Deep Networks and the
Multiple Manifold Problem

John Wright
EE / APAM / DSI

Columbia University



Sam Buchanan Dar Gilboa Tingran Wang



Model Problems: Sparse Approximation

Recover sparse xg from observations y = Ax.
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Many insights ... biased subsample:
e Structure
e Isometry

e Certificates of optimality




Model Problems for Deep Learning?

Image Classification on ImageNet
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Many insights ... biased subsample:
e Depth ...
e |sometry ...

e Overparameterization . ..

'Figure credits: [Deng et. al. '09] (left), paperswithcode.com (right)
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Mathematical Model Problems for Deep Learning?

Issues that are hard to address using only datasets:
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Uniformity? Robustness? Data Structure?

What are good model problems
for mathematical analysis of deep networks?

*Figure: [Azulay + Weiss]



Mathematical Model Problems for Deep Learning?

Issues that are hard to address using only datasets:
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Uniformity? Robustness? Data Structure?

What are good model problems
for mathematical analysis of deep networks?

This Talk: one (failed?) attempt to answer this question.

[Plenty of other great existing answers: optimization landscapes,
GAN's, implicit regularization, multiple descent, invariance ...]

*Figure: [Azulay + Weiss]



Mathematical Model Problems for Deep Learning?

Issues that are hard to address using only datasets:
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Uniformity? Robustness?  Data Structure?

What are good model problems
for mathematical analysis of deep networks?

This Talk: how do deep networks compute with
low-dimensional (manifold) structure?

*Figure: [Azulay + Weiss]



Manifold Structure: Vision

Statistical and structural variabilities in visual data:

8.

Templates Observed Images

More complicated datasets [Pope et. al.]: CIFAR-10 26-d?,
ImageNet 43-d?



Manifold Structure: Science

Gravitational Wave Astronomy [with Marka, Marka, Yan, Colgan]

One binary black hole merger:
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The Multiple Manifold Problem

Problem: Given labeled data samples (z1,v1),. .., (ZN,yN)
lying on manifolds M. C S™~! learn a classifier fg that
correctly labels every point on the two manifolds:

sign(fo(x)) = o, for all x € M,.




Multiple Manifold Problem: Geometric Hypotheses

Geometric problem parameters:

dimension d,

curvature r,
separation A,

clover number 5.




Multiple Manifold Problem: Geometric Hypotheses

Geometric problem parameters:

e dimension d: here, curves — d = 1!
e curvature K,

e separation A,

e clover number .




Multiple Manifold Problem: Geometric Hypotheses

Geometric problem parameters:

e dimension d: here, curves — d = 1!
e curvature K,

e separation A,

o clover number 3: next slide. ..




& number: How “loopy” is M?

BM) = maxgepr Ny ({:I;'

dm(z, ') > 7 1
L(z, ') < 1o T VIHR?

Here, Na((T, ) is the covering number of T'C M by § balls in d .

Intuition: Number of times that M loops back on itself.



& number: How “loopy” is M?

",
B=1 B=2 { ‘\3
B=3 B=4

dypm(z,2') > 7 !
L(x,2') < 7 " V1tk?

Here, Na((T, ) is the covering number of T C M by 6 balls in d .

%(M) = maxXge pm N ({m’

Intuition: Number of times that M loops back on itself.



The Multiple Manifold Problem

Problem: Given labeled data samples (z1,v1),. .., (ZN,yN)
lying on manifolds M. C S™~! learn a classifier fg that
correctly labels every point on the two manifolds:

sign(fo(x)) = o, for all x € M,.
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Output fy(x)

Fully connected
ReLU network
Weights initialized
iid (0, 2)
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Output fy(x)

Fully connected
ReLU network
Weights initialized
iid (0, 2)
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Multiple Manifold Problem

Dep

N Data samples z;

Theory question: how should resources (depth L, width n,
# samples ) depend on geometry (dimension d, curvature
k, separation A, clover number &)?




Objective: Square Loss on Training Data

1

min p(0) = | / (fo(@) — y(®))? dyun (x).

Does gradient descent correctly label the manifolds?



Objective: Square Loss on Training Data

min p(0) = | / (fo(@) — y(®))? dyun (x).

Does gradient descent correctly label the manifolds?

One Approach: Geometry (from symmetry!) in parameter space:

\ 4
- =
Dictionary Sparse Blind Matrix
Learning Deconvolution Recovery

See, e.g., [Sun, Qu, W. '18], [Zhang, Kuo, W. 19], survey [Zhang, Qu, W. 20].



