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Model Problems: Sparse Approximation

Recover sparse x0 from observations y = Ax0.
72 Convex Methods for Sparse Signal Recovery

xo

Coe�cient space Rn `1 ball B1

Linear embedding A

Observation space Rm

y = Axo

observation

Polytope

P = A(B1)

Figure 3.3 Observation-Space Picture. The `1 ball is a convex polytope B1 in the
coe�cient space Rn. The linear map A projects this down to a lower dimensional set
P = A(B1) in the observation space Rm. The vertices vi of P are subsets of the
projections A⌫j of B1.

Observation Space Picture

We can also visualize `1 minimization in the space Rm of observation vectors y.

This picture is slightly more complicated, but turns out to be very useful. The

m ⇥ n matrix A maps n-dimensional vectors x to m ⌧ n dimensional vectors

y. Let us consider how the matrix A acts on the `1 ball B1 ⇢ Rn. Applying A

to each of the vectors x 2 B1, we obtain a lower-dimensional object P = A(B1),

which we visualize in Figure 3.3 (right). The lower-dimensional set P is a convex

polytope. Every vertex v of P is the image A⌫ of some vertex ⌫ = ±ei of B1.

More generally, every k-dimensional face of P is the image of some face of B1.

The polytope P consists of all points y0 of the form Ax0 for some x0 with

objective function kx0k1  1. `1 minimization corresponds to squeezing B1 down

to the origin, and then slowly expanding it until it first touches y. The touching

point is the image Ax̂ of the `1 minimizer – see Figure 3.4.

So, `1 will correctly recover xo whenever Axo is on the outside of P = A(B1).

For example, in Figure 3.3, all of the vertices of B1 map to the outside of A(B1),

and so `1 recovers any 1-sparse xo. However, certain edges (one-dimensional

faces) of B1 map to the inside of A(B1). `
1 minimization will not recover these

xo.

From this picture, it may be very surprising that `1 works as well as it does.

However, as we will see in the remainder of this chapter, the high-dimensional

picture di↵ers significantly from the low-dimensional picture (and our intuition!)

3.6 Phase Transitions in Sparse Recovery 115
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Figure 3.15 Phase Transition in Sparse Recovery with Gaussian Matrices.
Each display plots the fraction of correct recoveries using `1 minimization, over a
suite of randomly generated problems. The vertical axis represents the fraction of
nonzero entries ⌘ = k/n in the target vector xo – the bottom corresponds to very
sparse vectors, while the top corresponds to fully dense vectors. The horizontal axis
represents the sampling ratio � = m/n – the left corresponds to drastically under
sampled problems (m⌧ n), while the right corresponds to almost fully observed
problems. For each (⌘, �) pair, we generate 200 random problems, which we solve
using CVX. We declare success if the recovered vector is accurate up to a relative
error  10�6. Several salient features emerge: first, there is an easy regime (lower
right corner) in which `1 minimization always succeeds. Second, there is a hard
regime (upper left corner) in which `1 minimization always fails. Finally, as n
increases, this transition between success and failure becomes increasingly sharp.

entries k that we can recover. We would like these relationships to be as sharp

and explicit as possible. To get some intuition for what to expect, we again resort

to numerical simulation. We fix n, and consider di↵erent levels of sparsity k, and

numbers of measurements m. For each pair (k, m), we generate a number of

random `1 minimization problems, with noiseless Gaussian measurements y =

Axo, and ask “For what fraction of these problems does `1 minimization correctly

recover xo?”

Figure 3.15 displays the result as a two dimensional image. Here, the horizontal

axis is the sampling ratio � = m/n. This ranges from zero on the left (a very

short, wide A) to one on the right (a nearly square A). The vertical axis is

the fraction of nonzeros ⌘ = k/n. Again, this ranges from zero at the bottom

(very sparse problems) to one at the top (denser problems). For each pair (⌘, �),

we generate 200 random problems. The intensity is the fraction of problems for

which `1 minimization succeeds. The four graphs, from left to right, show the

result for n = 50, 100, 200, 400.

