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Administrative Matters

Instructors of EECS 208, Fall 2021

1 Prof. Yi Ma (main instructor): yima@eecs.berkeley.edu

2 Prof. Jiantao Jiao (co-instructor): jiantao@eecs.berkeley.edu

3 Simon (Yuexiang) Zhai (head GSI): simonzhai@berkeley.edu

4 Xiangyu Yue (GSI): xyyue@berkeley.edu

Office hours are all posted on the course websites. Office hours are all to
be held virtually via Zoom (for now).
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Administrative Matters

Main Textbook

High-Dimensional Data Analysis with Low-Dimensional Models
Principles, Computation, and Applications

John Wright and Yi Ma
Cambridge University Press, 2022.

Pre-production Copy from Website: https://book-wright-ma.github.io

• Github:
https://book-wright-ma.github.io/Book-WM-20210422.pdf

• Dropbox:
https://www.dropbox.com/s/0jm9qhm0t5v21gq/Book-WM-20210422.

pdf?dl=0
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Administrative Matters

Course Websites

• Course Website:
https://pages.github.berkeley.edu/UCB-EECS208/course_site/

Course information, detailed schedules, and resources etc.

• Piazza:
https://piazza.com/berkeley/fall2021/eecs208/

Interactive functions, announcements, Q&A, discussions, and team
work etc.
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Administrative Matters

Grading Policy

• Participation: 10%.
• Homeworks: 50%.

• 4-5 Written Homeworks (principles).
• 4-5 Programming Homeworks (practices).

• Final Project: 40%.
• Midterm: 5min pitch of ideas; 2-3 pages of proposal.
• Final: 15min presentation; 8-10 pages of final report

(conference paper style).
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Introduction (Chapter 1) A Universal Task: Pursuit of Low-Dim Structures

A New Paradigm for Modern Data Science

Principles
Computation←−−−−−−−−−−→ Applications
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Introduction (Chapter 1) A Universal Task: Pursuit of Low-Dim Structures

Pursue Low-dim Structures in High-dim Data

Introduction: A Universal Task

“Entities should not be multiplied without necessity.”
– William of Ockham, Law of Parsimony
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Introduction (Chapter 1) A Universal Task: Pursuit of Low-Dim Structures

System Identification: Linear Systems or RNNs

Problem: determine
the system (A,B,C,D) from
the input and output sequences

{u0, u1, u2, . . .}, {y0, y1, y2, . . .}.

Fact: If the dimension of x ∈ Rn, then

rank(YU⊥) ≤ n. (1)

Variants: Recursive Neural Networks (RNNs):{
x(t+ 1) = σx

(
Ax(t) +Bu(t) + b

)
,

y(t) = σy
(
Cx(t) + d),

(2)
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Introduction (Chapter 1) A Universal Task: Pursuit of Low-Dim Structures

Visual Patterns and Correlations

If we view pixels of an n× n image
as entries of a matrix M , then

rank(M) = d� n. (3)

Fact:
Let M be the multiview matrix
associated with corresponding
features (points, lines, planes,
symmetric structures), we have

rank(M) ≤ 1 or 2. (4)

An Invitation to 3D Vision, Ma, Soatto, Kosecka, and Sastry, Springer, 2004.
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Introduction (Chapter 1) A Universal Task: Pursuit of Low-Dim Structures

Signal Acquisition and Processing
Fact: Sample band-limited signals with Nyquist frequency: f = 2 · Ω

2π .

Figure: Comparing Classical Signal Processing and Compressive Sensing Pipelines
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Introduction (Chapter 1) A Universal Task: Pursuit of Low-Dim Structures

Graphical Models in Machine Learning

x ∼ N (0,Σ) with a covariance matrix Σ ∈ Rn×n. Let Θ ≡ Σ−1. Then:

Fact: θij = 0 iff xi ⊥⊥ xj | x−i,−j . (5)

Figure: A graphical model for dependency among random variables.
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Introduction (Chapter 1) A Universal Task: Pursuit of Low-Dim Structures

Graphical Model Identification

Let x be partitioned into observed and hidden x = (xo,xh). Its
covariance matrix:

Σ =

[
Σo Σo,h

Σ∗o,h Σh

]
≡
[

Θo Θo,h

Θ∗o,h Θh

]−1

∈ Rn×n. (6)

From linear algebra (Schur complement):

Fact: Σ−1
o = Θo −Θo,hΘ

−1
h Θ∗o,h ∈ Rno×no . (7)

Hence to infer Θ from the observable Σo, we need to solve a problem of
sparse plus low-rank decomposition:

Σ−1
o

observed
= S

sparse
+ L

low rank
∈ Rno×no . (8)
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Introduction (Chapter 1) A Brief History

History: Nature and Neuroscience

Dogma for natural vision [Barlow 1972]: “... to represent the input as
completely as possible by activity in as few neurons as possible.”

Find sparse {xi} such that

y =

n∑
i=1

xiai + ε ∈ Rm, (9)

[Nature, Olshausen and Field 1996.]
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Introduction (Chapter 1) A Brief History

History: Signal Processing
Model y as a linear function of variables a1, . . . , an:

y = f(a) = a∗x = a1x1 + a2x2 + · · ·+ anxn, (10)

from measurements

yi = a∗ix+ εi, i = 1, 2, . . . ,m, (11)

where εi is possible measurement noise or error.

