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In order to recover 3D geometry from 2D images, we need
to understand low-dim structures in high-dim spaces…



Capturing Shape and Texture of 3D Objects

With Jingyi Yu of ShanghaiTech, 2017

Shanghai Museum Items
On iPhone VR kitOn HTC VIVE



??Images

VideosCompression
De-noising
Super-resolution
Recognition… Streaming

Tracking
Stabilization…

User data

Clustering
Classification
Collaborative filtering…

How to extract low-dim structures from such high-dim data? 

Ø 1M pixels

Ø 1B voxels

U.S. COMMERCE'S ORTNER SAYS YEN UNDERVALUED

Commerce Dept . undersecret ary of economic a®airs Robert Ortner said that
he believed the dollar at current levels was fairly priced against most European
currencies.
In a wide ranging address sponsored by the Export -Import Bank, Ortner,

t he bank's senior economist also said he believed that t he yen was undervalued
and could go up by 10 or 15 pct .
" I do not regard the dollar as undervalued at t his point against t he yen,"

he said.
On the other hand, Ortner said that he thought that " the yen is st ill a

lit t le bit undervalued," and "could go up another 10 or 15 pct ."
In addit ion, Ortner, who said he was speaking personally, said he thought

that t he dollar against most European currencies was "fairly priced."
Ortner said his analysis of the various exchange rate values was based on

such economic part iculars as wage rat e di®erent iat ions.
Ortner said there had been lit t le impact on U.S. t rade de¯cit by the decline

of t he dollar because at t he t ime of the P laza Accord, t he dollar was ext remely
overvalued and that t he ¯rst 15 pct decline had lit t le impact .
He said there were indicat ions now that t he t rade de¯cit was beginning to

level o®.
Turning to Brazil and Mexico, Ortner made it clear t hat it would be

almost impossible for those count ries to earn enough foreign exchange to pay
the service on their debt s. He said the best way to deal with this was to use
the policies out lined in Treasury Secret ary J ames Baker' s debt init iat ive.

Web data

Indexing 
Ranking 
Search…

Ø 100B webpages

Ø 1B users

CONTEXT – Data increasingly massive, high-dimensional…



Visual data exhibit low-dimensional structures 
due to rich local regularities, global symmetries, 
repetitive patterns, or redundant sampling.

CONTEXT – Low dimensional structures in visual data



If we view the data (image) as a matrix       

then

But…  PCA breaks down under even a single corrupted observation. 

• Optimal estimate of     under iid Gaussian noise

• Efficient and scalable computation

• Fundamental statistical tool, with huge impact in image processing,
vision, web search, bioinformatics…

Principal Component Analysis (PCA) via singular value decomposition (SVD):

CONTEXT – PCA: Fitting Data with a Low-dim. Subspace



Real application data often contain missing observations, corruptions, 
or subject to unknown deformation or misalignment. 

Classical methods (e.g., PCA, least square regression) break down…

CONTEXT – But life is not so easy… 



A long and rich history of robust estimation with error correction and 
missing data imputation:

A. Beurling. Sur les integrales de Fourier absolument
convergentes et leur application a une transformation 
functionelle, 1938

B. Logan. Properties of High-Pass Signals, 1965

A. Legendre. Nouvelles methodes pour la determination des 
orbites des cometes, 1806

C. Gauss. Theory of motion of heavenly bodies, 1809

over-determined
+ dense, Gaussian

underdetermined
+ sparse, Laplacian

R. J. Boscovich. De calculo probailitatum que respondent 
diversis valoribus summe errorum post plures observationes
… , before 1756

Everything old …



Sparse recovery:

Impossible in general (            ) 
Well-posed if      is structured (sparse), but still NP-hard
Tractable via convex optimization:

… if     is “nice” (random, incoherent, RIP)

Hugely active area: Donoho+Huo ’01, Elad+Bruckstein’03, Candès+Tao’04,’05, 
Tropp ’04,06, Donoho’04, Fuchs’05, Zhao+Yu’06, Meinshausen+Buhlmann’06, 
Wainwright’09, Donoho+Tanner’09, Dimakis+Xu+Hassibi’09, … and many others

=

CONTEXT – Recent related progress

A



Robust recovery:

Impossible in general (                      )
Well-posed if      is sparse, errors      not too dense, but still NP-hard
Tractable: via convex optimization:

… if     is “nice” (cross and bouquet) 

Hugely active area: Candès+Tao’05, Wright+Ma’10, Nguyen+Tran’11, Li ’11, also 
Zhang, Yang, Huang’11, Oymak+Tropp’15 etc…

CONTEXT – Recent related progress



Extended Yale B Database 
(38 subjects) Testing: subset 3 (453 images)

Training: subsets 1 and 2 (717 images) 

30% corruption

50%

70%

99.3% 90.7%

37.5%

EXPERIMENTS – Varying Level of Random Corruption

Wright, Yang, Ganesh, Sastry, and Ma. Robust Face Recognition via Sparse Representation, TPAMI 2009 



Dense Error Correction via L1 –minimization, IEEE Trans. Information Theory, 2010 

Theory – Geometry and Statistics of Face Images

Highly coherent

( volume                             )

“ recovers any sparse signal from almost any error with density less than 1”



CONTEXT – Basic Algorithm for Sparsity (ISTA)

210 Chapter 8. Convex Optimization for Structured Signal Recovery

As the first instance, the BPDN problem (8.1.2) obviously falls into the
class of problems that can be addressed by the proximal gradient method.
We can view g to be the `1-norm function �kxk1 whose proximal operator
is given in Proposition 8.2.3; f is simply be the quadratic data term 1

2ky�

Axk
2
2 whose gradient is clearly Lipschitz: the Lipschitz constant L can

be the largest eigenvalue of the matrix A
T
A, which can be computed in

advance.
The resulting proximal gradient descent algorithm for BPDN is also

known as the iterative soft-thresholding algorithm (ISTA), which is sum-
marized in Algorithm 8.1. In terms of computational complexity, the main

Algorithm 8.1 Iterative Soft-Thresholding Algorithm (ISTA) for BPDN

1: Problem: minx
1
2ky �Axk

2
2 + �kxk1, given y 2 Rd, A 2 Rd⇥n.

2: Input: x0 2 Rn and L � �max(A
T
A).

3: while xk not converged (k = 1, 2, . . .) do
4: wk  xk �

1
LA

T (Axk � y).
5: xk+1  soft(wk,�/L).
6: end while
7: Output: x?  xk.

cost is calculating the gradient rf(x) = A
T
Ax�A

T
y in the inner loop,

which is in the order of O(dn) in general.

Example 8.2.5. We randomly generate a sparse signal x in an 1000-
D space and then add a small Gaussian noise n to all of its coe�cients,
as shown in Figure 8.2 Top. With the added Gaussian noise, the signal
w = x + n is not sparse anymore. Then we may try to recover x from w

by solving the following problem �kxk1+
1
2kw�xk

2
2, where � is proportional

to the noise level. We know the solution to this problem is simply the soft
thresholding x̂ = soft(w,�). The result is shown in Figure 8.2 Bottom. We
see that the operator successfully remove most of the noise in w and returns
a sparse estimate for x.

8.2.2 Proximal Gradient for Stable Robust PCA

According to Proposition 8.2.3, the nuclear norm kXk⇤ also has a simple
proximal operator. Hence we could apply proximal gradient algorithm to
solve low-rank matrix recovery problems. For instance, the Robust PCA
problem with noise is also for the form that is amenable to proximal
gradient method:

min
A,E
kAk⇤ + �kEk1 +

µ

2
kD �A�Ek

2
F . (8.2.26)

wij

Nonlinear Thresholding
ReLu(w)

Linear Operator w=Ax

0Deep
Neural
Network
Module

Soft Thresholding

ReLu



CONTEXT – Learned ISTA (LISTA)

Learning Fast Approximations of Sparse Coding

Algorithm 3 LISTA::fprop
LISTA :: fprop(X,Z,We, S, µ)
;; Arguments are passed by reference.
;; variables Z(t), C(t) and B are saved for bprop.
B = WeX; Z(0) = hµ(B)
for t = 1 to T do

C(t) = B + SZ(t° 1)
Z(t) = hµ(C(t))

end for
Z = Z(T )

Algorithm 4 LISTA::bprop
LISTA :: bprop(Z§

,X, Z, We, S, µ, ±X, ±We, ±S, ±µ)
;; Arguments are passed by reference.
;; Variables Z(t), C(t), and B were saved in fprop.
Initialize: ±B = 0; ±S = 0; ±µ = 0
±Z(T ) = (Z(T )° Z

§)
for t = T down to 1 do

±C(t) = h
0
µ(C(t)).±Z(t)

±µ = ±µ ° sign(C(t)).±C(t)
±B = ±B + ±C(t)
±S = ±S + ±C(t)Z(t° 1)T

±Z(t° 1) = S
T
±C(t)

end for
±B = ±B + h

0
µ(B).±Z(0)

±µ = ±µ ° sign(B).h0
µ(B)±Z(0)

±We = ±BX
T ; ±X = W

T
e ±B

that the encoders obtained with LISTA and LCoD will
converge to the true optimal code if one runs them for
more steps than they were trained for.