This figure conveys several important pieces of information. First, as expected,

when m is large and k is small (the lower right corner of each graph), `1 mini-

mization always succeeds. Conversely, when m is small and k is large (the upper

left corner of each graph), `1 minimization always fails. Moreover, as n grows, the

transition between success and failure becomes increasingly abrupt. Put another

way, for high-dimensional problems, the behavior of `1 minimization is surpris-

ingly predictable: it either almost always succeeds, or almost always fails. The

line demarcating the sharp boundary between success and failure is known as a

phase transition.

Many insights ... biased subsample:

• Structure

• Isometry

• Certificates of optimality



Model Problems for Deep Learning?

mammal placental carnivore canine dog working dog husky

vehicle craft watercraft sailing vessel sailboat trimaran

Figure 1: A snapshot of two root-to-leaf branches of ImageNet: the top row is from the mammal subtree; the bottom row is from the
vehicle subtree. For each synset, 9 randomly sampled images are presented.
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Vehicle 520 610 317K

GeoForm 176 436 77K
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Bird 872 809 705K

MusicInstr 164 672 110K

Summary of selected subtrees

Figure 2: Scale of ImageNet. Red curve: Histogram of number
of images per synset. About 20% of the synsets have very few
images. Over 50% synsets have more than 500 images. Table:
Summary of selected subtrees. For complete and up-to-date statis-
tics visit http://www.image-net.org/about-stats.

images spread over 5247 categories (Fig. 2). On average
over 600 images are collected for each synset. Fig. 2 shows
the distributions of the number of images per synset for the
current ImageNet 1. To our knowledge this is already the
largest clean image dataset available to the vision research
community, in terms of the total number of images, number
of images per category as well as the number of categories 2.

Hierarchy ImageNet organizes the different classes of
images in a densely populated semantic hierarchy. The
main asset of WordNet [9] lies in its semantic structure, i.e.
its ontology of concepts. Similarly to WordNet, synsets of
images in ImageNet are interlinked by several types of re-
lations, the “IS-A” relation being the most comprehensive
and useful. Although one can map any dataset with cate-

1About 20% of the synsets have very few images, because either there
are very few web images available, e.g. “vespertilian bat”, or the synset by
definition is difficult to be illustrated by images, e.g. “two-year-old horse”.

2It is claimed that the ESP game [25] has labeled a very large number
of images, but only a subset of 60K images are publicly available.

ESP Cattle Subtree Imagenet Cattle Subtree
176

Imagenet Cat SubtreeESP Cat Subtree

1377

376

1830

Figure 3: Comparison of the “cat” and “cattle” subtrees between
ESP [25] and ImageNet. Within each tree, the size of a node is
proportional to the number of images it contains. The number of
images for the largest node is shown for each tree. Shared nodes
between an ESP tree and an ImageNet tree are colored in red.

gory labels into a semantic hierarchy by using WordNet, the
density of ImageNet is unmatched by others. For example,
to our knowledge no existing vision dataset offers images of
147 dog categories. Fig. 3 compares the “cat” and “cattle”
subtrees of ImageNet and the ESP dataset [25]. We observe
that ImageNet offers much denser and larger trees.

Accuracy We would like to offer a clean dataset at all
levels of the WordNet hierarchy. Fig. 4 demonstrates the
labeling precision on a total of 80 synsets randomly sam-
pled at different tree depths. An average of 99.7% preci-
sion is achieved on average. Achieving a high precision for
all depths of the ImageNet tree is challenging because the
lower in the hierarchy a synset is, the harder it is to classify,
e.g. Siamese cat versus Burmese cat.

Diversity ImageNet is constructed with the goal that ob-
jects in images should have variable appearances, positions,

1

Many insights ... biased subsample:

• Depth . . .

• Isometry . . .

• Overparameterization . . .

1Figure credits: [Deng et. al. ’09] (left), paperswithcode.com (right)

paperswithcode.com


Mathematical Model Problems for Deep Learning?

