Deep Networks and the Multiple Manifold Problem

John Wright

EE / APAM / DSI

Columbia University

Sam Buchanan

Dar Gilboa

Tingran Wang

Many insights ... biased subsample:

- Structure
- Isometry
- Certificates of optimality

Model Problems for Deep Learning?

Image Classification on ImageNet

Many insights ... biased subsample:

- Depth . . .
- Isometry . . .
- Overparameterization ...

¹Figure credits: [Deng et. al. '09] (left), paperswithcode.com (right)

Issues that are hard to address using only datasets:

²Figure: [Azulay + Weiss]

Issues that are hard to address using only datasets:

What are good model problems for mathematical analysis of deep networks?

This Talk: one (failed?) attempt to answer this question.

[Plenty of other great existing answers: optimization landscapes, GAN's, implicit regularization, multiple descent, invariance ...]

²Figure: [Azulay + Weiss]

Issues that are hard to address using only datasets:

This Talk: how do deep networks compute with low-dimensional (manifold) structure?

³Figure: [Azulay + Weiss]

Manifold Structure: Vision

Statistical and structural variabilities in visual data:

Invariant template matching: \implies multiple low-d manifolds:

More complicated datasets [Pope et. al.]: CIFAR-10 26-d?, ImageNet 43-d?

Manifold Structure: Science

Gravitational Wave Astronomy [with Marka, Marka, Yan, Colgan]

One binary black hole merger:

Time (s)

Many mergers (varying mass M_1 , M_2): \implies low-dim manifold

The Multiple Manifold Problem

Problem: Given labeled data samples $(x_1, y_1), \ldots, (x_N, y_N)$ lying on manifolds $\mathcal{M}_{\pm} \subset \mathbb{S}^{n_0-1}$, learn a classifier f_{θ} that correctly labels *every* point on the two manifolds:

 $\operatorname{sign}(f_{\boldsymbol{\theta}}(\boldsymbol{x})) = \sigma$, for all $\boldsymbol{x} \in \mathcal{M}_{\sigma}$.

Multiple Manifold Problem: Geometric Hypotheses

Geometric problem parameters:

- dimension d,
- curvature κ ,
- separation Δ ,
- clover number \mathfrak{B} .

Multiple Manifold Problem: Geometric Hypotheses

Geometric problem parameters:

- *dimension* d: here, curves -d = 1!
- curvature κ ,
- separation Δ ,
- clover number \\$.

Multiple Manifold Problem: Geometric Hypotheses

Geometric problem parameters:

- *dimension* d: here, curves -d = 1!
- curvature κ ,
- separation Δ ,
- clover number \mathfrak{B} : next slide...

\mathfrak{B} number: How "loopy" is \mathcal{M} ?

$$\mathfrak{B}(\mathcal{M}) = \max_{\boldsymbol{x} \in \mathcal{M}} N_{\mathcal{M}} \left(\left\{ \boldsymbol{x}' \middle| \begin{array}{c} d_{\mathcal{M}}(\boldsymbol{x}, \boldsymbol{x}') > \tau_1 \\ \angle(\boldsymbol{x}, \boldsymbol{x}') < \tau_2 \end{array} \right\}, \frac{1}{\sqrt{1+\kappa^2}} \right)$$

Here, $N_{\mathcal{M}}(T, \delta)$ is the covering number of $T \subseteq \mathcal{M}$ by δ balls in $d_{\mathcal{M}}$. Intuition: Number of times that \mathcal{M} loops back on itself.

\mathfrak{B} number: How "loopy" is \mathcal{M} ?

$$\mathfrak{B}(\mathcal{M}) = \max_{\boldsymbol{x} \in \mathcal{M}} N_{\mathcal{M}} \left(\left\{ \boldsymbol{x}' \middle| \begin{array}{c} d_{\mathcal{M}}(\boldsymbol{x}, \boldsymbol{x}') > \tau_1 \\ \angle(\boldsymbol{x}, \boldsymbol{x}') < \tau_2 \end{array} \right\}, \frac{1}{\sqrt{1+\kappa^2}} \right)$$

Here, $N_{\mathcal{M}}(T, \delta)$ is the covering number of $T \subseteq \mathcal{M}$ by δ balls in $d_{\mathcal{M}}$. Intuition: Number of times that \mathcal{M} loops back on itself.

The Multiple Manifold Problem

Problem: Given labeled data samples $(x_1, y_1), \ldots, (x_N, y_N)$ lying on manifolds $\mathcal{M}_{\pm} \subset \mathbb{S}^{n_0-1}$, learn a classifier f_{θ} that correctly labels *every* point on the two manifolds:

 $\operatorname{sign}(f_{\boldsymbol{\theta}}(\boldsymbol{x})) = \sigma$, for all $\boldsymbol{x} \in \mathcal{M}_{\sigma}$.

