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Reading:

• Appendix E of High-Dim Data Analysis with Low-Dim Models;

• Chapter 2 of High-dimensional statistics: A non-asymptotic viewpoint, by Martin Wainwright.

1 Tail Bounds
Reading: High-dimensional statistics: A non-asymptotic viewpoint, Chapter 2.

1.1 Markov bound
Proposition 1.1 (Markov’s Inequality) Given a non-negative random variable x with finite mean, we have

P[x ≥ t] ≤ E[x]/t, ∀t > 0. (1.1)

Proof ∀t > 0, consider random variable t1 {x ≥ t}, we have

t1 {x ≥ t} ≤ x, ∀t > 0, (1.2)

taking expectation over both sides of the above inequality, we have

tP[x ≥ t] ≤ Ex =⇒ P[x ≥ t] ≤ Ex/t. (1.3)

1.2 Chebyshev bound
Proposition 1.2 (Chebyshev’s Inequality) Given a random variable x with finite mean Ex = µ and finite variance,
we have

P[|x− µ| ≥ t] ≤ var(x)/t2, ∀t > 0. (1.4)

Proof Consider the random variable |x−µ|2, we know that |x−µ|2 is non-negative. ApplyMarkov’s inequality
to |x− µ|2 with t2, we have

P[|x− µ|2 ≥ t2] ≤ E|x− µ|2/t2 =⇒ P[|x− µ| ≥ t] ≤ var(x)/t2. (1.5)
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1.3 Chernoff bound
Definition 1.3 (Definition of MGF fromWikipedia) Let X be a random variable with cdf FX . The moment gen-
erating function (mgf) of X (or FX), denoted byMX(t), is

MX(t) = E
[
etX
] (1.6)

provided this expectation exists for t in some neighborhood of 0. That is, there is an h > 0 such that for all t in (−h, h),
E
[
etX
]
exists. If the expectation does not exist in a neighborhood of 0, we say that the moment generating function does

not exist.

Suppose the random variable x has a moment generating function in a neighborhood of zero, meaning that
there is some constant b > 0 such that the function ϕ(λ) = E[exp(λ(x − µ))] exists ∀λ ≤ |b|. In this case, for
any λ ∈ [0, b], we can apply Markov’s inequality to random variable Y = exp(λ(X − µ)), and obtain the upper
bound

P[(x− µ) ≥ t] = P[exp(xλ(x− µ)) ≥ exp(λt)] ≤ E[exp(λ(x− µ))]
exp(λt)

. (1.7)

Optimizing λ ∈ [0, b] to obtain the tightest result yields the Chernoff bound:

logP[(x− µ) ≥ t] ≤ inf
λ∈[0,b]

{logE [exp (λ(x− µ))]− λt} . (1.8)

1.4 Sub-Gaussian bound
Definition 1.4 (Sub-Gaussian Random Variables) A random variableX with mean µ = E[X] is σ sub-Gaussian
if there is a positive number σ such that E[eλ(X−µ)] ≤ eσ2λ2/2, for all λ ∈ R.

Remark 1.5 A Gaussian random variable with variance σ is σ sub-Gaussian.

Applying E[eλ(X−µ)] ≤ eσ2λ2/2, for all λ ∈ R to the Chernoff bound, we have

P[x− µ ≥ t] ≤ exp[σ2λ2/2− λt], (1.9)

by picking λ = t/σ2, we have P[x− µ ≥ t] ≤ exp
(
− t2

2σ2

)
, which is the sub-Gaussian tail bound.

2 Examples of Sub-Gaussian Tail Bounds
Reading:

• High-Dim Data Analysis with Low-Dim Models, Appendix E;
• High-dimensional statistics: A non-asymptotic viewpoint, Chapter 2.