Issues that are hard to address using only datasets:
Azulay, Weiss
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Figure 1: Examples of jagged predictions of modern deep convolutional neural networks.
Top: A negligible horizontal shift of the object results in an abrupt decrease in
the network’s predicted score of the correct class. Middle: A tiny increase in
the size of the object produces a dramatic decrease in the network’s predicted
score of the correct class. Bottom: A very small change in the otters posture
results in an abrupt decrease in the network’s predicted score of the correct class
(see https://youtu.be/MpUdRacvkWk). Colored dots represent images chosen
from interesting x-axis locations of the graphs on the right. These dots illustrate
sensitivity of modern neural networks to small, insignificant (to a human), and
realistic variations in the image.

fected by the shift in position of the stimulus pattern at all. Neither is it a↵ected by a slight
change of the shape or the size of the stimulus pattern.”. Fukushima also demonstrated
experimentally that the neocognitron’s output is unchanged when characters are translated,
rescaled or slightly deformed, even if the characters were not seen during training.

A second source of inductive bias injected to neural networks is what is known as “data
augmentation”. When training a CNN for object recognition, the network is presented
with a crop of the original image (Simonyan and Zisserman, 2014; Huang et al., 2017): the

2

Uniformity? Robustness? Data Structure?
2

What are good model problems

for mathematical analysis of deep networks?

This Talk: one (failed?) attempt to answer this question.

[Plenty of other great existing answers: optimization landscapes,

GAN’s, implicit regularization, multiple descent, invariance ...]

2Figure: [Azulay + Weiss]
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Top: A negligible horizontal shift of the object results in an abrupt decrease in
the network’s predicted score of the correct class. Middle: A tiny increase in
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score of the correct class. Bottom: A very small change in the otters posture
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from interesting x-axis locations of the graphs on the right. These dots illustrate
sensitivity of modern neural networks to small, insignificant (to a human), and
realistic variations in the image.

fected by the shift in position of the stimulus pattern at all. Neither is it a↵ected by a slight
change of the shape or the size of the stimulus pattern.”. Fukushima also demonstrated
experimentally that the neocognitron’s output is unchanged when characters are translated,
rescaled or slightly deformed, even if the characters were not seen during training.

A second source of inductive bias injected to neural networks is what is known as “data
augmentation”. When training a CNN for object recognition, the network is presented
with a crop of the original image (Simonyan and Zisserman, 2014; Huang et al., 2017): the

2

Uniformity? Robustness? Data Structure?
3

What are good model problems

for mathematical analysis of deep networks?

This Talk: how do deep networks compute with

low-dimensional (manifold) structure?

3Figure: [Azulay + Weiss]



Manifold Structure: Vision

Statistical and structural variabilities in visual data:

Structure in natural data
Structure in natural data is due to

I Statistical variability

COMPLEX

I Physical nuisances (pose, illumination, etc.)

SIMPLE

2 / 50
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9 Manifold Classification with Deep

Neural Networks

Structure in natural dataSucceeds up to >45o of pose:: 

Succeeds up to translations of 20% of face width, up to 30o in-plane rotation:: 

Recognition rate for synthetic misalignments (Multi-PIE) 

Wagner, W., Ganesh, Zhou, Ma.  CVPR 2009 

How well does it work? 

Invariant template matching: =⇒ multiple low-d manifolds:

M+

M�I+

I�

Templates Observed Images

Figure 1: Setup for invariant classification.

3 A Few Things We Know: Fully Connected Networks and Multi-Manifold
Classification

Taking visual classification as a motivation, Sam and Dar have developed a theoretical understanding of
multi-manifold classification problems. In its current form, this theory pertains to manifolds of dimension
d = 1, embedded in the sphere Sn�1, although I’m hopeful that extensions to higher d are forthcoming
very soon. The theory is phrased in terms of two geometric quantities: the separation � between the two
manifolds, and their (extrinsic) curvature .

4 A Few Things We Don’t Know: Convolutional Networks and Image
Manifolds

2

More complicated datasets [Pope et. al.]: CIFAR-10 26-d?,

ImageNet 43-d?