Fully connected ReLU network

Weights initialized iid $\mathcal{N}(0, \frac{2}{n})$

Trained on N iid data samples (x_i, y_i)

Input $oldsymbol{x} \in \mathbb{S}^{n_0}$

Input $oldsymbol{x} \in \mathbb{S}^{n_0}$

Multiple Manifold Problem

Theory question: how should resources (depth *L*, width *n*, # samples *N*) depend on geometry (dimension *d*, curvature κ , separation Δ , clover number \Re)?

$$\min_{\boldsymbol{\theta}} \varphi(\boldsymbol{\theta}) \equiv \frac{1}{2} \int_{\boldsymbol{x}} \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}) - y(\boldsymbol{x}) \right)^2 d\mu_N(\boldsymbol{x}).$$

Does gradient descent correctly label the manifolds?

$$\min_{\boldsymbol{\theta}} \varphi(\boldsymbol{\theta}) \equiv \frac{1}{2} \int_{\boldsymbol{x}} \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}) - y(\boldsymbol{x}) \right)^2 d\mu_N(\boldsymbol{x}).$$

Does gradient descent correctly label the manifolds?

One Approach: Geometry (from symmetry!) in **parameter space**:

See, e.g., [Sun, Qu, W. '18], [Zhang, Kuo, W. 19], survey [Zhang, Qu, W. 20].

$$\min_{\boldsymbol{\theta}} \varphi(\boldsymbol{\theta}) \equiv \frac{1}{2} \int_{\boldsymbol{x}} \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}) - y(\boldsymbol{x}) \right)^2 d\mu_N(\boldsymbol{x}).$$

Does gradient descent correctly label the manifolds?

Today's talk: Dynamics in input-output space:

Neural Tangent Kernel

$$\Theta(oldsymbol{x},oldsymbol{x}') = \left\langle rac{\partial f_{oldsymbol{ heta}}(oldsymbol{x})}{\partial oldsymbol{ heta}}, rac{\partial f_{oldsymbol{ heta}}(oldsymbol{x}')}{\partial oldsymbol{ heta}}
ight
angle$$

Measures ease of independently adjusting $f_{\theta}(\boldsymbol{x})$, $f_{\theta}(\boldsymbol{x}')$

Follows [Jacot et. al.], many recent works.

Objective: Square Loss on Training Data
$$\min_{\boldsymbol{\theta}} \varphi(\boldsymbol{\theta}) \equiv \frac{1}{2} \int_{\boldsymbol{x}} \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}) - y(\boldsymbol{x}) \right)^2 d\mu_N(\boldsymbol{x}).$$

Signed error: $\zeta(\boldsymbol{x}) = f_{\boldsymbol{\theta}}(\boldsymbol{x}) - y(\boldsymbol{x}).$

Gradient flow: $\dot{\theta}_t = -\nabla_{\theta}\varphi(\theta_t) = -\int_{x} \frac{\partial f_{\theta}}{\partial \theta}(x)\zeta_t(x)d\mu_N(x).$

The error evolves according to the NTK:

$$\begin{split} \dot{\zeta}_{t}(\boldsymbol{x}) &= \frac{\partial f_{\boldsymbol{\theta}}(\boldsymbol{x})}{\partial \boldsymbol{\theta}}^{*} \dot{\boldsymbol{\theta}}_{t} = -\frac{\partial f_{\boldsymbol{\theta}}(\boldsymbol{x})}{\partial \boldsymbol{\theta}}^{*} \int_{\boldsymbol{x}'} \frac{\partial f_{\boldsymbol{\theta}}(\boldsymbol{x}')}{\partial \boldsymbol{\theta}} \zeta_{t}(\boldsymbol{x}') d\mu_{N}(\boldsymbol{x}') \\ &= -\int_{\boldsymbol{x}'} \left\langle \frac{\partial f_{\boldsymbol{\theta}}(\boldsymbol{x})}{\partial \boldsymbol{\theta}}, \frac{\partial f_{\boldsymbol{\theta}}(\boldsymbol{x}')}{\partial \boldsymbol{\theta}} \right\rangle \zeta(\boldsymbol{x}') d\mu_{N}(\boldsymbol{x}') \\ &= -\int_{\boldsymbol{x}'} \Theta(\boldsymbol{x}, \boldsymbol{x}') \zeta_{t}(\boldsymbol{x}') d\mu_{N}(\boldsymbol{x}') \\ &= -\Theta[\zeta_{t}](\boldsymbol{x}). \end{split}$$

Fast decay if ζ_t is aligned with lead eigenvectors of Θ .

$$\min_{\boldsymbol{\theta}} \varphi(\boldsymbol{\theta}) \equiv \frac{1}{2} \int_{\boldsymbol{x}} \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}) - y(\boldsymbol{x}) \right)^2 d\mu_N(\boldsymbol{x}).$$

Signed error: $\zeta(\boldsymbol{x}) = f_{\boldsymbol{\theta}}(\boldsymbol{x}) - y(\boldsymbol{x}).$

Gradient Method (GD): $\theta_{k+1} = \theta_k - \tau \nabla \varphi(\theta_k)$.

