

EECS208 Discussion 2

Simon Zhai

Sep. 17, 2021

Reading:

- Appendix E of *High-Dim Data Analysis with Low-Dim Models*;
- Chapter 2 of *High-dimensional statistics: A non-asymptotic viewpoint*, by Martin Wainwright.

1 Tail Bounds

Reading: High-dimensional statistics: A non-asymptotic viewpoint, Chapter 2.

1.1 Markov bound

Proposition 1.1 (Markov's Inequality) *Given a non-negative random variable x with finite mean, we have*

$$\mathbb{P}[x \geq t] \leq \mathbb{E}[x]/t, \quad \forall t > 0. \quad (1.1)$$

Proof $\forall t > 0$, consider random variable $t\mathbb{1}\{x \geq t\}$, we have

$$t\mathbb{1}\{x \geq t\} \leq x, \quad \forall t > 0, \quad (1.2)$$

taking expectation over both sides of the above inequality, we have

$$t\mathbb{P}[x \geq t] \leq \mathbb{E}x \implies \mathbb{P}[x \geq t] \leq \mathbb{E}x/t. \quad (1.3)$$

■

1.2 Chebyshev bound

Proposition 1.2 (Chebyshev's Inequality) *Given a random variable x with finite mean $\mathbb{E}x = \mu$ and finite variance, we have*

$$\mathbb{P}[|x - \mu| \geq t] \leq \text{var}(x)/t^2, \quad \forall t > 0. \quad (1.4)$$

Proof Consider the random variable $|x - \mu|^2$, we know that $|x - \mu|^2$ is non-negative. Apply Markov's inequality to $|x - \mu|^2$ with t^2 , we have

$$\mathbb{P}[|x - \mu|^2 \geq t^2] \leq \mathbb{E}|x - \mu|^2/t^2 \implies \mathbb{P}[|x - \mu| \geq t] \leq \text{var}(x)/t^2. \quad (1.5)$$

■

1.3 Chernoff bound

Definition 1.3 (Definition of MGF from Wikipedia) Let X be a random variable with cdf F_X . The moment generating function (mgf) of X (or F_X), denoted by $M_X(t)$, is

$$M_X(t) = \mathbb{E}[e^{tX}] \quad (1.6)$$

provided this expectation exists for t in some neighborhood of 0. That is, there is an $h > 0$ such that for all t in $(-h, h)$, $\mathbb{E}[e^{tX}]$ exists. If the expectation does not exist in a neighborhood of 0, we say that the moment generating function does not exist.

Suppose the random variable x has a moment generating function in a neighborhood of zero, meaning that there is some constant $b > 0$ such that the function $\varphi(\lambda) = \mathbb{E}[\exp(\lambda(x - \mu))]$ exists $\forall \lambda \leq |b|$. In this case, for any $\lambda \in [0, b]$, we can apply Markov's inequality to random variable $Y = \exp(\lambda(X - \mu))$, and obtain the upper bound

$$\mathbb{P}[(x - \mu) \geq t] = \mathbb{P}[\exp(x\lambda(x - \mu)) \geq \exp(\lambda t)] \leq \frac{\mathbb{E}[\exp(\lambda(x - \mu))]}{\exp(\lambda t)}. \quad (1.7)$$

Optimizing $\lambda \in [0, b]$ to obtain the tightest result yields the *Chernoff bound*:

$$\log \mathbb{P}[(x - \mu) \geq t] \leq \inf_{\lambda \in [0, b]} \{\log \mathbb{E}[\exp(\lambda(x - \mu))] - \lambda t\}. \quad (1.8)$$

1.4 Sub-Gaussian bound

Definition 1.4 (Sub-Gaussian Random Variables) A random variable X with mean $\mu = \mathbb{E}[X]$ is σ sub-Gaussian if there is a positive number σ such that $\mathbb{E}[e^{\lambda(X - \mu)}] \leq e^{\sigma^2 \lambda^2 / 2}$, for all $\lambda \in \mathbb{R}$.

Remark 1.5 A Gaussian random variable with variance σ is σ sub-Gaussian.

Applying $\mathbb{E}[e^{\lambda(X - \mu)}] \leq e^{\sigma^2 \lambda^2 / 2}$, for all $\lambda \in \mathbb{R}$ to the Chernoff bound, we have

$$\mathbb{P}[x - \mu \geq t] \leq \exp[\sigma^2 \lambda^2 / 2 - \lambda t], \quad (1.9)$$

by picking $\lambda = t/\sigma^2$, we have $\mathbb{P}[x - \mu \geq t] \leq \exp\left(-\frac{t^2}{2\sigma^2}\right)$, which is the sub-Gaussian tail bound.

2 Examples of Sub-Gaussian Tail Bounds

Reading:

- High-Dim Data Analysis with Low-Dim Models, Appendix E;
- High-dimensional statistics: A non-asymptotic viewpoint, Chapter 2.