At first glance, hoping that LISTA and LCoD will beat
ISTA and CoD for a small number of steps seems like
wishful thinking. But one must keep in mind that we
are not seeking to produce approximate sparse code
for all possible input vectors, but only for input vec-
tors drawn from the same distribution as our training
samples. With learning we are carefully carving the
solution of a restricted problem of interest, not the
general problem. The next two sections describe the
LISTA and LCoD architectures and learning proce-
dures in detail.

3.3. Learned Iterative Shrinkage-Thresholding
Algorithm (LISTA)

The LISTA encoder takes the precise form of Equa-
tion 2 with a fixed number of steps T . The pseudo-
code for computing a sparse code using LISTA is given
in Algorithm 3, and the block diagram in Figure 1(b).

Learning the parameters W = (We, S, µ) is performed
by applying Equation 6 repetitively over the train-
ing samples. Computing the gradient dL(W,X

p)/dW

is achieved through the back-propagation procedure.

Algorithm 5 LCoD::fprop
LCoD :: fprop(X,Z,We, S, µ)
;; Arguments are passed by reference.
;; variables e(t), k(t), b(t) and B(T ) are saved
B = WeX; Z = 0;
for t = 1 to T ° 1 do

Z̄ = hµ(B)
k = index of largest component of |Z ° Z̄|
k(t) = k, b(t) = Bk; e(t) = Z̄k ° Zk

8j 2 [1,m] : Bj = Bj + Sjke(t)
Zk = Z̄k

end for
B(T ) = B; Z = hµ(B)

One can view the architecture as a time-unfolded re-
current neural network, to which one can apply the
equivalent of back-propagation through time (BPTT).
More simply, it can be viewed as a feed-forward net-
work in which S is shared over layers. Comput-
ing the gradients consists in starting from the out-
put and back-propagating gradients down to the input
by multiplying by the Jacobian matrices of the tra-
versed modules, which is a simple application of chain
rule: dL/dZ(t) = dL/dZ(t + 1)dZ(t + 1)/dZ(t), and
dL/dS =

PT
t=1 dL/dZ(t)dZ(t)/dS, since S is shared

across time steps. Similar formulas can be applied
to compute dL/dµ and dL/dWe. The complete back-
propagation pseudo-code is given in Algorithm 4. The
± prefix denotes the gradient of L with respect to the
variable that follows it. Variables and their associated
gradients have the same dimensions. h

0
µ(t) denotes the

jacobian of h with respect to its input (a square binary
diagonal matrix).

3.4. Learned Coordinate Descent (LCoD)

The learned version of coordinate descent follows the
same procedure as that described in section 2.2, with
the same interpretation of the Figure 1, but with ma-
trices We, S and vector µ learned. The code prediction
portion of the pseudo-code is given in Algorithm 5.
The procedure is identical to algorithm 2, except that
some variables are saved in preparation for the subse-
quent back-propagation procedure. We also see how
the last line is useful: if the number of iterations is
zero, we get the baseline encoder described in the sub-
section 3.1. Adding iterations will improve the perfor-
mance from there.

The pseudo-code of the gradient back-propagation pro-
cedure through this LCoD encoder is given in Algo-
rithm 6. Note that what we will back-propagate are
technically sub-gradients, as the operation that finds
the index of the largest change in Z creates kinks
in the function (though the function is still continu-
ous, and the kinks have measure zero). Such kinks
have little negative eÆects on stochastic gradient pro-

Learning Fast Approximations of Sparse Coding

Algorithm 3 LISTA::fprop
LISTA :: fprop(X,Z,We, S, µ)
;; Arguments are passed by reference.
;; variables Z(t), C(t) and B are saved for bprop.
B = WeX; Z(0) = hµ(B)
for t = 1 to T do

C(t) = B + SZ(t° 1)
Z(t) = hµ(C(t))

end for
Z = Z(T )

Algorithm 4 LISTA::bprop
LISTA :: bprop(Z§

,X, Z, We, S, µ, ±X, ±We, ±S, ±µ)
;; Arguments are passed by reference.
;; Variables Z(t), C(t), and B were saved in fprop.
Initialize: ±B = 0; ±S = 0; ±µ = 0
±Z(T ) = (Z(T )° Z

§)
for t = T down to 1 do

±C(t) = h
0
µ(C(t)).±Z(t)

±µ = ±µ ° sign(C(t)).±C(t)
±B = ±B + ±C(t)
±S = ±S + ±C(t)Z(t° 1)T

±Z(t° 1) = S
T
±C(t)

end for
±B = ±B + h

0
µ(B).±Z(0)

±µ = ±µ ° sign(B).h0
µ(B)±Z(0)

±We = ±BX
T ; ±X = W

T
e ±B

that the encoders obtained with LISTA and LCoD will
converge to the true optimal code if one runs them for
more steps than they were trained for.

At first glance, hoping that LISTA and LCoD will beat
ISTA and CoD for a small number of steps seems like
wishful thinking. But one must keep in mind that we
are not seeking to produce approximate sparse code
for all possible input vectors, but only for input vec-
tors drawn from the same distribution as our training
samples. With learning we are carefully carving the
solution of a restricted problem of interest, not the
general problem. The next two sections describe the
LISTA and LCoD architectures and learning proce-
dures in detail.

3.3. Learned Iterative Shrinkage-Thresholding
Algorithm (LISTA)

The LISTA encoder takes the precise form of Equa-
tion 2 with a fixed number of steps T . The pseudo-
code for computing a sparse code using LISTA is given
in Algorithm 3, and the block diagram in Figure 1(b).

Learning the parameters W = (We, S, µ) is performed
by applying Equation 6 repetitively over the train-
ing samples. Computing the gradient dL(W,X

p)/dW

is achieved through the back-propagation procedure.

Algorithm 5 LCoD::fprop
LCoD :: fprop(X,Z,We, S, µ)
;; Arguments are passed by reference.
;; variables e(t), k(t), b(t) and B(T ) are saved
B = WeX; Z = 0;
for t = 1 to T ° 1 do

Z̄ = hµ(B)
k = index of largest component of |Z ° Z̄|
k(t) = k, b(t) = Bk; e(t) = Z̄k ° Zk

8j 2 [1,m] : Bj = Bj + Sjke(t)
Zk = Z̄k

end for
B(T ) = B; Z = hµ(B)

One can view the architecture as a time-unfolded re-
current neural network, to which one can apply the
equivalent of back-propagation through time (BPTT).
More simply, it can be viewed as a feed-forward net-
work in which S is shared over layers. Comput-
ing the gradients consists in starting from the out-
put and back-propagating gradients down to the input
by multiplying by the Jacobian matrices of the tra-
versed modules, which is a simple application of chain
rule: dL/dZ(t) = dL/dZ(t + 1)dZ(t + 1)/dZ(t), and
dL/dS =

PT
t=1 dL/dZ(t)dZ(t)/dS, since S is shared

across time steps. Similar formulas can be applied
to compute dL/dµ and dL/dWe. The complete back-
propagation pseudo-code is given in Algorithm 4. The
± prefix denotes the gradient of L with respect to the
variable that follows it. Variables and their associated
gradients have the same dimensions. h

0
µ(t) denotes the

jacobian of h with respect to its input (a square binary
diagonal matrix).

3.4. Learned Coordinate Descent (LCoD)

The learned version of coordinate descent follows the
same procedure as that described in section 2.2, with
the same interpretation of the Figure 1, but with ma-
trices We, S and vector µ learned. The code prediction
portion of the pseudo-code is given in Algorithm 5.
The procedure is identical to algorithm 2, except that
some variables are saved in preparation for the subse-
quent back-propagation procedure. We also see how
the last line is useful: if the number of iterations is
zero, we get the baseline encoder described in the sub-
section 3.1. Adding iterations will improve the perfor-
mance from there.

The pseudo-code of the gradient back-propagation pro-
cedure through this LCoD encoder is given in Algo-
rithm 6. Note that what we will back-propagate are
technically sub-gradients, as the operation that finds
the index of the largest change in Z creates kinks
in the function (though the function is still continu-
ous, and the kinks have measure zero). Such kinks
have little negative eÆects on stochastic gradient pro-

Gregor and LeCun, in ICML 2010.

If only interested in one instance:                 AND with many training data: {(yi, xi)}.
We can optimize the optimization path of ISTA using supervised learning:



Low-rank recovery:

Impossible in general (              ) 
Well-posed if       is structured (low-rank), but still NP-hard
Tractable via convex optimization:

… if     is “nice” (random, rank-RIP)

Hugely active area: Recht+Fazel+Parillo’07, Candès+Plan’10, Mohan+Fazel’10, 
Recht+Xu+Hassibi’11, Chandrasekaran+Recht+Parillo+Willsky’11, 
Negahban+Wainwright’11, Oymak+Tropp’15 …

,
=

CONTEXT – Recent related progress



Matrix completion:

Impossible in general (                 ) 
Well-posed if       is structured (low-rank), but still NP-hard
Tractable via convex optimization:

… if     is “nice” (random subset) ...
… and        interacts “nicely” with    (      incoherent – not “spiky”).