Similar intuition to gradient flow. We analyze GD with (small) nonzero τ .

Definition. $g: \mathcal{M} \to \mathbb{R}$ is called a *certificate* if for all $x \in \mathcal{M}$ $f_{\theta_0}(x) - f_{\star}(x) \underset{\text{square}}{\overset{\text{mean}}{\approx}} \int_{\mathcal{M}} \Theta(x, x') g(x') d\mu(x')$ and $\int_{\mathcal{M}} (g(x'))^2 d\mu(x')$ is small.

Definition.
$$g: \mathcal{M} \to \mathbb{R}$$
 is called a *certificate* if for all $x \in \mathcal{M}$
 $f_{\theta_0}(x) - f_{\star}(x) \underset{\text{square}}{\overset{\text{mean}}{\approx}} \int_{\mathcal{M}} \Theta(x, x') g(x') d\mu(x')$
and $\int_{\mathcal{M}} (g(x'))^2 d\mu(x')$ is small.

Definition.
$$g: \mathcal{M} \to \mathbb{R}$$
 is called a *certificate* if for all $x \in \mathcal{M}$
 $f_{\theta_0}(x) - f_{\star}(x) \underset{\text{square}}{\overset{\text{mean}}{\approx}} \int_{\mathcal{M}} \Theta(x, x') g(x') d\mu(x')$
and $\int_{\mathcal{M}} (g(x'))^2 d\mu(x')$ is small.

of random operator Θ

Definition. $g: \mathcal{M} \to \mathbb{R}$ is called a *certificate* if for all $x \in \mathcal{M}$ $f_{\theta_0}(x) - f_{\star}(x) \underset{\text{square}}{\overset{\text{mean}}{\approx}} \int_{\mathcal{M}} \Theta(x, x') g(x') d\mu(x')$ and $\int_{\mathcal{M}} (g(x'))^2 d\mu(x')$ is small.

Theorem. If a certificate exists, if $\tau \approx 1/(nL)$, and if

 $L \ge \operatorname{poly}(\kappa, \log n_0, C_{\rho}, C_{\mathcal{M}}),$ $n \ge \operatorname{poly}(L),$ $N \ge \operatorname{poly}(L),$

then with high probability the manifolds are classified perfectly after no more than L^2 gradient updates.

 \Rightarrow deeper nets fit more complicated geometries

 \Rightarrow deeper nets fit more complicated geometries

 \Rightarrow deeper nets fit more complicated geometries

 \Rightarrow deeper nets fit more complicated geometries

Depth L = 100

 \Rightarrow deeper nets fit more complicated geometries

Depth L = 500

 \Rightarrow deeper nets fit more complicated geometries

 \Rightarrow Set depth *L* based on geometry

Depth L = 1,000

Certificate Problem: $\exists g \text{ small s.t. } \Theta g \approx \zeta$?

$$\Theta pprox \Theta_{
m near} + \Theta_{
m far} + \Theta_{
m far}$$

$$\begin{split} & \Theta_{\text{near}}: \ \angle, \ d_{\mathcal{M}} \text{ small wrt } \kappa, \Delta \\ & \approx \text{ invariant operator } M, \text{ use Fourier analysis} \end{split}$$

 Θ_{far} : \angle , $d_{\mathcal{M}}$ big, $\Theta_{\mathfrak{B}}$: \angle small, $d_{\mathcal{M}}$ big Worst-case contributions from these components **Certificate Problem**: $\exists g \text{ small s.t. } \Theta g \approx \zeta$?

 $\Theta \approx \Theta_{\text{near}} + \Theta_{\text{far}} + \Theta_{\text{far}}$

$$\begin{split} & \Theta_{\text{near}}: \ \angle, \ d_{\mathcal{M}} \text{ small wrt } \kappa, \Delta \\ & \approx \text{ invariant operator } M, \text{ use Fourier analysis} \end{split}$$

 Θ_{far} : \angle , $d_{\mathcal{M}}$ big, $\Theta_{\mathfrak{B}}$: \angle small, $d_{\mathcal{M}}$ big Worst-case contributions from these components

$$g = \sum_{\ell=0}^{\infty} (-1)^{\ell} \left(\left(\boldsymbol{P}_{S} \boldsymbol{M} \boldsymbol{P}_{S} \right)^{-1} \boldsymbol{P}_{S} \left(\boldsymbol{\Theta} - \boldsymbol{M} \right) \boldsymbol{P}_{S} \right)^{\ell} \left(\boldsymbol{P}_{S} \boldsymbol{M} \boldsymbol{P}_{S} \right)^{-1} \zeta.$$