Objective: Square Loss on Training Data

wine(6) = ;5 [ (fol) ~ (@) dun (@),

Does gradient descent correctly label the manifolds?

Today’s talk: Dynamics in input-output space:

Neural Tangent Kernel

@(%, wl) _ <Bfgém)’ Bf%(ew )>

Measures ease of independently adjusting fo(x), fo(x')

Follows [Jacot et. al.], many recent works.



Certificates for Training?

Objective: Square Loss on Training Data

win () = 5 [ (fo(e) = y(@)? dux ().

Signed error: ((x) = fo(x) — y(x).

Gradient flow: 8; = —Vgp(0,) = — [ %o (x)¢ (z)dun ().



Certificates for Training?

The error evolves according to the NTK:

ta) = 2o’y _Ole)” [ 2io)

% 6@ dun (@)

00
= [ (R 2B @ )
L

(, ") (2" ) dun ()

!

= -6 [Ct

Fast decay if (; is aligned with lead eigenvectors of ©.



Certificates for Training?

Objective: Square Loss on Training Data

1

inp(@) = -
min p(6) = 5

/ (fo(@) — y(@))? dun (@),

Signed error: ((x) = fo(x) — y(x).

Gradient Method (GD): 6, = 6, — 7V(6),).

Similar intuition to gradient flow.
We analyze GD with (small) nonzero 7.



Dynamics by Certificates

Definition. g : M — R is called a certificate if for all x € M

foo () mean/ O(z, ') du(z)

square

and [, (g x))? du(a') is small.




Dynamics by Certificates

Definition. g : M — R is called a certificate if for all x € M

mean

feo(w) - f*(w) =

square

/ o, z')g(a')du(z’)
M

and [, (9(z)* du(z') is small.

-
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Dynamics by Certificates

Definition. g : M — R is called a certificate if for all x € M

mean

feo(w) - f*(w) =

square

/ o, z')g(a')du(z’)
M

and [, (9(z)* du(z') is small.

: 2
Function space L; .

-
-
— g /

Error ¢ near stable range
of random operator ®



Dynamics by Certificates

Definition. g : M — R is called a certificate if for all x € M

square

foo (@) — fula “"“"/emw 2/)dp(a')

and [, (g x/))? du(a’) is small.

Theorem. If a certificate exists, if T < 1/(nL), and if
L > poly(k,logng, C,, Cr),
n = poly(L),
N = poly(L),

then with high probability the manifolds are classified perfectly
after no more than L? gradient updates.




Resource Tradeoffs I: Depth as an Approximation Resource

Increasing depth L
sharpens the NTK ©

= deeper nets fit
more complicated geometries

Depth L =5



Resource Tradeoffs I: Depth as an Approximation Resource

Increasing depth L
sharpens the NTK ©

= deeper nets fit
more complicated geometries

Depth L =10



Resource Tradeoffs I: Depth as an Approximation Resource

Increasing depth L
sharpens the NTK ©

= deeper nets fit
more complicated geometries

Depth L = 50



Resource Tradeoffs I: Depth as an Approximation Resource

Increasing depth L
sharpens the NTK ©

= deeper nets fit
more complicated geometries ’

Depth L = 100



Resource Tradeoffs I: Depth as an Approximation Resource

Increasing depth L
sharpens the NTK ©

= deeper nets fit
more complicated geometries ’

Depth L = 500



Resource Tradeoffs I: Depth as an Approximation Resource

Increasing depth L
sharpens the NTK ©

= deeper nets fit
more complicated geometries ’

=- Set depth L based on geometry

Depth L = 1,000



Resource Tradeoffs I: Certificates from Depth

Certificate Problem: 3 g small s.t. g =~ (7

O~ ®near + ®far + @83

OLcar: £, dpag small wrt k, A
' ~ invariant operator M, use Fourier analysis
Otar: £, daq big, Ogg: £ small, dpq big
Worst-case contributions from these components




Resource Tradeoffs I: Certificates from Depth

Certificate Problem: 3 g small s.t. g =~ (7

O~ ®near + ®far + @83

OLcar: £, dpag small wrt k, A
' ~ invariant operator M, use Fourier analysis
Otar: £, daq big, Ogg: £ small, dpq big
Worst-case contributions from these components

9= S2(-1)* ((PsMPs)™ Ps (© - M) PS)Z (PsMPs)~' C.