Manifold Structure: Science

One binary black hole merger:

Gravitational Wave Astronomy [with Marka, Marka, Yan, Colgan]Gravitational waves

Video: LIGO Lab Caltech : MIT (https://www.youtube.com/watch?v=1agm33iEAuo) 2

Top image, audio: LIGO Scientific Collaboration (https://www.ligo.org/science/GW-Inspiral.php)
Bottom image: Abbott, Benjamin P., et al. "Observation of gravitational waves from a binary black hole merger." Physical review 

letters 116.6 (2016): 061102. 3

Top image, audio: LIGO Scientific Collaboration (https://www.ligo.org/science/GW-Inspiral.php)
Bottom image: Abbott, Benjamin P., et al. "Observation of gravitational waves from a binary black hole merger." Physical review 

letters 116.6 (2016): 061102. 3

Many mergers

(varying mass M1, M2):

=⇒ low-dim manifold



The Multiple Manifold Problem

M+

M!

;

1=5
"

Problem: Given labeled data samples (x1, y1), . . . , (xN , yN )

lying on manifolds M± ⊂ Sn0−1, learn a classifier fθ that

correctly labels every point on the two manifolds:

sign(fθ(x)) = σ, for all x ∈Mσ.



Multiple Manifold Problem: Geometric Hypotheses

M+

M!

;

1=5
"

Geometric problem parameters:

• dimension d,

• curvature κ,

• separation ∆,

• clover number V.
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Multiple Manifold Problem: Geometric Hypotheses

M+

M!

;

1=5
"

Geometric problem parameters:

• dimension d: here, curves – d = 1!

• curvature κ,

• separation ∆,

• clover number V: next slide...



V number: How “loopy” is M?

x

V(M) = maxx∈MNM

({
x′

∣∣∣∣∣
dM(x,x′) > τ1

∠(x,x′) < τ2

}
, 1√

1+κ2

)

Here, NM(T, δ) is the covering number of T ⊆M by δ balls in dM.

Intuition: Number of times that M loops back on itself.



V number: How “loopy” is M?

V = 3 V = 4

V = 1 V = 2

V(M) = maxx∈MNM
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x′

∣∣∣∣∣
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∠(x,x′) < τ2

}
, 1√

1+κ2

)

Here, NM(T, δ) is the covering number of T ⊆M by δ balls in dM.

Intuition: Number of times that M loops back on itself.



The Multiple Manifold Problem

M+

M!

;

1=5
"

Problem: Given labeled data samples (x1, y1), . . . , (xN , yN )

lying on manifolds M± ⊂ Sn0−1, learn a classifier fθ that

correctly labels every point on the two manifolds:

sign(fθ(x)) = σ, for all x ∈Mσ.



Network Setup

. . .

. . .

. . .

. . .

Output fθ(x)

Input x ∈ Sn0

Width n

Depth L

Fully connected

ReLU network

Weights initialized
iid N (0, 2n)

Trained on N iid
data samples (xi, yi)



Network Setup – Resources

. . .

. . .

. . .

. . .

Output fθ(x)

Input x ∈ Sn0

Width n

Depth L

Fully connected

ReLU network

Weights initialized
iid N (0, 2n)

Trained on N iid
data samples (xi, yi)



Multiple Manifold Problem

M+

M!

;

1=5
"

. . .

. . .

. . .

. . .

N Data samples xi

Width n

Depth L

Theory question: how should resources (depth L, width n,

# samples N) depend on geometry (dimension d, curvature

κ, separation ∆, clover number V)?



Training?

Objective: Square Loss on Training Data

min
θ
ϕ(θ) ≡ 1

2

∫

x
(fθ(x)− y(x))2 dµN (x).

Does gradient descent correctly label the manifolds?

One Approach: Geometry (from symmetry!) in parameter space:

Dictionary
Learning

Sparse Blind
Deconvolution

Matrix
Recovery

See, e.g., [Sun, Qu, W. ’18], [Zhang, Kuo, W. 19], survey [Zhang, Qu, W. 20].
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Training?