Figure: Left: ε ∼ 1
2b exp

(
− |ε|b

)
; Right: ε ∼ 1√

2πσ
exp

(
− ε2

2σ2

)
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Introduction (Chapter 1) A Brief History

History: Error Correction and Denoising (m > n)

Least Absolute Deviations [Roger Joseph Boscovich, 1750]:

min
x
‖y −Ax‖1 =

m∑
i=1

|yi − a∗ix|, ε ∼ 1

2b
exp

(
− |ε|

b

)
. (12)

Least Squares [Legendre in 1805 and Gauss in 1809]:

min
x
‖y −Ax‖22 =

m∑
i=1

(yi − a∗ix)2, ε ∼ 1√
2πσ

exp
(
− ε2

2σ2

)
. (13)

Error Correction [Ben Logan 1960]:

y(t) = x(t) + e(t) : min ‖x− y‖1 subject to x ∈ B1(Ω). (14)

Logan’s Phenomenon: |T | × Ω < π
2 .
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Introduction (Chapter 1) A Brief History

More Recent History: Linear Regression (m < n)

Best Subset Selection [Hocking, Leslie, and Beale 1967]:

min
x
‖y −Ax‖22 subject to ‖x‖0 ≤ k, (15)

Stepwise Regression (PI projection on AI) [Efroymson 1966]:

ik = arg min
i 6∈Ik
‖y − PIk∪{i}(y)‖22, Ik+1 = Ik ∪ {ik}. (16)

Lasso Regression [Tibshirani 1996]:

min
x
‖y −Ax‖22 subject to ‖x‖1 ≤ k. (17)

Basis Pursuit [Chen, Donoho, and Saunders 1998] :

min
x
‖x‖1 subject to y = Ax. (18)
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Introduction (Chapter 1) A Brief History

History: Principal Component Analysis (PCA)
[Pearson 1901, Hotelling 1933]

Figure: Left: regression; Right: principal component analysis.

A high-dim random vector y is approximated by the d < m components as:

y = u1w1 + u2w2 + · · ·+ udwd + ε
.
= Uw + ε ∈ Rm, (19)

where U = [u1,u2, . . . ,ud] ∈ Rm×d, w = [w1, w2, . . . , wd]
∗ ∈ Rd, and

the variance of the residual ε ∈ Rm is minimized:

minE
[
‖y −Uw‖22

]
. (20)
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Introduction (Chapter 1) A Brief History

History: Low-Rank Matrix Approximation
[Eckart and Young 1936]

A Matrix of Samples: Y = [y1,y2, . . . ,yn] ∈ Rm×n. (21)

Matrix approximation by rank-1 factors (Beltrami and Jordan 1870’s):

Y = σ1u1v
∗
1 + σ2u2v

∗
2 + · · ·+ σdudv

∗
d +E, (22)

Low-rank matrix approximation:

X? = arg min
X
‖Y −X‖22 subject to rank(X) ≤ d. (23)

Solution via Singular Value Decomposition:

X? = UdΣdV
∗
d , (24)

where Y = UΣV ∗ be the SVD of the matrix Y ∈ Rm×n.
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Introduction (Chapter 1) A Brief History

A Long and Rich History...
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Introduction (Chapter 1) The Modern Era

Why a Shift of Paradigm?
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Introduction (Chapter 1) The Modern Era

From Curses to Blessings of High-Dimensionality

For problems of identifying low-dimensional (e.g. sparse or low-rank)
structures of massive data in high-dimensional spaces, we like to answer
two fundamental questions:

1 Why many seemingly intractable high-dimensional problems can be
solved efficiently without suffering the curses of dimensionality?
(seemingly NP-hard, combinatorial, exponential, astronomical scale...)

2 What is the precise characterization of the required data complexity
and computational complexity for certain guaranteed accuracy or
probability of success?
(number of samples needed, number of oracles computed... )
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Introduction (Chapter 1) The Modern Era

Our goal: develop a principled mathematical foundation to answer above
two questions for the following problems:

• Compressive Sensing (Parsimony):

min
x
‖x‖1 subject to y = Ax, (25)

• Error Correction (Robustness):

min
x
‖y −Ax‖1 with y = Ax+ e. (26)

• Deep Learning (Nonlinearlity):{
z`+1 = φ(A`z`), z0 = x, ` = 0, 1, . . . , L− 1,
y = φ(CzL),

(27)

where φ(·) is typically sparsity-promoting nonlinear activation.
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Introduction (Chapter 1) The Modern Era

Guarantees: High-Dim Geometry and Statistics
Minimal data that ensure tractable method for a correct solution?

Phenomena against intuition from low-dim spaces:

• Measure Concentration (ε ∼ O(n−1/2))

Area{x ∈ Sn−1 : −ε ≤ xn ≤ ε} = 0.99 · Area(Sn−1), (28)

• Neighborly Polytopes (vertices from a Gaussian matrix):

A = [a1,a2, . . . ,an] ∈ Rm×n.
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Introduction (Chapter 1) The Modern Era

Computational Cost: Scalable Optimization
Minimal computational cost that ensures an accurate solution?

Solutions defying conventional wisdom:

• Convex Optimization: accelerated first order methods, augmented
Lagrangian method, alternating minimization, etc.

• Nonconvex Optimization: symmetry, stochastic gradient descent,
generalized power iteration, etc.

Figure: Left: conventional view. Right: actual landscape.
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Introduction (Chapter 1) The Modern Era

The first 20 years of the century
Figure: A perfect storm for unprecedented confluence and advancement in
mathematics, computation, technology, and science.
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Assignments

Homework 0

• Reading Assignment I: Preface

• Reading Assignment II: Introduction (Chapter 1)

• Reading Assignment III: Linear Algebra (Appendix A)
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