Hugely active area: Candès+Recht ‘08, Keshevan+Oh+Montonari ‘09, Candès+Tao ‘09, 
Gross ‘10, Recht ‘10, Negahban+Wainwright ’10, Oymak+Tropp’15… 

??

CONTEXT – Recent related progress



cond. indep. given other variables

Separation Principle:

• sparse pattern à conditional (in)dependence
• rank of second component à number of hidden variables

CONTEXT – Why Should You Care?

Chandrasekharan, Parrilo, and Wilsky of MIT, Annual of Statistics, 2012

Learning Graphical Models



CONTEXT – Why Should You Care?

Lizhong Zheng of MIT, Submitted to ICML 2018

Learning Deep Neural Networks

From information-theoretic perspective, DNNs (with softmax
objective) is to learn a low-rank approximation of the joint distribution
P(X,Y) of the input X and output Y.

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Feature Projection in Deep Neural Networks

Without knowing CY and v 2 V precisely, our goal is to
construct a k-dimensional h

k = (h1, . . . , hk) feature vector,
for some 1  k  K � 1, of the form

hi =
1

m

mX

l=1

fi(xl), i = 1, . . . , k, (11)

for some choices of feature functions fi, such that the opti-
mal decision rule based on h

k achieves the smallest possible
probability of error, where this error probability is averaged
over the possible CY from the RIE. Without loss of general-
ity, we assume h

k is a sequence of zero-mean, unit-variance,
uncorrelated statistics, i.e., EP0 [fi(X)fj(X)] = 0, for all
i 6= j. Hence, with ⇠

X
i $ fi denoting the corresponding in-

formation vector, we define the matrix ⌅X , [⇠X
1 · · · ⇠X

k ],
which satisfies

�
⌅X�T

⌅X = I. Then, we can characterize
the performance of the decision rule based on (11).
Lemma 2. Let Efk(v, v

0) be the error exponent associated

with the pairwise error probability distinguishing v and v
0

based on t
k

, then the expectation of the error exponent over

the RIE is

E
⇥
Efk(v, v

0)
⇤

=
E

h���Y |V
v � �Y |V

v0

��2
i

8|Y| kB̃⌅Xk2
F + o(✏2).

(12)

where k · kF denotes the Frobenius norm of the matrix.

Proof. See the supplementary material.

Note the optimal choice of feature functions from ⌅X does
not depend on specific v and v

0. They are functions with the
corresponding information vectors as the singular vectors
of B̃:

⇠X
i =  X

i , i = 1, . . . , k, (13)

Thus, the choices (13) and the corresponding feature func-
tions fi are optimum over all local configurations. We can
interpret the universal feature selection as solving the most
informative feature sets for data inferences via the singular
value decomposition of B̃. In the next section, we will show
that this optimal solution is actually also the solution of the
softmax regression.

3. Softmax Regression

In the regression problem, we have an input data vector
X = (X1, . . . , Xd) and a label Y , as well as a sequence of
labeled samples, (xi, yi), i = 1, . . . , N . Then, the softmax
regression aims to predict the label from observing data
X = x via the discriminative model of the form

Q
(v,b)
Y |X (y|x) , e

vT(y)s(x)+b(y)

P
y02Y evT(y0)s(x)+b(y0)

, (14)

Input

Features
Q

(v,b)
Y |X (y|x) , e

vT(y)s(x)+b(y)

P
y02Y evT(y0)s(x)+b(y0)

Softmax Output

...

s1

sk

+1

Y = 1

Y = 2

...

Y = |Y|

v(1)

v(2)

v(|Y|)

b(1)

b(2)

b(|Y|)

Figure 2. A simple neural network with one layer of hidden nodes,
with softmax output, can be viewed as selecting features.

where s(x) 2 Rk is a k-dimensional representation of x,
and v(y) 2 Rk and b(y) 2 R are the parameters required to
be learned from

(v, b)⇤ = arg max
(v,b)

1

N

NX

i=1

log Q
(v,b)
Y |X (yi|xi). (15)

As depicted in Fig. 2, the ordinary softmax regression corre-
sponds to the special case when s(x) = x. More generally,
s(x) is the output of the previous hidden layer of a neural
network, i.e., the selected feature of x fed into the softmax
regression. In the rest of this section, we will show that the
functions s(x) and v(y) coincide with the solutions of the
universal feature problem.

First, we use PX,Y to denote the joint empirical distribution
of the labeled samples (xi, yi), i = 1, . . . , N , and PX , PY

to denote the corresponding marginal distributions. Then,
the objective function in the optimization problem (15) is
precisely the empirical average of the log-likelihood:

1

N

NX

i=1

log QY |X(yi|xi) = EPX,Y

h
log Q

(v,b)
Y |X (Y |X)

i
.

Maximizing this empirical average is equivalent as minimiz-
ing the K-L divergence:

(v, b)⇤ = arg max
(v,b)

EPX,Y

h
log Q

(v,b)
Y |X (Y |X)

i

= arg min
(v,b)

D(PY,XkPX Q
(v,b)
Y |X ) (16)

This can be interpreted as finding the best fitting to the
empirical joint distribution PX,Y by distributions of the
form PX Q

(v,b)
Y |X .

In order to develop the connection to universal feature selec-
tion, we assume that PX,Y is within an ✏-neighborhood of,
PX PY , i.e., X and Y are weakly dependent. If we write
Q

(v,b)
Y |X as

Q
(v,b)
Y |X (y|x) =

PY (y)evT(y)s(x)+d(y)

P
y02Y PY (y0)evT(y0)s(x)+d(y0)

, (17)

where d(y) = b(y)� log PY (y), then our assumption of the
✏-neighborhood can be rewritten to |vT(y)s(x)| + |d(y)| <
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Feature Projection in Deep Neural Networks

✏, for all x, y we might encounter, and all v, d that we might
choose from. Then, we define the information vectors for
zero-mean vectors

 (y) =
p

PY (y)ṽ(y), �(x) =
p

PX(x)s̃(x),

in the corresponding information spaces, and the informa-
tion matrices  2 R|Y|⇥k and � 2 R|X |⇥k:

 ,
⇥
 (1) · · ·  (|Y|)

⇤T
, � ,

⇥
�(1) · · · �(|X |)

⇤T

as well as the DTM B̃ 2 R|Y|⇥|X | from (1).

Theorem 1. The softmax function (17) can be approximated

as

Q
(v,b)
Y |X (y|x) = PY (y)

⇣
1 + ṽ

T(y)s(x) + d̃(y)
⌘

+ o(✏)

and the loss (16), equivalently expressed as the K-L diver-

gence, can be approximated as

D(PY,XkPX Q
(v,b)
Y |X ) (18)

=
1

2
kB̃ � �Tk2

F +
1

2
⌘
(v,b)(s) + o(✏2),

where ⌘
(v,b)(s) , EPY

h
(µT

s ṽ(Y ) + d̃(Y ))2
i
. Moreover,

the loss (18) is minimized when d̃(y) + µ
T
s ṽ(y) = 0, and �,

 are designed from

( ,�)⇤ = arg min
( ,�)

kB̃ � �Tk2
F. (19)

Proof. See the supplementary material.

Depending on the designable parameters, in the sequel we
consider three main classes of problems, where the proofs
of the results are provided in the supplementary material.

1) Forward Feature Projection

For the case that s is fixed, we can optimize (19) with �
fixed and get the following optimal weights:

Corollary 1. For fixed � and µs, the optimal d̃
⇤
,  ⇤

and

the corresponding v
⇤

to minimize (18) are given by

 ⇤ = B̃�(�T�)�1
, (20a)

ṽ
⇤(y) = EPX|Y

⇥
cov(s̃(X))�1

s̃(X)|Y = y
⇤
, (20b)

d̃
⇤(y) = �µ

T
s ṽ(Y ), (20c)

where cov(s̃(X)) is the covariance matrix of s̃(X).

(20a) can be viewed as a projection of the input feature
s̃(X), to a feature computable from the value of y, v(Y ),
which is the most highly correlated to s̃(X). The solution
is given by left multiplying the B̃ matrix. We call this the
“forward feature projection”.

2) Backward Feature Projection

It is also useful to consider the “backward problem”, which
attempts to find informative feature s

⇤(X) to minimize the
loss (18) with given weight and bias.
Corollary 2. For fixed ṽ,  , and d̃, the optimal feature

s
⇤

and the corresponding information matrix �⇤
to mini-

mize (18) are given by

�⇤ = B̃T ( T )�1
, (21a)

s̃
⇤(x) = EPY |X

⇥
cov(ṽ(Y ))�1

ṽ(Y )|X = x
⇤
, (21b)

µ
⇤
s = � cov(ṽ(Y ))�1EPY

h
ṽ(Y )d̃(Y )

i
, (21c)

where cov(ṽ(Y )) is the covariance matrix of ṽ(Y ).

