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Reading:
o Appendix E of High-Dim Data Analysis with Low-Dim Models;

o Chapter 2 of High-dimensional statistics: A non-asymptotic viewpoint, by Martin Wainwright.

1 Tail Bounds

Reading: High-dimensional statistics: A non-asymptotic viewpoint, Chapter 2.

1.1 Markov bound

Proposition 1.1 (Markov’s Inequality) Given a non-negative random variable x with finite mean, we have
Plz > t] < E[z]/t, Vt> 0. (1.1)
Proof Vt > 0, consider random variable ¢t1 {z > t}, we have
tl{r >t} <z, Vt>0, (1.2)
taking expectation over both sides of the above inequality, we have

tPlx > t]| <Ex = Pz >t] < Ez/t. (1.3)

1.2 Chebyshev bound

Proposition 1.2 (Chebyshev’s Inequality) Given a random variable x with finite mean Ex = p and finite variance,
we have

Pllz — pu| > t] < var(z)/t?, Vt>0. (1.4)

Proof Consider the random variable |z — yi|?, we know that |z — u|? is non-negative. Apply Markov’s inequality
to |z — p|? with ¢2, we have

Blle — uf? > ] < Bl — u?/2 = Plle — pl > 1] < var(x) /£ (15)



1.3 Chernoff bound

Definition 1.3 (Definition of MGF from Wikipedia) Let X be a random variable with cdf Fx. The moment gen-
erating function (mgf) of X (or Fx ), denoted by Mx (t), is

Mx(t) = E [e"] (1.6)

provided this expectation exists for t in some neighborhood of 0. That is, there is an h > 0 such that for all t in (—h, h),
E [e'] exists. If the expectation does not exist in a neighborhood of 0, we say that the moment generating function does
not exist.

Suppose the random variable x has a moment generating function in a neighborhood of zero, meaning that
there is some constant b > 0 such that the function ¢(\) = E[exp(A(z — p))] exists VA < |b]. In this case, for
any A € [0, b], we can apply Markov’s inequality to random variable Y = exp(A(X — u)), and obtain the upper

pound Elexp(\z — 1))
exp(Mz — p
Pl — 1) > f] = Plesp(wh (e — ) > exp()] < = (17)
Optimizing A € [0, b] to obtain the tightest result yields the Chernoff bound:
logP[(x — ) > t] < inf {logE[exp (A(x — u))] — At}. (1.8)

A€0,b]

1.4 Sub-Gaussian bound

Definition 1.4 (Sub-Gaussian Random Variables) A random variable X with mean p = E[X] is o sub-Gaussian
if there is a positive number o such that E[e*X—1] < e7*X/2, forall A € R.

Remark 1.5 A Gaussian random variable with variance o is o sub-Gaussian.

Applying E[e*X~#)] < ¢7°*/2 for all A € R to the Chernoff bound, we have

Plz — p > t] < exp[o?\?/2 — M, (1.9)

by picking A = t/0?, we have Plz — pu > t] < exp (—%), which is the sub-Gaussian tail bound.

2 Examples of Sub-Gaussian Tail Bounds
Reading:
e High-Dim Data Analysis with Low-Dim Models, Appendix E;

e High-dimensional statistics: A non-asymptotic viewpoint, Chapter 2.

2.1 Hoeffding bound

Suppose that the variables z;,i = 1, ...,n are independent and z; has y; and sub-Gaussian parameter o;. Then
Vvt > 0, we have

p li(m« — ) > t] < exp {—22202] . (2.1)

Another version of the Hoeffding inequality usually appears in for bounded difference inequality, since a
bounded random variables in [ay, b;] are sub-Gaussian with parameter at most o = (by, — ay)/2:

1 2n2t? )
P|= >t| <2exp| == . 22
[n - 1 - p( v (b — ax)? (22)

n

Zl‘i — El‘i

k=1



https://en.wikipedia.org/wiki/Moment-generating_function

2.2 Bernstein’s inequality (Thm E.2) in High-Dim Data Analysis

Let 21, o, ..., T, be independent random variables, with Ez; = 0, |z;| < R almost surely, and E[z?] < o2, Vi.
Then
t2/2
P i t| < — . 2.
5] <o () e
2.3 Gaussian-Lipschitz Concentration
Let fR™ — R be an L-Lipschitz function:
|f(x) - f(&)| < Ll —2|l,, VYz,a’€R™ (2.4)
Suppose g1, 92, - - - gm ~iia N(0,1), then we have
Pl f(g91s---59m) —E[f(g91,---,9m)]| > ] < 2exp (—t2/2L) ) (2.5)

3 A (High-Level) Example of Applying High-Dim Statistics.

Suppose we are given a L-Lipschitz function fa(x), where A € R™*" € G (G is a matrix group, e.g., the
orthogonal group) is a matrix and « is a random vector (e.g., Gaussian vector). Then we can use the following
procedures to show that the sampled mean of 2 37" | fa(x;) is a good approximation of the E,, f 4 () uniformly
forall A € G:

o Point-wise convergence: show that for a given A € G, applying the high-dimensional statistics concen-
tration bounds we have discussed before, we have some exponential tail bounds like

&

where g(-) is a monotonic increasing function.

o> falw) - Eaf (@)

> t> < 2exp (—g(nt)), (3.1)

e c-covering (Lemma 3.25 in High-dim Data Analysis, also refer to lecture note 06/07): count how many
e-ball we need to cover the whole group G, suppose the number of e-balls we need is N: meaning that
we can find {A;, Ay,..., Ay}, such that VA € G, we can find j € [N], such that ||A — 4[|, <e.

e Bound |1 3" | fa(w;) — Efa|in ac—Ball: we can argue that YA € B(A;, <), we have

n

LS fa@) — Efa(e)

- < h(e,n, L), (3.2)
i=1

where h is a function that is monotonic decreasing in ¢.
e Applying Union Bounds: now we can argue that

N n
P <U A € B(Ay,e), %ZfA(ﬂh) —Eof(x)

k=1

. t>
N
SZ]P’ (AEB(AJ‘7E)7 >t‘> (33)

<Nexp (=l(g(nt), h(e,n, L)) = exp (=I(g(nt), h(e, n, L)) +log N,

~> falwi) —Eaf(x)

where [ is a positive function which is monotonic increasing w.r.t. n, and the sample complexity we are
referring to is the order of n (e.g.,0(n), O(n?), etc.), such that —I(g(nt), h(e,n,L)) 4+ log N < 0.
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