ _1$	nuclear norm $\ oldsymbol{X}\ _*$
Compressive sensing	$oldsymbol{y} = oldsymbol{A}oldsymbol{x}$	$oldsymbol{Y} = \mathcal{A}(oldsymbol{X})$
Stable recovery	$oldsymbol{y} = oldsymbol{A}oldsymbol{x} + oldsymbol{z}$	$oldsymbol{Y} = \mathcal{A}(oldsymbol{X}) + oldsymbol{Z}$
Error correction	$oldsymbol{y} = oldsymbol{A}oldsymbol{x} + oldsymbol{e}$	$oldsymbol{Y} = \mathcal{A}(oldsymbol{X}) + oldsymbol{E}$
Recovery of mixed structures	$\mathcal{P}_{Q}[oldsymbol{Y}] = \mathcal{P}_{Q}[oldsymbol{L}_o + oldsymbol{S}_o] + oldsymbol{Z}$	

"An idea which can be used once is a trick. If one can use it more than once it becomes a method."

- George Pólya and Gábor Szegö

< □ > < □ > < □ > < □ > < □ > < □ >

General Low-Dim Structures (Ch. 6)

Definition (Atomic Gauge)

The atomic gauge associated with a dictionary $\mathcal D$ is the function

$$\|\boldsymbol{x}\|_{\mathcal{D}} \doteq \inf \left\{ \sum_{i=1}^{k} \alpha_{i} \mid \alpha_{1}, \dots, \alpha_{k} \geq 0, \ \boldsymbol{d}_{1}, \dots, \boldsymbol{d}_{k} \in \mathcal{D} \text{ s.t. } \sum_{i} \alpha_{i} \boldsymbol{d}_{i} = \boldsymbol{x} \right\}.$$

To recover x_o from $y = \mathcal{A}(x_o)$, solve the convex minimization problem: $\min_{x} \|x\|_{\mathcal{D}} \text{ subject to } \mathcal{A}[x] = y.$ (16)

Let D denote the *descent cone* of the atomic norm $\|\cdot\|_{\mathcal{D}}$ at x_o . Then

• $\mathbb{P}[(16) \text{ recovers } \boldsymbol{x}_o] \leq C \exp\left(-c \frac{(\delta(\mathsf{D})-m)^2}{n}\right), \qquad m \leq \delta(\mathsf{D});$

•
$$\mathbb{P}[(16) \text{ recovers } \boldsymbol{x}_o] \geq 1 - C \exp\left(-c \frac{(m-\delta(\mathsf{D}))^2}{n}\right), \ m \geq \delta(\mathsf{D}).$$

Here $\delta(\mathsf{D})$ is the statistical dimension of D.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Limitations of the Convex/Linear Framework

• Limitations of Convexification (Ch. 7): for example,

 $\boldsymbol{Y} = \mathcal{A}(\boldsymbol{X})$

where X is simultaneously sparse and low-rank, the convex relaxation $\lambda_1 \|X\|_1 + \lambda_2 \|X\|_*$ is not optimal.

• Nonlinearity due to Domain Transformation (Ch. 15): for example,

$$Y = I$$

where $I \circ \tau = L + S$ for a low-rank L and sparse S.

• Nonlinearity due to Nonlinear Observation (Ch. 16):

$$\boldsymbol{Y} = g(\boldsymbol{X})$$

for some nonlinear function $g(\cdot)$ and low-dim $oldsymbol{X}$.

We will deal with nonconvex and nonlinearity in later lectures.

Assignments

- Reading: Section 5.4 5.6 of Chapter 5.
- Programming Homework #3.

э