The solution of this backward feature projection is precisely
symmetric to the forward one. Note we assumed here that
the feature s̃(X) can be selected as any desired function.
This is only true in the ideal case where the previous hid-
den layers of the neural network have sufficient expressive
power. That is, it can generate the desired feature function
as given in (21b). In general, however, the form of feature
functions that can be generalized is often limited by the net-
work structure. In the next section, we discuss such cases,
where we do know the most desirable feature function as
given in (21b), and the question is how does a network with
limited expressive power approximate this optimal solution.

3) The Universal Feature Selection

When both s and (v, b) (and hence �, , d) can be designed,
in order to minimize the loss (18), we shall pick d̃(y) =
�µ

T
s ṽ(y), for all y 2 Y , which essentially fits the marginal

distribution of Q
(v,b)
Y |X to PY , i.e.,

X

x2X
Q

(v,b)
Y |X (y|x)PX(x)

�����
d̃(y)=�µT

s ṽ(y)

= PY (y) + o(✏).

(22)

Moreover, the optimization problem (19) is the well-known
matrix factorization problem, and the optimal ( ,�)⇤ are
composed of the largest k left and right singular vectors of B̃.
This is precisely the optimum feature sets for the universal
feature selection problem. Therefore, we conclude that the
softmax regression, when both s and (v, b) are designable,
is to extract the most correlated aspects of the input data
X and the label Y that are informative features for data
inferences from universal feature selection.

In the learning process of DNN, the BackProp procedure
alternatively chooses the weights of the softmax layer and
those on the previous layer(s). In each step, the weights
on the rest of the network are fixed. This is equivalent as
alternating between the forward and the backward feature
projections, i.e. it alternates between (20a) and (21a). This



The data should be low-dimensional (low-rank):

… but some of the observations are grossly corrupted:

… and all of the observations are noisy:

… and many of them are missing: 
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The data should be low-dimensional:

… but some of the observations are grossly corrupted:

… and some of them can be missing too: 

CONTEXT – Low-dimensional Models



The data should be low-dimensional:

… but some of the observations are grossly corrupted:

… and some of them can be missing too: 

… special cases of a more general problem: 

CONTEXT – Low-dimensional Models



hGiven observations                                     with  
low-rank,
sparse,
small, dense noise,

recover a good estimate of     and    . 

q Theory and Algorithm

• Provably Correct and Tractable Solution

• Provably Optimal and Efficient Algorithms

q Potential Applications

• Visual Data (Restoration, Reconstruction, Recognition)

• Other Data

q Extensions and Conclusions

THIS TALK



Problem: Given                             recover and .

Low-rank component Sparse component (gross errors)

- observation – low-rank – sparse

Numerous approaches in the literature: 
• Multivariate trimming       [Gnanadesikan and Kettering ‘72] 
• Power Factorization        [Wieber’70s]        
• Random sampling           [Fischler and Bolles ‘81] 
• Alternating minimization  [Shum & Ikeuchi’96, Ke and Kanade ‘03] 
• Influence functions          [de la Torre and Black ‘03]

•

Key question: can guarantee correctness with an efficient algorithm?

ROBUST PCA – Problem Formulation



Seek the lowest-rank that agrees with the data up to some sparse error :

But INTRACTABLE! Relax with convex surrogates:

Nuclear norm

L1 norm

Convex envelope over 

ROBUST PCA – Convex Surrogates for Sparsity and Rank



Seek the lowest-rank that agrees with the data up to some sparse error :

Semidefinite program, solvable in polynomial time

Nuclear norm

L1 norm

But INTRACTABLE! Relax with convex surrogates:

ROBUST PCA – By Convex Optimization

V. Chandrasekaran et. al. IFAC 2009, J. Wright et. al. NIPS 2009.



White regions are instances with perfect recovery.

Correct recovery when is indeed low-rank and is indeed sparse?

ROBUST PCA – When the Convex Program Works?



GREAT NEWS: “Convex optimization recovers almost any matrix of 
rank                 from  errors corrupting             of the observations!”

Non-adaptive weight factor

MAIN THEORY – Exact Solution by Convex Optimization

Candes, Li, Ma, and Wright, Journal of the ACM, May 2011.



MAIN THEORY – Corrupted, Incomplete Matrix

Candes, Li, Ma, and Wright, Journal of the ACM, May 2011.



MAIN THEORY – With Dense Errors and Noise

Ganesh, Zhou, Li, Wright , Ma, Candes, ISIT, 2010.



1

10
0

Many have made contributions in the past few years:

rank =

Classical PCA 

1

100

Matrix Recovery (RPCA) Matrix CompletionD. Gross
E. Candes (Stanford)
B. Recht (UC Berkeley)
J. Wright (Columbia)on Information Forensics & Security
J. Tropp (Caltech)
V. Chandrasekharan (Caltech)

B. Hassibi (Caltech)
P. Parrilo (MIT)
A. Willsky (MIT)
B. Hastie (Stanford)
C. Montanari (Stanford)
M. Jordan (Berkeley)
M. Wainwright (Berkeley)
B. Yu (Berkeley)
A. Singer (Princeton)
T. Tao (UCLA)
S. Osher (UCLA) 
O. Milenkovic (UIUC)
Y. Bresler (UIUC)
Y. Ma (UIUC)
M. Fazel (U Wash.)
… …

random signs
rank =

BIG PICTURE – Landscape of Theoretical Guarantees

Universality of phase transition (Oymak & Tropp). But does not yet apply here…



is high-dimensional and non-smooth.

Seemingly BAD NEWS: Our optimization problem

min
x
f (x)Convergence rate of solving a generic convex program:

Second-order Newton method, linear rate of convergence , but not scalable!
First-order methods depend strongly on the smoothness of  f :

ALGORITHMS – Are scalable solutions possible?

Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, 2003.



GOOD NEWS: The objective function has special structures

KEY OBSERVATION: Simple solutions for the proximal operations, given by 
soft-thresholding the entries or singular values of the matrix, respectively.

ALGORITHMS – Why are scalable solutions possible? 

GOOD NEWS: The objective function has special structures 

S"(Q) = argminX "kXk1 +
1

2
kX ¡Qk2F

KEY OBSERVATION: Simple solutions for the proximal operations, given by 

soft-thresholding the entries or singular values of the matrix, respectively. 

  

min kAk¤+¸kEk1 subj A+E =D

D"(Q) = argminX "kXk¤ +
1

2
kX ¡Qk2F

ALGORITHMS – Why are scalable solutions possible?



GOOD NEWS: Scalable first-order gradient-descent algorithms:
• Proximal Gradient [Osher, Mao, Dong, Yin ’09,Wright et. al.’09, Cai et. al.’09]. 
• Accelerated Proximal Gradient [Nesterov ’83, Beck and Teboulle ‘09]: 
• Augmented Lagrange Multiplier [Hestenes ‘69, Powell ’69]: 
• Alternating Direction Method of Multipliers [Gabay and Mercier ‘76].

ALGORITHMS – Evolution of scalable algorithms

Lin, Chen, and Ma, UILU-ENG-09-2214, 2010.

For a 1000x1000 matrix of rank 50, with 10% (100,000) entries 
randomly corrupted: 

Algorithms Accuracy Rank ||E||_0 # iterations time (sec)

IT 5.99e-006 50 101,268 8,550 119,370.3

DUAL 8.65e-006 50 100,024 822 1,855.4

APG 5.85e-006 50 100,347 134 1,468.9

APGP 5.91e-006 50 100,347 134 82.7

EALMP 2.07e-007 50 100,014 34 37.5

IALMP 3.83e-007 50 99,996 23 11.8

10,000
times
speedup!



A scalable algorithm: alternating direction method (ADMoM) for ALM:

repeat

Shrink singular values

Shrink absolute values

ALGORITHMS – Evolution of scalable algorithms

Lin, Chen, and Ma, UILU-ENG-09-2214, 2010.

Residual Network ModuleLinear operator

Nonlinear thresholding

Yk

Yk+1

Linear operator

Lagrange
Multiplier
Update



Provably Robust PCA at only a constant factor (≈20) 
more computation than conventional PCA! 

For a 1000x1000 matrix of rank 50, with 10% (100,000) entries 
randomly corrupted: 

Algorithms Accuracy Rank ||E||_0 # iterations time (sec)

IT 5.99e-006 50 101,268 8,550 119,370.3

DUAL 8.65e-006 50 100,024 822 1,855.4

APG 5.85e-006 50 100,347 134 1,468.9

APGP 5.91e-006 50 100,347 134 82.7

EALMP 2.07e-007 50 100,014 34 37.5

IALMP 3.83e-007 50 99,996 23 11.8

10,000
times
speedup!

