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Decomposing Low-Rank and Sparse Matrices
(Principal Component Pursuit: Algorithms)

1 Problem and Motivating Example

2 Principal Component Pursuit

3 Conditions for Correct Decomposition

“The whole is greater than the sum of the parts.”
– Aristotle, Metaphysics
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Problem and Motivating Example

Problem Formulation: Mixture of Sparse and Low-Rank

Given a large data matrix Y ∈ Rn1×n2 which is a superposition of two
unknown matrices:

Y = Lo + So, (1)

where

• Lo ∈ Rn1×n2 is a low-rank matrix;

• So ∈ Rn1×n2 is a sparse matrix.

Problem: Can we hope to efficiently recover both Lo and So?

Compare this with the classic model for PCA:

Y = Lo +Zo, (2)

where Zo is dense but small, say Gaussian, noise?

PCA versus Robust PCA.
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Problem and Motivating Example

Complexity of Low-Rank Sparse Decomposition

Definition (Matrix Rigidity)

The rigidity of a matrix M (relative to rank r matrices) is defined to be:

RM (r)
.
= min{‖S‖0 : rank(M + S) ≤ r}, (3)

the smallest # of entries modified in order to change M rank r.

Computing matrix rigidity is NP-Hard1, so is decomposition.
1On the complexity of matrix rank and rigidity. Meena Mahajan and Jayalal Sarma

M.N., 2007
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Problem and Motivating Example

Examples of Low-Rank Sparse Decomposition
Example. A sequence of video frames can be modeled as a static
background (low-rank) and moving foreground (sparse).
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Problem and Motivating Example

Examples of Low-Rank Sparse Decomposition
Example. A set of face images of the same person under different
lightings can be modeled as a low-dimensional, 3 ∼ 9D (see Chapter 14),
subspace and sparse occlusions and corruptions (specularities).
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Problem and Motivating Example

Examples of Low-Rank Sparse Decomposition

Example. Finding communities in a large social networks. Each
community can be modeled as a clique of the social graph G, hence a
rank-1 block in the connectivity matrix M . Hence M is a low-rank matrix
and some sparse connections across communities.
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Problem and Motivating Example

Examples of Low-Rank Sparse Decomposition
Example. Structured regular texture recovery (Chapter 15).

and many more...
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Principal Component Pursuit

Convex Relaxation: Principal Component Pursuit

Optimization problem:

minimize rank(L) + λ‖S‖0 subject to L+ S = Y , (4)

which is intractable. Consider convex relaxation:

‖S‖0 = #{Sij 6= 0} → ‖S‖1 =
∑

ij

|Sij | (`1norm). (5)

rank(L) = #{σi(L) 6= 0} → ‖L‖∗ =
∑

i

σi(L) (nuclear norm) (6)

Principal Component Pursuit (PCP):

minimize ‖L‖∗ + λ‖S‖1 subject to L+ S = Y . (7)
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Principal Component Pursuit

Alternating Directions Method of Multipliers (ADMM)

Augmented Lagrangian

Lµ(L,S,Λ) = ‖L‖∗ + λ‖S‖1 + 〈Λ,L+ S − Y 〉+ µ

2
‖L+ S − Y ‖2F

(8)

Instead of

(Lk+1,Sk+1) = argmin
L,S
Lµ(L,S,Λk), (9)

we realize

argmin
S
Lµ(L,S,Λ) = Sλ/µ(Y −L− µ−1Λ) (10)

argmin
L
Lµ(L,S,Λ) = D1/µ(Y − S − µ−1Λ) (11)
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Principal Component Pursuit

Soft-thresholding Operators

Recall

Sτ (x) = sgn(x)max(|x| − τ, 0) (12)

For matrix M = UΣV ∗, we define the singular value thresholding
operator:

Dτ (M) = USτ (Σ)V ∗. (13)

Dominating computation is D1/µ, can speed up using partial SVD.
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Principal Component Pursuit

Algorithm: Alternating Direction Minimization

1: initialize: S0 = Λ0 = 0, µ > 0.
2: while not converged do
3: compute Lk+1 = D1/µ(Y − Sk − µ−1Λk)
4: compute Sk+1 = Sλ/µ(Y −Lk+1 − µ−1Λk)
5: compute Λk+1 = Λk + µ

(
Lk+1 + Sk+1 − Y

)
.

6: end while
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Principal Component Pursuit

Algorithm: A Little Lesson from History
Comparison from chronological development of algorithms for solving the
PCP problem: the older the algorithm, the more efficient!
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Principal Component Pursuit

Empirical Success Rate
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Fig. credit: Candès, Li, Ma, Wright ’11
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Conditions for Correct Decomposition

When Is Decomposition Possible?

Identifiability issue: a matrix might be simultaneously low-rank and
sparse!




1 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0




︸ ︷︷ ︸
sparse and low-rank

vs.




1 0 1 · · · 1
0 1 0 · · · 0
...

...
...

. . .
...

1 0 0 · · · 1




︸ ︷︷ ︸
sparse but not low-rank

Nonzero entries of sparse component need to be spread out
— This lecture: assume locations of the nonzero entries are random




1 1 1 · · · 1
1 1 1 · · · 1
...