2.1 Hoeffding bound
Suppose that the variables xi, i = 1, . . . , n are independent and xi has µi and sub-Gaussian parameter σi. Then
∀t ≥ 0, we have

P

[
n∑
i=1

(xi − µi) ≥ t

]
≤ exp

[
− t2

2
∑n
i=1 σ

2
i

]
. (2.1)

Another version of the Hoeffding inequality usually appears in for bounded difference inequality, since a
bounded random variables in [ak, bk] are sub-Gaussian with parameter at most σ = (bk − ak)/2:

P

[
1

n

∣∣∣∣∣
n∑
k=1

xi − Exi

∣∣∣∣∣ ≥ t
]
≤ 2 exp

(
− 2n2t2∑n

k=1(bk − ak)2

)
. (2.2)
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2.2 Bernstein’s inequality (Thm E.2) in High-Dim Data Analysis
Let x1, x2, . . . , xn be independent random variables, with Exi = 0, |xi| ≤ R almost surely, and E[x2i ] ≤ σ2,∀i.
Then

P

[∣∣∣∣∣∑
i=1n

xi

∣∣∣∣∣ > t

]
≤ exp

(
− t2/2

nσ2 + 3Rt

)
. (2.3)

2.3 Gaussian-Lipschitz Concentration
Let fRm 7→ R be an L-Lipschitz function:

|f(x)− f(x′)| ≤ L ‖x− x′‖2 , ∀x,x′ ∈ Rm. (2.4)

Suppose g1, g2, . . . gm ∼iid N (0, 1), then we have

P [|f(g1, . . . , gm)− E[f(g1, . . . , gm)]| > t] < 2 exp
(
−t2/2L

)
. (2.5)

3 A (High-Level) Example of Applying High-Dim Statistics.
Suppose we are given a L-Lipschitz function fA(x), where A ∈ Rm×n ∈ G (G is a matrix group, e.g., the
orthogonal group) is a matrix and x is a random vector (e.g., Gaussian vector). Then we can use the following
procedures to show that the sampledmean of 1

n

∑n
i=1 fA(xi) is a good approximation of the ExfA(x) uniformly

for all A ∈ G:
• Point-wise convergence: show that for a given A ∈ G, applying the high-dimensional statistics concen-

tration bounds we have discussed before, we have some exponential tail bounds like

P

(∣∣∣∣∣ 1n
n∑
i=1

fA(xi)− Exf(x)

∣∣∣∣∣ > t

)
< 2 exp (−g(nt)) , (3.1)

where g(·) is a monotonic increasing function.
• ε-covering (Lemma 3.25 inHigh-dimData Analysis, also refer to lecture note 06/07): count howmany
ε-ball we need to cover the whole group G, suppose the number of ε-balls we need is N : meaning that
we can find {A1,A2, . . . ,AN}, such that ∀A ∈ G, we can find j ∈ [N ], such that ‖A−Aj‖� < ε.

• Bound
∣∣ 1
n

∑n
i=1 fA(xi)− EfA

∣∣ in a ε−Ball: we can argue that ∀A ∈ B(Aj , ε), we have∣∣∣∣∣ 1n
n∑
i=1

fA(xi)− EfA(x)

∣∣∣∣∣ < h(ε, n, L), (3.2)

where h is a function that is monotonic decreasing in ε.
• Applying Union Bounds: now we can argue that

P

(
N⋃
k=1

A ∈ B(Ak, ε),

∣∣∣∣∣ 1n
n∑
i=1

fA(xi)− Exf(x)

∣∣∣∣∣ > t

)

≤
N∑
j=1

P

(
A ∈ B(Aj , ε),

∣∣∣∣∣ 1n
n∑
i=1

fA(xi)− Exf(x)

∣∣∣∣∣ > t
∣∣∣)

<N exp (−l(g(nt), h(ε, n, L))) = exp (−l(g(nt), h(ε, n, L)) + logN) ,

(3.3)

where l is a positive function which is monotonic increasing w.r.t. n, and the sample complexity we are
referring to is the order of n (e.g.,O(n), O(n2), etc.), such that −l(g(nt), h(ε, n, L)) + logN < 0.
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