ALGORITHMS – Evolution of fast algorithms (around 2009)



GREAT NEWS: Geometric convergence for gradient algorithms!
[Agarwal, Negahban, Wainwright, NIPS 2010]

ALGORITHMS – Convergence rate with strong convexity 

GREAT NEWS: Geometric convergence for gradient algorithms! 
f restricted strong convex: O(log(1="))
f smooth, r f Lipschitz: O("¡1=2)
f di®erentiable: O("¡1)
f non-smooth: O("¡2)

[Agarwal, Negahban, Wainwright, NIPS 2010] 

ALGORITHMS – Convergence rate with strong convexity



ALGORITHMS – Recap and Conclusions



q Repairing Images and Videos

• Image Repairing, Background Extraction, Street Panorama

q Reconstructing 3D Geometry

• Shape from Texture, Featureless 3D Reconstruction

q Registering Multiple Images

• Multiple Image Alignment, Video Stabilization

q Recognizing Objects

• Faces, Texts, etc. 

q Other Data and Applications

APPLICATIONS



compressive samples Low-rank Structures Sparse Structures

Recover low-dimensional structures from a fraction of missing
measurements with structured support.

Implications – Highly Compressive Sensing of Structured Information! 



Low-rank Texture Corruptions

Repairing Images – Highly Robust Repairing of Low-rank Textures! 

Liang, Ren, Zhang, and Ma, in ECCV 2012.



Low-rank Method Photoshop

Input

Output

Repairing Low-rank Textures

Liang, Ren, Zhang, and Ma, in ECCV 2012.



Low-rank Method Photoshop

Input

Output

Repairing (Distorted) Low-rank Textures

Liang, Ren, Zhang, and Ma, in ECCV 2012.



Structured Texture Completion and Repairing

Liang, Ren, Zhang, and Ma, in ECCV 2012.



…

…
RPCA

58 images of one person 
under varying lighting:

cast 
shadows

specularity

Repairing Multiple Correlated Images

Candes, Li, Ma, and Wright, Journal of the ACM, May 2011.



Input images

Mean error                   0.014o 0.96o

Max error                     0.20o 8.0o

Repairing Images – robust photometric stereo

Wu, Ganesh, Li, Matsushita, and Ma, in ACCV 2010.



Surveillance video

200 frames, 
144 x 172 pixels,

Significant foreground
motion

…

…

RPCA

Video         = Low-rank appx.      + Sparse error

Repairing Video Frames – background modeling from video

Candès, Li, Ma, and Wright, JACM, May 2011.



compressive samples Low-rank Structures Sparse Structures

Recover low-dimensional structures from diminishing fraction of 
corrupted measurements.

Implications – Highly Compressive Sensing of Structured Information! 



Repairing Video Frames – Street Panorama



Low-rank

Photoshop

AutoStitch

Repairing Video Frames – Street Panorama



Low-rank

Photoshop

AutoStitch

Repairing Video Frames – Street Panorama



corrupted data Low-rank Structures Sparse Structures

Fundamental Problem: How to recover low-rank and sparse structures from

subject to either nonlinear deformation     or linear compressive sampling    ?

Sensing or Imaging of Low-rank and Sparse Structures



Problem: Given                                  recover   ,  and simultaneously.

Low-rank component
(regular patterns…)

Sparse component
(occlusion, corruption, foreground…)

– deformed observation – low-rank structures – sparse errors

Parametric deformations
(affine, projective, radial distortion, 3D shape…)

o

Reconstructing 3D Geometry and Structures



Solution: Iteratively solving the linearized convex program::

Objective: Transformed Principal Component Pursuit::

Or reduced version:

– deformed observation – low-rank structures – sparse errors

o

Transform Invariant Low-rank Textures (TILT)

Zhang, Liang, Ganesh, Ma, ACCV’10, IJCV’12



A nearly optimal lower bound on minimum # of measurements!

THEORY – Compressive Robust PCA

Wright, Ganesh, Min, and Ma, IMA Information & Inference 2015, the Best Paper 2nd Prize



Input (red window     )

Output (rectified green window     )

TILT – Shape from texture

Zhang, Liang, Ganesh, Ma, ACCV’10, IJCV’12



TILT – Shape and geometry from textures

Zhang, Liang, and Ma, in ICCV 2011



TILT – Virtual reality

Zhang, Liang, and Ma, in ICCV 2011



TILT – Camera Calibration with Radial Distortion

Zhang, Matsushita, and Ma, in CVPR 2011



Previous approach Low-rank method

TILT – Camera Calibration with Radial Distortion

Zhang, Matsushita, and Ma, in CVPR 2011



TILT – Holistic 3D Reconstruction of Urban Scenes

Mobahi, Zhou, and Ma, in ICCV 2011



From one input image From four input images

TILT – Holistic 3D Reconstruction of Urban Scenes

Mobahi, Zhou, and Ma, in ICCV 2011



From eight input images

TILT – Holistic 3D Reconstruction of Urban Scenes

Mobahi, Zhou, and Ma, in ICCV 2011



Virtual reality in urban scenes



Problem: Given                                  recover   ,  and .

Low-rank component Sparse component

……

– corrupted & misaligned 
observation

– aligned low-rank
signals 

– sparse errors

…

Parametric deformations
(rigid, affine, projective…)

o

Solution: Robust Alignment via Low-rank and Sparse (RASL) Decomposition

Iteratively solving the linearized convex program::

Registering Multiple Images – Robust Alignment



RASL – Aligning Face Images from the Internet

Peng, Ganesh, Wright, Ma, CVPR’10, TPAMI’11*48 images collected from internet



Input: faces detected by a face detector (    )

Average

RASL – Faces Detected

Peng, Ganesh, Wright, Ma, CVPR’10, TPAMI’11



Output: aligned faces (           )

Average

RASL – Faces Aligned

Peng, Ganesh, Wright, Ma, CVPR’10, TPAMI’11



Output: clean low-rank faces (    )

Average

RASL – Faces Repaired and Cleaned

Peng, Ganesh, Wright, Ma, CVPR’10, TPAMI’11



Output: sparse error images (    )

RASL – Sparse Errors of the Face Images

Peng, Ganesh, Wright, Ma, CVPR’10, TPAMI’11



Input (red window       )

Output (rectified green window       )

Object Recognition – Regularity of Texts at All Scales!

Zhang, Liang, Ganesh, Ma, ACCV’10 and IJCV’12



Recognition – Street Sign Rectification

Xin Zhang, Zhouchen Lin, and Ma, ICDAR 2013



Microsoft OCR for rotated characters
(2,500 common Chinese characters)

Microsoft OCR for skewed characters 
(2,500 common Chinese characters)

Recognition – Character Rectification and Recognition

Xin Zhang, Zhouchen Lin, and Ma, ICDAR 2013



高清训练图像集

字典学习

稀疏表示字典 D 高清原图 x

H 下采样（4倍）

恢复的高清图像 x’

稀疏表示： x = D a
a – 稀疏系数

低分辨率图 y ＝ H x

超分辨率算法

Super Resolution via Transform Invariant Group Sparsity



Aim: Exploiting non-local structures  to perform super-resolution at large 
upsampling factors by

1. Learning the transformation that reveals the group-sparse structure of 
the image gradient (via TILT)

2. Enforcing this structure through group-sparse regularizers (DTV) that 
incorporates the transform and is consequently invariant to the transform

x 8

Super Resolution via Transform Invariant Group Sparsity

Carlos Fernandez and Emmanuel Candes of Stanford, ICCV2013



Super Resolution via Transform Invariant Group Sparsity

Carlos Fernandez and Emmanuel Candes of Stanford, ICCV2013



1. (Transformed) low-rank and sparse structures are central to visual data 
modeling, processing, and analyzing; 

2. Such structures can now be extracted correctly, robustly, and efficiently, 
from raw image pixels (or high-dim features);

3. These new algorithms unleash tremendous local or global information from 
single or multiple images, emulating or surpassing human capability; 

4. These algorithms start to exert significant impact on image/video processing, 
3D reconstruction, and object recognition. 

… … 

But try not to abuse or misuse them…

Take-home Messages for Visual Data Processing



TILT for 3D: Unsupervised upright orientation of man-made 3D objects

Other Applications – Upright orientation of man-made objects

Jin, Wu, and Liu of USTC, China, Graphical Models, 2012.



Other Data/Applications – Web Image/Tag Refinement

Zhu, Yan of NUS, Singapore, ACM MM 2010.



Documents

Words

word frequency (or TF/IDF)

a better model/solution?

Informative, 
discriminative 
“keywords”

Low-rank
“background”
topic model

Latent Semantic Indexing:   the classical solution (PCA)

Dense, difficult to interpret

CHRYSLER SETS STOCK SPLIT, HIGHER DIVIDEND

Chrysler Corp said it s board declared a three-for-two stock split in the
form of a 50 pct stock dividend and raised the quarterly dividend by
seven pct .
The company said the dividend was raised to 37.5 ct s a share from

35 cts on a pre-split basis, equal to a 25 ct dividend on a post -split
basis.
Chrysler said the stock dividend is payable April 13 to holders of

record March 23 while the cash dividend is payable April 15 to holders
of record March 23. It said cash will be paid in lieu of fract ional shares.
With the split , Chrysler said 13.2 mln shares remain to be purchased

in it s stock repurchase program that began in late 1984. That program
now has a target of 56.3 mln shares with the latest stock split .
Chrysler said in a statement the act ions "re° ect not only our out -

standing performance over the past few years but also our opt imism
about the company's future."