Objective: Square Loss on Training Data

min
θ
ϕ(θ) ≡ 1

2

∫

x
(fθ(x)− y(x))2 dµN (x).

Does gradient descent correctly label the manifolds?

Today’s talk: Dynamics in input-output space:

Dictionary
Learning

Sparse Blind
Deconvolution

Matrix
Recovery

Neural Tangent Kernel

Θ(x,x′) =
〈
∂fθ(x)
∂θ , ∂fθ(x

′)
∂θ

〉

Measures ease of independently adjusting fθ(x), fθ(x
′)

Follows [Jacot et. al.], many recent works.



Certificates for Training?

Objective: Square Loss on Training Data

min
θ
ϕ(θ) ≡ 1

2

∫

x
(fθ(x)− y(x))2 dµN (x).

Signed error: ζ(x) = fθ(x)− y(x).

Gradient flow: θ̇t = −∇θϕ(θt) = −
∫
x
∂fθ
∂θ (x)ζt(x)dµN (x).



Certificates for Training?

The error evolves according to the NTK:

ζ̇t(x) =
∂fθ(x)

∂θ

∗
θ̇t = −∂fθ(x)

∂θ

∗ ∫

x′

∂fθ(x′)

∂θ
ζt(x

′)dµN (x′)

= −
∫

x′

〈
∂fθ(x)

∂θ
,
∂fθ(x′)

∂θ

〉
ζ(x′)dµN (x′)

= −
∫

x′
Θ(x,x′)ζt(x

′)dµN (x′)

= −Θ[ζt](x).

Fast decay if ζt is aligned with lead eigenvectors of Θ.



Certificates for Training?

Objective: Square Loss on Training Data

min
θ
ϕ(θ) ≡ 1

2

∫

x
(fθ(x)− y(x))2 dµN (x).

Signed error: ζ(x) = fθ(x)− y(x).

Gradient Method (GD): θk+1 = θk − τ∇ϕ(θk).

Similar intuition to gradient flow.

We analyze GD with (small) nonzero τ .



Dynamics by Certificates

Definition. g :M→ R is called a certificate if for all x ∈M

fθ0(x)− f?(x)
mean≈
square

∫

M
Θ(x,x′)g(x′)dµ(x′)

and
∫
M (g(x′))2 dµ(x′) is small.

 
 
 

Sn0−1

M+

M−
g

ζ

Function space L2
µN

Error ζ near stable range

of random operator Θ
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Dynamics by Certificates

Definition. g :M→ R is called a certificate if for all x ∈M

fθ0(x)− f?(x)
mean≈
square

∫

M
Θ(x,x′)g(x′)dµ(x′)

and
∫
M (g(x′))2 dµ(x′) is small.

Theorem. If a certificate exists, if τ � 1/(nL), and if

L ≥ poly(κ, log n0, Cρ, CM),

n ≥ poly(L),

N ≥ poly(L),

then with high probability the manifolds are classified perfectly

after no more than L2 gradient updates.



Resource Tradeoffs I: Depth as an Approximation Resource

Increasing depth L

sharpens the NTK Θ

⇒ deeper nets fit

more complicated geometries
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Resource Tradeoffs I: Depth as an Approximation Resource

Increasing depth L

sharpens the NTK Θ

⇒ deeper nets fit

more complicated geometries

⇒ Set depth L based on geometry

Depth L = 1, 000



Resource Tradeoffs I: Certificates from Depth

Certificate Problem: ∃ g small s.t. Θg ≈ ζ?

Θ ≈ Θnear + Θfar + Θ
V

Θnear: ∠, dM small wrt κ,∆

≈ invariant operator M , use Fourier analysis

Θfar: ∠, dM big, ΘV: ∠ small, dM big

Worst-case contributions from these components

g =
∑∞

`=0(−1)`
(

(PSMPS)
−1
PS (Θ−M)PS

)`
(PSMPS)

−1
ζ.
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Resource Tradeoffs I: Certificates from Depth

Theorem [Wang, Buchanan, Gilboa, W. ’21]. Suppose

L ≥ max

{ (
1

∆
√

1 + κ2

)CV(M)

,

poly(M2 . . .M7,∆
−1, ρmax),

exp
(
C ′κlen(M)

) }
.