...
...

1 1 1 · · · 1




︸ ︷︷ ︸
low-rank and dense

vs.




1 1 1 · · · 1
0 0 0 · · · 0
...

...
...

0 0 0 · · · 0




︸ ︷︷ ︸
low-rank but sparse

.

The low-rank component needs to be incoherent.
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Conditions for Correct Decomposition

Low-rank Component: Incoherence

Definition (Incoherent Low-rank Matrix)

Incoherence parameter µ1 of Lo = UΣV ∗ is the smallest quantity s.t.

max
i
‖e∗iU‖22 ≤

µ1r

n
and max

i
‖e∗iV ‖22 ≤
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n
.
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Conditions for Correct Decomposition

Low-rank Component: Joint Coherence

Definition (Joint Coherence)

Joint coherence parameter µ2 of Lo = UΣV ∗ is the smallest quantity s.t.

‖UV ∗‖∞ ≤
√
µ2r

n2
.

This prevents UV ∗ from being too peaky

• µ1 ≤ µ2 ≤ µ21r, since

|(UV ∗)ij | = |e>i UV ∗j | ≤ ‖e>i U‖2 · ‖V ∗j ‖2 ≤
µ1r

n

‖UV ∗‖2∞ ≥
‖UV ∗ej‖2F

n
=
‖V ∗j ‖22
n

=
µ1r

n2
(suppose ‖V ∗j ‖22 =

µ1r

n
)

In the book we have set µ1 = µ2 = ν.
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Conditions for Correct Decomposition

Theoretical Guarantee

Theorem (Candès, Li, Ma, Wright ’11)

• rank(L) . n
max{µ1,µ2} log2 n

;

• Nonzero entries of S are randomly located, and ‖S‖0 ≤ ρsn2 for
some constant ρs > 0 (e.g. ρs = 0.2).

Then PCP with λ = 1/
√
n is exact with high prob.

• rank(L) can be quite high (up to n/polylog(n))

• Parameter free: λ = 1/
√
n

• Ability to correct gross error: ‖S‖0 � n2

• Sparse component S can have arbitrary magnitudes / signs!
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Conditions for Correct Decomposition

Geometry

Fig. credit: Candès ’14
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Conditions for Correct Decomposition

Dense Error Correction

Theorem (Ganesh, Wright, Li, Candès, Ma ’10, Chen, Jalali, Sanghavi,
Caramanis ’13)

• rank(L) . n
max{µ1,µ2} log2 n

;

• Nonzero entries of S are randomly located, have random sign, and
‖S‖0 = ρsn

2.

Then PCP with λ �
√

1−ρs
ρsn

succeeds with high prob., provided that

1− ρs︸ ︷︷ ︸
non-corruption rate

&

√
max{µ1, µ2}rpolylog(n)

n
.

• When additive corruptions have random signs, PCP works even when
a dominant fraction of the entries are corrupted!
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Conditions for Correct Decomposition

Is Joint Coherence Needed?

• Matrix completion: does not need µ2.

• Robust PCA: so far we need µ2.

Question: Can we recover L with rank up to n
µ1polylog(n)

(rather than
n

max{µ1,µ2}polylog(n)), with tractable solutions?

Answer: highly unlikely...
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Conditions for Correct Decomposition

Planted Clique Problem

Setup: a graph G of n nodes generated as follows

1. connect each pair of nodes independently with prob. 0.5;

2. pick n0 nodes and make them a clique (fully connected).

Goal: find the hidden clique from G

Information theoretically, one can recover the clique if n0 > 2 log2 n.
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Conditions for Correct Decomposition

Conjecture on Computational Barrier

Conjecture: ∀ constant ε > 0, if n0 ≤ n0.5−ε, then no tractable
algorithm can find the clique from G with prob. 1− o(1).

— often used as a hardness assumption in theoretical computer science.

Lemma (Sharpness of the Conditions)

If there is an algorithm that allows recovery of any L from Y with
rank(L) ≤ n

µ1polylog(n)
, then the above conjecture is violated.
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Conditions for Correct Decomposition

Proof of Lemma

Suppose L is the true adjacency matrix,

Li,j =

{
1, if i, j are both in the clique;

0, else.

Let A be the adjacency matrix of G, and generate Y s.t.

Yi,j =

{
Ai,j , with prob. 2/3;

0, else.

Therefore, one can write

Y = L+ Y −L.︸ ︷︷ ︸
each entry is nonzero w.p. 1/3
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Conditions for Correct Decomposition

Proof of Lemma

Note that

µ1 =
n

n0
and µ2 =

n2

n20
.

If there is an algorithm that can recover any L of rank n
µ1polylog(n)

from
M , then

rank(L) = 1 ≤ n

µ1polylog(n)
⇐⇒ n0 ≥ polylog(n).

But this contradicts the conjecture (which claims computational
infeasibility to recover L unless n0 ≥ n0.5−o(1)).
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Conditions for Correct Decomposition

Assignments

• Reading: Section 5.1 - 5.3 of Chapter 5.

• Written Homework #3.
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