2.1 Hoeffding bound

Suppose that the variables $x_i, i = 1, \dots, n$ are independent and x_i has μ_i and sub-Gaussian parameter σ_i . Then $\forall t \geq 0$, we have

$$\mathbb{P}\left[\sum_{i=1}^n (x_i - \mu_i) \geq t\right] \leq \exp\left[-\frac{t^2}{2\sum_{i=1}^n \sigma_i^2}\right]. \quad (2.1)$$

Another version of the Hoeffding inequality usually appears in for bounded difference inequality, since a bounded random variables in $[a_k, b_k]$ are sub-Gaussian with parameter at most $\sigma = (b_k - a_k)/2$:

$$\mathbb{P}\left[\frac{1}{n} \left| \sum_{k=1}^n x_i - \mathbb{E}x_i \right| \geq t\right] \leq 2 \exp\left(-\frac{2n^2 t^2}{\sum_{k=1}^n (b_k - a_k)^2}\right). \quad (2.2)$$

2.2 Bernstein's inequality (Thm E.2) in High-Dim Data Analysis

Let x_1, x_2, \dots, x_n be independent random variables, with $\mathbb{E}x_i = 0$, $|x_i| \leq R$ almost surely, and $\mathbb{E}[x_i^2] \leq \sigma^2, \forall i$. Then

$$\mathbb{P} \left[\left| \sum_{i=1}^n x_i \right| > t \right] \leq \exp \left(-\frac{t^2/2}{n\sigma^2 + 3Rt} \right). \quad (2.3)$$

2.3 Gaussian-Lipschitz Concentration

Let $f: \mathbb{R}^m \mapsto \mathbb{R}$ be an L -Lipschitz function:

$$|f(\mathbf{x}) - f(\mathbf{x}')| \leq L \|\mathbf{x} - \mathbf{x}'\|_2, \quad \forall \mathbf{x}, \mathbf{x}' \in \mathbb{R}^m. \quad (2.4)$$

Suppose $g_1, g_2, \dots, g_m \sim_{iid} \mathcal{N}(0, 1)$, then we have

$$\mathbb{P} [|f(g_1, \dots, g_m) - \mathbb{E}[f(g_1, \dots, g_m)]| > t] < 2 \exp(-t^2/2L). \quad (2.5)$$

3 A (High-Level) Example of Applying High-Dim Statistics.

Suppose we are given a L -Lipschitz function $f_{\mathbf{A}}(\mathbf{x})$, where $\mathbf{A} \in \mathbb{R}^{m \times n} \in \mathcal{G}$ (\mathcal{G} is a matrix group, e.g., the orthogonal group) is a matrix and \mathbf{x} is a random vector (e.g., Gaussian vector). Then we can use the following procedures to show that the sampled mean of $\frac{1}{n} \sum_{i=1}^n f_{\mathbf{A}}(\mathbf{x}_i)$ is a good approximation of the $\mathbb{E}_{\mathbf{x}} f_{\mathbf{A}}(\mathbf{x})$ uniformly for all $\mathbf{A} \in \mathcal{G}$:

- **Point-wise convergence:** show that for a given $\mathbf{A} \in \mathcal{G}$, applying the high-dimensional statistics concentration bounds we have discussed before, we have some exponential tail bounds like

$$\mathbb{P} \left(\left| \frac{1}{n} \sum_{i=1}^n f_{\mathbf{A}}(\mathbf{x}_i) - \mathbb{E}_{\mathbf{x}} f_{\mathbf{A}}(\mathbf{x}) \right| > t \right) < 2 \exp(-g(nt)), \quad (3.1)$$

where $g(\cdot)$ is a monotonic increasing function.

- **ε -covering (Lemma 3.25 in High-dim Data Analysis, also refer to lecture note 06/07):** count how many ε -ball we need to cover the whole group \mathcal{G} , suppose the number of ε -balls we need is N : meaning that we can find $\{\mathbf{A}_1, \mathbf{A}_2, \dots, \mathbf{A}_N\}$, such that $\forall \mathbf{A} \in \mathcal{G}$, we can find $j \in [N]$, such that $\|\mathbf{A} - \mathbf{A}_j\|_{\diamond} < \varepsilon$.
- **Bound $\left| \frac{1}{n} \sum_{i=1}^n f_{\mathbf{A}}(\mathbf{x}_i) - \mathbb{E} f_{\mathbf{A}} \right|$ in a ε -Ball:** we can argue that $\forall \mathbf{A} \in \mathbb{B}(\mathbf{A}_j, \varepsilon)$, we have

$$\left| \frac{1}{n} \sum_{i=1}^n f_{\mathbf{A}}(\mathbf{x}_i) - \mathbb{E} f_{\mathbf{A}}(\mathbf{x}) \right| < h(\varepsilon, n, L), \quad (3.2)$$

where h is a function that is monotonic decreasing in ε .

- **Applying Union Bounds:** now we can argue that

$$\begin{aligned} & \mathbb{P} \left(\bigcup_{k=1}^N \mathbf{A} \in \mathbb{B}(\mathbf{A}_k, \varepsilon), \left| \frac{1}{n} \sum_{i=1}^n f_{\mathbf{A}}(\mathbf{x}_i) - \mathbb{E}_{\mathbf{x}} f_{\mathbf{A}}(\mathbf{x}) \right| > t \right) \\ & \leq \sum_{j=1}^N \mathbb{P} \left(\mathbf{A} \in \mathbb{B}(\mathbf{A}_j, \varepsilon), \left| \frac{1}{n} \sum_{i=1}^n f_{\mathbf{A}}(\mathbf{x}_i) - \mathbb{E}_{\mathbf{x}} f_{\mathbf{A}}(\mathbf{x}) \right| > t \right) \\ & < N \exp(-l(g(nt), h(\varepsilon, n, L))) = \exp(-l(g(nt), h(\varepsilon, n, L)) + \log N), \end{aligned} \quad (3.3)$$

where l is a positive function which is monotonic increasing w.r.t. n , and the sample complexity we are referring to is the order of n (e.g., $O(n)$, $O(n^2)$, etc.), such that $-l(g(nt), h(\varepsilon, n, L)) + \log N < 0$.