Resource Tradeoffs I: Certificates from Depth

Theorem [Wang, Buchanan, Gilboa, W. '21]. Suppose

1 CBM)
L > max <> )
AV1 + K2
poly(Ma ... M7, A™Y, prax),

exp (C"/@lon(/\/l)) }

Then there exists a certificate g satisfying

IN

Iclz L7,

C" Il
Pminn log L

1009 —Cll.2

Il 2z




Resource Tradeoffs I: Certificates from Depth

Depth as a fitting resource: Larger L leads to a sharper kernel ©

and a smaller certificate ¢ = easier fitting



Dynamics by Certificates

Theorem. If a certificate exists, if T < 1/(nL), and if
L Z poly(k,logng, Cp, Cm),
n 2 poly(L),
N = poly(L),

then with high probability the manifolds are classified perfectly
after no more than L? gradient updates.
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Input « € S™°

As n increases, O(x, x’) concentrates about Eipit weights[© (€, )]
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Resource Tradeoffs Il: Width as a Statistical Resource

Sequential structure
= martingale tools work well
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Resource Tradeoffs II

Output fg(x)

Sequential structure
= martingale tools work well
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= martingale tools work well

Sequential structure
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Input x € S0
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Resource Tradeoffs Il: Width as a Statistical Resource

Output fy(x)

Sequential structure
= martingale tools work well

Input x € S0
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Output fy(x)

= martingale tools work well
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Resource Tradeoffs Il: Width as a Statistical Resource

Sequential structure
= martingale tools work well

Input x € S



Resource Tradeoffs Il: Width as a Statistical Resource

Proposition. Suppose that n > Lpolylog(Lng). Then

n o ty
Oz, x') — 5 Zcos(gozy) H <1 — SOﬂ) ‘
4

0=t

is small (simultaneously) for all (z,2’) € M x M.

= set width n based on L

and implicitly based on x, A




Resource Tradeoffs Ill: Data as a Statistical Resource

(C0)* ()

(GM)?(=) I "

]
My 1 x2 T3 TI1T2TIT4T5T6

Depth L = 50

= Sample complexity N is dictated by kernel “aperature”,
which depends on geometry (x,A) via L



End-to-End Guarantee

Combining the two results, when ...

1 CB(M) ,
L > ma _— ,exp( C"klen(M
> o (s ) xp(C'slen(M) )
pOly(M M77A y K pnnn? pmaX) }7
n > poly(L),
N > poly(L),

gradient descent correctly classifies every point on M.

Novelty: end-to-end guarantee of generalization, depending only on
the geometry of the data.



Gravitational Wave Astronomy [with Marka, Marka, Yan, Colgan]

Many mergers
(varying mass Mj, Mo):
= low-dim manifold




Parametric Detection?

[— H1 observed
T

Po

Is observation = s, + z or & = 27
— two (noisy) manifolds!
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[— H1 observed
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— two (noisy) manifolds!
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Classical approach: template matching max~ (a~,x) > 77



Parametric Detection?

[— H1 observed
T

Po
Is observation = s, + z or & = 27
— two (noisy) manifolds!

Classical approach: template matching max~ (a~,x) > 77

Issues: Optimality? Complexity?

Unknown unknowns? Unknown noise?

Gaussian, convex Sub-Gaussian, nonconvex Laplace, nonconvex

e e B X
7 7 = =
— =




Neural Nets — Performance Improvements?

, 2107 O
i E—— s,
\ —Matched filtering .
—— MNet-Shallow input A output
S \ MNet-Dee ax
s P @: O
2
=2
2
Z 1
<
80
)
Z
205
20.
=
0

0 10 20 30 40 50
False Positive Rate (%)

Dedicated constructions of shallow and deep networks, based on
equivalence between template matching and (particular) deep
models [Yan, Avagyan, Colgan, Veske, Bartos, W., Marka, Marka '21].



Conclusion and Future Directions

[ End-to-end analysis of learning with data on curves. ]

More Complicated Geometries
Can still use sharpness of ©.

Network Structures from Geometry
Guaranteed Invariance

Beyond Linearization / Neural Tangent Kernel

Insights from simpler dictionary / feature learning problems?

»
- =
Dictionary Sparse Blind Matrix

Learning Deconvolution Recovery



Thanks to ...
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Dar Gilboa Tingran Wang Jingkai Yan

Deep Networks and the Multiple Manifold Problem, , Gilboa, W. 21
Deep Networks Provably Classify Data on Curves

Wang, , Gilboa, W. '21
Generalized Approach to Matched Filtering using Neural Networks

Yan, Avagyan, Colgan, Veske, Bartos, W., Marka, Marka, '21