Other Data/Applications – Web Document Corpus Analysis



CHRYSLER SETS STOCK SPLIT, HIGHER DIVIDEND

Chrysler Corp said it s board declared a three-for-two stock split in the
form of a 50 pct stock dividend and raised the quarterly dividend by
seven pct .
The company said the dividend was raised to 37.5 ct s a share from

35 cts on a pre-split basis, equal to a 25 ct dividend on a post -split
basis.
Chrysler said the stock dividend is payable April 13 to holders of

record March 23 while the cash dividend is payable April 15 to holders
of record March 23. It said cash will be paid in lieu of fract ional shares.
With the split , Chrysler said 13.2 mln shares remain to be purchased

in it s stock repurchase program that began in late 1984. That program
now has a target of 56.3 mln shares with the latest stock split .
Chrysler said in a statement the act ions "re° ect not only our out -

standing performance over the past few years but also our opt imism
about the company's future."

Reuters-21578 dataset: 1,000 longest documents; 3,000 most frequent words

Other Data/Applications – Sparse Keywords Extracted

Min, Zhang, Wright, Ma, CIKM 2010.



Microarray data

Other Data/Applications – Protein-Gene Correlation

Wang, Machiraju, and Huang of Ohio State Univ. , Bioinformatics.



Other Data – Time Series Gene Expressions

Chang, Korkola, Amin, Tomlin of Berkeley, BiorXiv, 2014.



Songs (STFT) Low-rank (music) Sparse (voices)

Other Data/Applications – Lyrics and Music Separation

Po-Sen Huang, Scott Chen, Paris Smaragdis, Mark Hasegawa-Johnson of UIUC, ICASSP 2012.



Network Traffic = Normal Traffic + Sparse Anomalies + Noise

Other Data/Applications – Internet Traffic Anomalies

Mardani, Mateos, and Giannadis of Minnesota, Trans. Information Theory, 2013.



Robust Kalman Filter:

Robust System ID:

gross sparse errors
(due to buildings, trees…)

GPS on a Car:

Hankel matrix

Other Data/Applications: Robust Filtering and System ID 
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Robust Kalman Filter: 

Robust System ID: 

gross sparse errors 
(due  to  buildings,  trees…) 

GPS on a Car: 

Hankel matrix 

Dynamical System Identification, Maryan Fazel, Stephen Boyd, 2000 

Other Data/Applications: Robust Filtering and System ID 
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Robust Kalman Filter: 

Robust System ID: 

gross sparse errors 
(due  to  buildings,  trees…) 

GPS on a Car: 

Hankel matrix 

Dynamical System Identification, Maryan Fazel, Stephen Boyd, 2000 

Other Data/Applications: Robust Filtering and System ID 

½
_x = Ax+Bu; A 2 <r£r
y = Cx+ z + e

x̂t+1 =Axt +K(yt ¡Cx̂t)
2

66666664

yn yn¡1 yn¡2 ¢ ¢ ¢ y0

yn¡1 yn¡2 ¢ ¢ ¢
. . . y¡1

yn¡2 ¢ ¢ ¢
. . .

. . .
...

...
. . .

. . .
. . . y¡n+2

y0 y¡1 ¢ ¢ ¢ y¡n+2 y¡n+1

3

77777775

= On£rXr£n + S

Robust Kalman Filter: 

Robust System ID: 

gross sparse errors 
(due  to  buildings,  trees…) 

GPS on a Car: 

Hankel matrix 

Dynamical System Identification, Maryan Fazel, Stephen Boyd, 2000 

Other Data/Applications – Robust Filtering and System ID

Dynamical System Identification, Maryan Fazel, Stephen Boyd, 2000



Low-dimensionality of

Measure

Convex Surrogate

Compressed Sensing

Error Correction

Domain Transform

Mixed Structures

Sparse Vector

individual signal

L0 norm

L1 norm

Low-Rank Matrix

correlated signals

Nuclear norm

CONCLUSIONS – A Unified Theory for Sparsity and Low-Rank

Joint NSF Project  with Candes and Wright, 2010 - 2015



Compressive Sensing of Low-Dimensional Structures



A nearly optimal lower bound on minimum # of measurements!

Compressive Sensing and Unmixing of Low-dim Structures

Wright, Ganesh, Min, and Ma, ISIT’12, IMA I&I Best Paper 2nd Prize



• [Zhou et. al. ‘09] Spatially contiguous sparse errors via MRF
• [Bach ’10] – relaxations from submodular functions
• [Negahban+Yu+Wainwright ’10] – geometric analysis of recovery
• [Becker+Candès+Grant ’10] – algorithmic templates
• [Xu+Caramanis+Sanghavi ‘11] column sparse errors L2,1 norm
• [Recht+Parillo+Chandrasekaran+Wilsky ’11’12] – compressive sensing of various structures
• [Candes+Recht ’11] – compressive sensing of decomposable structures 

• [McCoy+Tropp’11,Amenlunxen+McCoy+Tropp’13] – phase transition for recovery and 
decomposition of structures

• [Wright+Ganesh+Min+Ma, ISIT’12,I&I’13] – compressive superposition of decomposable 
structures

For compressive robust recovery of a family of low-dimensional structures:

Take home message: Let the data and application tell you the structure…

Extensions – A Suite of Powerful Regularizers



Relationships with Deep Neural Networks

1. Evolution of the Structures of Deep Networks
FNN -> CNN -> ResNet -> ???

2. Deep Learning and Sparsity
Cascaded Structured Matrix Factorization
Global Optimality of Training

3. Supervision versus No-supervision
Simple Shallow Networks by Design
PCANet (and ScatteringNet and CapsuleNet)



Evolution of DNN – More Principled Structures

Fully Connected
Neural Networks
(before 2011)

Convolution
Neural Networks
(AlexNet 2011)

Residual 
Neural Networks
(2015, and AlphaGo Zero)

translational invariance

constrained optimization?



Evolution of DNN  – Temporal Sparse Coding & Stacked RNN

Luo, Liu and Gao of ShanghaiTech University, in ICCV 2017.

struction error [29][17]. Mathematically, denote a feature
corresponding to a normal event as xi, then it is desir-
able that xi can be linearly reconstructed by a dictionary
A with small reconstruction error ✏i, i.e., xi = A↵i + ✏i.
Under the assumption that ✏i s N (0,�2I), and ↵i s
Laplace(0, 2�2/�), we arrive at the following objective
function:

min
A,xi

1

2
kxi �A↵ik22 + �k↵ik1 (1)

In this formulation, the first term corresponds to a recon-
struction error, and it measures how well the feature can be
reconstructed by the dictionary, and the second term corre-
sponds to a sparsity term, and � balances the sparsity and
the reconstruction error. Larger � corresponds to a even
more sparse solution. To avoid trivial solutions of the prob-
lem, usually a L2 norm constraint is imposed on each col-
umn of A: kA(:, j)k  1. By alternatively optimizing
the dictionary and the sparse coefficients on the training
set [29], the dictionary can be learnt and it encodes all nor-
mal patterns. In the testing phase, when a feature comes in,
we first compute the sparse coefficients based on dictionary
A. Then based on its reconstruction error, we can classify
whether it belongs to normal or abnormal events.

3.2. Temporally-coherent Sparse Coding (TSC) for
Anomaly Detection

One advantage of sparse coding based anomaly detection
is that it learns a dictionary to encode all normal events with
small reconstruction errors, and an abnormal event would
be associated with a large reconstruction error. However, it
does not consider the temporal coherence between neigh-
boring frames within normal/abnormal events. However,
as shown previous works [17][18], in sparse coding, sim-
ilar features may be encoded as dissimilar sparse codes,
i.e., the locality information is lost. To preserve the sim-
ilarity between the neighboring frames, motivated by the
work [29], we propose a Temporally-coherent Sparse Cod-
ing (TSC). Specifically, if two neighboring frames are sim-
ilar, it is desirable that their sparse coefficients are simi-
lar too. To achieve this goal, we use the similarity be-
tween neighboring frames to weight the distance between
their sparse coefficients. Specifically, we denote xt�1 and
xt as features corresponding the (t � 1)-th frame and t-th
frame respectively, and denote the similarity between them
as St�1,t = exp(�kxt�xt�1k2

2
�2 ), where �2 = 100 in our ex-

periments. It is worth mentioning that since St�1,t would
be multiplied by �2, therefore, we can set � to any value
and tune �2 accordingly. Then we use St�1,t to weight
k↵t�↵t�1k22 and substitutes temporally coherent constraint
into the objective function of sparse coding, we arrive at the
objective function of TSC:

min
A,↵t

TX

t=1

kxt �A↵tk22+�1k↵tk1 + �2St,t�1k↵t � ↵t�1k22

s.t. kA(:, i)k  1

(2)

This objective 2 is not convex. Following the classical op-
timization strategy in sparse coding [2][16], we can alterna-

tively update A and ↵t (t = {1, . . . , T}).