Then there exists a certificate g satisfying

‖Θ[g]− ζ‖L2
µ
≤ ‖ζ‖L∞L−1,

‖g‖L2
µ
≤

C ′′‖ζ‖L2
µ

ρminn logL
.



Resource Tradeoffs I: Certificates from Depth
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Depth as a fitting resource: Larger L leads to a sharper kernel Θ

and a smaller certificate g =⇒ easier fitting



Dynamics by Certificates

Theorem. If a certificate exists, if τ � 1/(nL), and if

L & poly(κ, log n0, Cρ, CM),

n & poly(L),

N ≥ poly(L),

then with high probability the manifolds are classified perfectly

after no more than L2 gradient updates.
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Resource Tradeoffs II: Width as a Statistical Resource

Proposition. Suppose that n > Lpolylog(Ln0). Then

∣∣∣∣∣Θ(x,x′)− n

2

∑

`

cos(ϕ`ν)

L−1∏

`′=`

(
1− ϕ`

′
ν

π

)∣∣∣∣∣

is small (simultaneously) for all (x,x′) ∈M×M.

⇒ set width n based on L

and implicitly based on κ,∆



Resource Tradeoffs III: Data as a Statistical Resource

Depth L = 50

⇒ Sample complexity N is dictated by kernel “aperature”,

which depends on geometry (κ,∆) via L



End-to-End Guarantee

Combining the two results, when ...

L ≥ max

{ (
1

∆
√

1 + κ2

)CV(M)

, exp
(
C ′κlen(M)

)

poly(M2 . . .M7,∆
−1, κ, ρ−1min, ρmax)

}
,

n ≥ poly(L),

N ≥ poly(L),

gradient descent correctly classifies every point on M.

Novelty: end-to-end guarantee of generalization, depending only on

the geometry of the data.



Gravitational Wave Astronomy [with Marka, Marka, Yan, Colgan]

One binary black hole merger:
Gravitational waves

Video: LIGO Lab Caltech : MIT (https://www.youtube.com/watch?v=1agm33iEAuo) 2

Top image, audio: LIGO Scientific Collaboration (https://www.ligo.org/science/GW-Inspiral.php)
Bottom image: Abbott, Benjamin P., et al. "Observation of gravitational waves from a binary black hole merger." Physical review 

letters 116.6 (2016): 061102. 3

Top image, audio: LIGO Scientific Collaboration (https://www.ligo.org/science/GW-Inspiral.php)
Bottom image: Abbott, Benjamin P., et al. "Observation of gravitational waves from a binary black hole merger." Physical review 

letters 116.6 (2016): 061102. 3

Many mergers

(varying mass M1, M2):

=⇒ low-dim manifold



Parametric Detection?
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Neural Nets – Performance Improvements?

...

s�1

s�2

s�3

s�k

max

input output

... ...
...

...

s�1

s�2

s�3

s�k

input output

deep network

Dedicated constructions of shallow and deep networks, based on

equivalence between template matching and (particular) deep

models [Yan, Avagyan, Colgan, Veske, Bartos, W., Marka, Marka ’21].



Conclusion and Future Directions

End-to-end analysis of learning with data on curves.

More Complicated Geometries

Can still use sharpness of Θ.

Network Structures from Geometry

Guaranteed Invariance

Beyond Linearization / Neural Tangent Kernel

Insights from simpler dictionary / feature learning problems?

Dictionary
Learning

Sparse Blind
Deconvolution

Matrix
Recovery



Thanks to ...

Sam Buchanan Dar Gilboa Tingran Wang Jingkai Yan

Deep Networks and the Multiple Manifold Problem, Buchanan, Gilboa, W. ’21

Deep Networks Provably Classify Data on Curves

Wang, Buchanan, Gilboa, W. ’21

Generalized Approach to Matched Filtering using Neural Networks

Yan, Avagyan, Colgan, Veske, Bartos, W., Marka, Marka, ’21