Resource Tradeoffs I: Certificates from Depth

Resource Tradeoffs I: Certificates from Depth

Depth as a fitting resource: Larger L leads to a sharper kernel Θ and a smaller certificate $g \implies$ easier fitting

Theorem. If a certificate exists, if $\tau \approx 1/(nL)$, and if $L \gtrsim \operatorname{poly}(\kappa, \log n_0, C_{\rho}, C_{\mathcal{M}}),$ $n \gtrsim \operatorname{poly}(L),$ $N \ge \operatorname{poly}(L),$

then with high probability the manifolds are classified perfectly after no more than L^2 gradient updates.

Output $f_{\theta}(x)$

Input $oldsymbol{x} \in \mathbb{S}^{n_0}$

As n increases, $\Theta(x, x')$ concentrates about $\mathbb{E}_{\text{init weights}}[\Theta(x, x')]$

Output $f_{\theta}(x)$

Input $oldsymbol{x} \in \mathbb{S}^{n_0}$

As n increases, $\Theta(x, x')$ concentrates about $\mathbb{E}_{\text{init weights}}[\Theta(x, x')]$

Output $f_{\theta}(x)$

Sequential structure

 \Rightarrow martingale tools work well

Output $f_{\theta}(x)$

Sequential structure

 \Rightarrow martingale tools work well

Input $oldsymbol{x} \in \mathbb{S}^{n_0}$

Output $f_{\theta}(x)$

Sequential structure

 \Rightarrow martingale tools work well

Output $f_{\theta}(x)$

Sequential structure

 \Rightarrow martingale tools work well

Output $f_{\theta}(x)$

Sequential structure

 \Rightarrow martingale tools work well

Output $f_{\theta}(x)$

Sequential structure

 \Rightarrow martingale tools work well

Output $f_{\theta}(x)$

Sequential structure

 \Rightarrow martingale tools work well

Output $f_{\theta}(x)$

Sequential structure

 \Rightarrow martingale tools work well

Output $f_{\theta}(x)$

Sequential structure

 \Rightarrow martingale tools work well

Proposition. Suppose that $n > Lpolylog(Ln_0)$. Then

$$\Theta(\boldsymbol{x}, \boldsymbol{x}') - \frac{n}{2} \sum_{\ell} \cos(\varphi^{\ell} \nu) \prod_{\ell'=\ell}^{L-1} \left(1 - \frac{\varphi^{\ell'} \nu}{\pi} \right)$$

is small (simultaneously) for all $({m x},{m x}')\in {\mathcal M} imes {\mathcal M}.$

 \Rightarrow set width *n* based on *L* and implicitly based on κ, Δ

Depth L = 50

 \Rightarrow Sample complexity N is dictated by kernel "aperature", which depends on geometry (κ,Δ) via L

Novelty: end-to-end guarantee of generalization, depending only on the geometry of the data.

Gravitational Wave Astronomy [with Marka, Marka, Yan, Colgan]

One binary black hole merger:

Many mergers (varying mass M_1 , M_2): \implies low-dim manifold

Parametric Detection?

Is observation $x = s_{\gamma} + z$ or x = z? \implies two (noisy) manifolds!

Parametric Detection?

Is observation $x=s_\gamma+z$ or x=z?

 \implies two (noisy) manifolds!

Classical approach: template matching $\max_{\gamma} \langle a_{\gamma}, x \rangle > \tau$?

Parametric Detection?

Is observation $x=s_\gamma+z$ or x=z?

 \implies two (noisy) manifolds!

Classical approach: template matching $\max_{\gamma} \langle a_{\gamma}, x \rangle > \tau$?

Issues: Optimality? Complexity?

Unknown unknowns? Unknown noise?

Neural Nets - Performance Improvements?

Dedicated constructions of shallow and deep networks, based on equivalence between template matching and (particular) deep models [Yan, Avagyan, Colgan, Veske, Bartos, W., Marka, Marka '21].

End-to-end analysis of learning with data on curves.

More Complicated Geometries

Can still use sharpness of $\Theta.$

Network Structures from Geometry

Guaranteed Invariance

Beyond Linearization / Neural Tangent Kernel

Insights from simpler dictionary / feature learning problems?

Sam Buchanan

Dar Gilboa

Tingran Wang

Jingkai Yan

Deep Networks and the Multiple Manifold Problem, Buchanan, Gilboa, W. '21 Deep Networks Provably Classify Data on Curves

Wang, Buchanan, Gilboa, W. '21

Generalized Approach to Matched Filtering using Neural Networks

Yan, Avagyan, Colgan, Veske, Bartos, W., Marka, Marka, '21