Optimization of A. When all ↵t (t = {1, . . . , T}) are
fixed, the objective function corresponding to A can be writ-
ten as follows:

min
A

TX

t=1

kxt �A↵tk22

s.t. kA(:, i)k  1

(3)

Then, we use a projected gradient descent algorithm to op-
timize A.

Optimization of ↵t. When A is fixed, we arrive at the fol-
lowing objective function w.r.t. reconstruction coefficients
of all features:

min
↵t

TX

t=1

kxt �A↵tk22 + �1k↵tk1 + �2St,t�1k↵t � ↵t�1k22 (4)

After that, we update ↵t (t = {1, . . . , T}) with a Sequential
Iterative Soft-Thresholding Algorithm(SISTA) [26] whose
main steps are algorithm 1. In this algorithm, softb(x) =
max(x� b, 0) = ReLU(x� b), K corresponds to the steps
of ISTA algorithm. � is a hyper parameter.

Algorithm 1 Sequential iterative soft-thresholding algo-
rithm.
Input: extracted feature x1:T , hyper-parameter �1,�2, �,

initial ↵̂0, the steps of ISTA K
1: for t = 1 to T do
2: ↵̂0

t = ↵t�1

3: for k = 1 to K do
4: z = [I� 1

� (A
TA+St�1,t�2I)]↵̂

k�1
t + 1

�A
Txt

5: ↵̂(k)
t = soft�1/�(z +

St�1,t�2

� ↵t�1)
6: end for
7: ↵t = ↵̂K

t

8: end for
9: return ↵1:T ;

3.3. Interpreting TSC with a Stacked RNN (sRNN)
A traditional RNN is based on an assumption that ht =

f(xt, ht�1), which introduces a recurrent structure. Many
previous works [10][4] show that by stacking multiple
RNNs on top of each other, the performance of classifica-
tion or regression can be further boosted. We denote xt

as an input at time t and denote hk
t as an output of hid-

den nodes in the k-th layer at time t. �b is the nonlin-
ear activation function parameterized by b. In this paper,
we choose �b(x) = softb(x). Mathematically, the stacked
RNN (sRNN) can be written as follows [26]:

h(k)
t =

(
�b(W (1)h(1)

t�1 + V xt), k = 1,

�b(W (k)h(k)
t�1 + U (k)h(k�1)

t ), k > 1.
(5)

3
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struction error [29][17]. Mathematically, denote a feature
corresponding to a normal event as xi, then it is desir-
able that xi can be linearly reconstructed by a dictionary
A with small reconstruction error ✏i, i.e., xi = A↵i + ✏i.
Under the assumption that ✏i s N (0,�2I), and ↵i s
Laplace(0, 2�2/�), we arrive at the following objective
function:

min
A,xi

1

2
kxi �A↵ik22 + �k↵ik1 (1)

In this formulation, the first term corresponds to a recon-
struction error, and it measures how well the feature can be
reconstructed by the dictionary, and the second term corre-
sponds to a sparsity term, and � balances the sparsity and
the reconstruction error. Larger � corresponds to a even
more sparse solution. To avoid trivial solutions of the prob-
lem, usually a L2 norm constraint is imposed on each col-
umn of A: kA(:, j)k  1. By alternatively optimizing
the dictionary and the sparse coefficients on the training
set [29], the dictionary can be learnt and it encodes all nor-
mal patterns. In the testing phase, when a feature comes in,
we first compute the sparse coefficients based on dictionary
A. Then based on its reconstruction error, we can classify
whether it belongs to normal or abnormal events.

3.2. Temporally-coherent Sparse Coding (TSC) for
Anomaly Detection

One advantage of sparse coding based anomaly detection
is that it learns a dictionary to encode all normal events with
small reconstruction errors, and an abnormal event would
be associated with a large reconstruction error. However, it
does not consider the temporal coherence between neigh-
boring frames within normal/abnormal events. However,
as shown previous works [17][18], in sparse coding, sim-
ilar features may be encoded as dissimilar sparse codes,
i.e., the locality information is lost. To preserve the sim-
ilarity between the neighboring frames, motivated by the
work [29], we propose a Temporally-coherent Sparse Cod-
ing (TSC). Specifically, if two neighboring frames are sim-
ilar, it is desirable that their sparse coefficients are simi-
lar too. To achieve this goal, we use the similarity be-
tween neighboring frames to weight the distance between
their sparse coefficients. Specifically, we denote xt�1 and
xt as features corresponding the (t � 1)-th frame and t-th
frame respectively, and denote the similarity between them
as St�1,t = exp(�kxt�xt�1k2

2
�2 ), where �2 = 100 in our ex-

periments. It is worth mentioning that since St�1,t would
be multiplied by �2, therefore, we can set � to any value
and tune �2 accordingly. Then we use St�1,t to weight
k↵t�↵t�1k22 and substitutes temporally coherent constraint
into the objective function of sparse coding, we arrive at the
objective function of TSC:

min
A,↵t

TX

t=1

kxt �A↵tk22+�1k↵tk1 + �2St,t�1k↵t � ↵t�1k22

s.t. kA(:, i)k  1

(2)

This objective 2 is not convex. Following the classical op-
timization strategy in sparse coding [2][16], we can alterna-

tively update A and ↵t (t = {1, . . . , T}).

Optimization of A. When all ↵t (t = {1, . . . , T}) are
fixed, the objective function corresponding to A can be writ-
ten as follows:

min
A

TX

t=1

kxt �A↵tk22

s.t. kA(:, i)k  1

(3)

Then, we use a projected gradient descent algorithm to op-
timize A.

Optimization of ↵t. When A is fixed, we arrive at the fol-
lowing objective function w.r.t. reconstruction coefficients
of all features:

min
↵t

TX

t=1

kxt �A↵tk22 + �1k↵tk1 + �2St,t�1k↵t � ↵t�1k22 (4)

After that, we update ↵t (t = {1, . . . , T}) with a Sequential
Iterative Soft-Thresholding Algorithm(SISTA) [26] whose
main steps are algorithm 1. In this algorithm, softb(x) =
max(x� b, 0) = ReLU(x� b), K corresponds to the steps
of ISTA algorithm. � is a hyper parameter.

Algorithm 1 Sequential iterative soft-thresholding algo-
rithm.
Input: extracted feature x1:T , hyper-parameter �1,�2, �,

initial ↵̂0, the steps of ISTA K
1: for t = 1 to T do
2: ↵̂0

t = ↵t�1

3: for k = 1 to K do
4: z = [I� 1

� (A
TA+St�1,t�2I)]↵̂

k�1
t + 1

�A
Txt

5: ↵̂(k)
t = soft�1/�(z +

St�1,t�2

� ↵t�1)
6: end for
7: ↵t = ↵̂K

t

8: end for
9: return ↵1:T ;

3.3. Interpreting TSC with a Stacked RNN (sRNN)
A traditional RNN is based on an assumption that ht =

f(xt, ht�1), which introduces a recurrent structure. Many
previous works [10][4] show that by stacking multiple
RNNs on top of each other, the performance of classifica-
tion or regression can be further boosted. We denote xt

as an input at time t and denote hk
t as an output of hid-

den nodes in the k-th layer at time t. �b is the nonlin-
ear activation function parameterized by b. In this paper,
we choose �b(x) = softb(x). Mathematically, the stacked
RNN (sRNN) can be written as follows [26]:

h(k)
t =

(
�b(W (1)h(1)

t�1 + V xt), k = 1,

�b(W (k)h(k)
t�1 + U (k)h(k�1)

t ), k > 1.
(5)
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...

... ... ...

(a) Vanilla stacked RNN [26]

...

... ... ...

(b) Stacked RNN couterpart of TSC

Figure 1. The blue boxes represent the input xt of stacked RNNs. The green and orange boxes represent coding vectors ↵k
t . The yellow

circles are similarities between neighboring frames.

The first layer accepts the last moment output at the same
layer h1

t�1 and the current moment input xt as its inputs.
Similarly, the rest of the stacked layers accept the last mo-
ment output hk

t�1 at the same layer and the previous layer
output hk�1

t at the same moment as their inputs.
By comparing the optimization procedure in Algorithm 1

with stacked RNN, we can see that Equation (2) can be in-
terpreted with sRNN: The K steps in Sequential Iterative
Soft-Thresholding Algorithm correspond to the number of
layers in sRNN. Compared the proposed sRNN to classical
RNN [10], the difference between them is that xt is fed into
to all sRNN layers in our sRNN, while vanilla RNN only
takes xt as its input in the first layer. Further, St,t�1 takes
xt and xt�1 as inputs, which means that hk

t also depends on
the input of last moment xt�1. And St,t�1 is the input of
each hidden state hk

t . We illustrate the stacked RNN in our
problem in Figure 1.

More specifically, the mapping from the variables in
TSC to variables in sRNN in Equation (5) is:

W (1) = I � �2

�
ATA

W (k) =
St�1,t�2

�
I, k > 1

U (k) = I � 1

�
(ATA+ St�1,t�2I), k > 1

V (k) =
1

�
AT , k = 1, ...,K

b = �1/�

h(k)
t = ↵k

t

3.4. Learning Parameters with Our sRNN
If the number of layers in stacked RNN (K) is very

high, our network is identical with the TSC, which guar-
antees that all ↵t’s are sparse. Nevertheless, we also

need to choose proper hyper-parameters in TSC to guar-
antee its good performance for anomaly detection. How-
ever, such hyper-parameter selection is nontrivial. Rather
than optimizing the objective in TSC with the fixed hyper-
parameters, we propose to optimize all parameters in sRNN
simultaneously. Specifically, we optimize parameters in
our sRNN by using an Auto-Encoder way, i.e., we use
the last layer output (hK

t ) of sRNN to reconstruct the in-
put xt with the mapping function parameterized by Z,
i.e., xt = ZhK

t . We denote the parameters in sRNN as
✓ = {A,�1,�2, Z,↵0, �}. Then we can optimize all pa-
rameters as follows:

min
✓

TX

t=1

kxt � ZhK
t k2F + �k✓k2F (6)

To solve the Equation (6), we use a min-batch based
Stochastic Gradient Descent (SGD) algorithm. Specifi-
cally, we use the RMSPROP [23] based SGD method, and
the weight for weight decay term � = 0.005. Further,
a larger K will inevitably introduces more computational
cost. Therefore, rather than using a very large K, we use a
small one (K=3). As shown in experiments section, such a
shallow architecture achieves much better performance than
all existing methods. Our sRNN has two advantages: i) we
can learn all parameters in sRNN rather than choosing the
hyper-parameters in TSC; ii) the architecture of our sRNN
is not that deep. In the testing phase, we can get ↵t = hK

t

in one forward pass, which greatly accelerates anomaly de-
tection.

3.5. Multiple Patches Sampled at Multiple Scales
Sampling multiple patches at multiple scales has been

shown to be a very effective way for improving the anomaly
detection [17]. We also use the same strategy. Specifically,
in our work, we use the spatial ConvNet pretrained on the
UCF101 dataset to extract spatial features for each frame,

4

RNN structures derived from group sparsity! 



Evolution of DNN  – Graphical Model Inference as Networks

Zhu, Tu, and Ma et. al. of ShanghaiTech University, in ICCV 2017.

Structured Attentions for Visual Question Answering
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“What is the size 
of the sphere on 
the right of the 
cyan cylinder? ”

GRU
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F/LBP

M
F/LBP

M
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𝑥0 𝑥1 … 𝑏

Recurrent Inference Layers

Glimpses

CRF

𝜓𝑖 𝑧𝑖 , 𝜓𝑖𝑗(𝑧𝑖, 𝑧𝑗)

𝜓𝑖 𝑧𝑖

Figure 2. The whole picture of the proposed model. The unary potential  i(zi) and pairwise potential  ij(zi, zj) are computed with Eq.
(8), which are inputs to the recurrent inference layers.  i(zi) is also used as an additional glimpse, which usually detects the key-word
objects. In the inference layers, xi represents b(i) for MF and m(i) for LBP. The recurrent inference layers generates a refined glimpse
with Mean Field or Loopy Belief Propagation. The 2 glimpses are used to weight-sum the visual feature vectors. The classifier use both of
the attended visual features and the question feature to predict the answer. The demonstrated image is a real case.

where U 2 R1⇥nI and g(·) is some multimodal feature
pooling function, such as [9, 20]. Such a model ignores the
spatial arrangement of X even when it is applied hierarchi-
cally in the methods utilizing multi-step inference[41].

To be noted, multinoulli distribution only requires the
probabilities to be positive and sum to 1. In our full mod-
el, multinoulli attention is implemented as an additional
glimpse1, but with a different model, which normalizes the
sigmoid activations, to fully utilize the unary potential mod-
el in Eq. 8:

p(z = i|X, q) =
�(Ug(xi, q))P
j �(Ug(xj , q))

(3)

3.2. Multivariate Attention
To consider the spatial relationships of X, we adopt a

multivariate attention model similar to [21], in which we
consider the distribution z ⇠ p(z|X, q) of a vector of latent
variables z = [z1, ..., zM ]T with zi = 1 if xi is related to
the question and zi = 0 otherwise. The expectation over the
sum of all related regions with respect to the distribution can
be derived as a sum of xi weighted by p(zi = 1|X, q):

Ez⇠p(z|X,q)[Xz] =
X

i

p(zi = 1|X, q)xi. (4)

To reduce covariance shift, we normalize the expectation to
get the context c:

c =
1

S

X

i

p(zi = 1|X, q)xi, (5)

where S =
P

i p(zi = 1|X, q).
We model the distribution p(z|X, q) in the most straight-

forward form, a grid-structured Conditional Random Field,
1Glimpses refer to multiple attentions. The contexts c of these atten-

tions are usually concatenated for use, as in [9, 20].

which represents the joint probability p(z|X, q) with a grid-
structured factor graph that considers the pairwise joint dis-
tribution of a block’s 4-neighbourhood, as shown in Fig. 2.
Let N = {(i, j)|i < j, j 2 Ni}, where Ni is the set of i’s
neighbors on the graph. The grid-structured CRF assumes

p(z|X, q) =
1

Z

Y

(i,j)2N

 ij(zi, zj)
Y

i

 i(zi), (6)

where the unary potential  i(zi) � 0 measures the likeli-
hood of xi taking the label zi, and the pairwise potential
 ij(zi, zj) � 0 measures the likelihood of xi,xj taking la-
bels zi, zj simultaneously.

3.3. Recurrent Inference Layers
The inference problem in such a gird-structured fac-

tor graph, which aims to calculate the marginal probabili-
ty p(zi|X, q; ✓), is known to be NP-hard[35]. Still, there
are approximate inference algorithms to solve the problem,
such as Mean Field (MF) and Loopy Belief Propagation
(LBP). These algorithms take potential functions  i(zi)
and  ij(zi, zj) as input and updates p(zi|X, q; ✓) iterative-
ly through message passing. We train neural networks to
predict optimal  i(zi) and  ij(zi, zj) for the algorithms to
finish inference in a fixed amount of T steps, and the itera-
tive algorithm is implemented as recurrent inference layers
in the neural network.

3.3.1 Potential Functions

In VQA, the potential functions should depend on both
the image and question. Thus, we use low-rank bilinear
pooling[20], a parsimonious model capturing the interac-
tion between every dimension of 2 feature vectors, to model
 i(zi) and  ij(zi, zj), represented by the following func-
tion:

g(x,y;Px,Py, P ) = P(tanh(Pxx)� tanh(Pyy)), (7)

3

Recurrent inference layers derived from MF or LBP (for graphical models)! 



• Deep learning is a cascaded matrix factorization

features weightsnonlinearity

labels regularizerloss

II. Deep Learning and Sparsity

Vidal, Haeffele, and Young of JHU, ICML2014



• Theorem: If the functions     and     are sums of positively 
homogeneous functions, then any local minimizer such that 
for some i and all k                 gives a global minimizer

• Examples of positively homogeneous compositions
– Matrix multiplication: matrix factorization 
– CANDECOMP/PARAFAC decompositions: tensor factorization
– Rectified linear units + max pooling: deep learning

• Examples of positively homogeneous regularizers
– Sums of products of norms (L1, L2, TV, etc.): structured factorizations

Deep Learning and Sparsity

Vidal, Haeffele, and Young of JHU, ICML2014



2-3 layers, fixed topology, simplest data-adaptive linear mapping, 
and simplest nonlinear processing and simplest pooling…

III. Supervision or None? - PCANet

PCANet, Chan and Ma et. al. in IEEE Trans. On Image Processing, 2015



• Cascaded PCA filters
• Binary hashing
• Block-wise histogram

PCANet – Basic Structure

PCANet, Chan and Ma et. al. in IEEE Trans. On Image Processing 2015

• ScatteringNet (S. Mallat et. al. 2013)
• CapsuleNet (G. Hinton et. al. 2017)

• Two to three layers!
• By design, no supervision!
• Pure feed-forward, no BP!



FERET contains images of 1,196 different individuals with 
up to 5 images of each individual. 
The probe set is divided into four subsets 

Fb with different expression changes; 
Fc with different lighting conditions; 
Dup-I taken within the period of three to four months; 
Dup-II taken at least one and a half year apart.

Fb Fc Dup-I Dup-IIGallery Gallery

PCANet – Test on NIST FERET

PCANet, Chan and Ma et. al. in IEEE Trans. On Image Processing 2015



The non-overlapping block size (for histogram) is 15x15. 
The dimension of the PCANet features are reduced to 1000 by a 
whitening PCA (WPCA). 
“Trn. CD” means trained with standard FERET CD dataset
The NN classifier with cosine distance is used.

PCANet – Test on NIST FERET

PCANet, Chan and Ma et. al. in IEEE Trans. On Image Processing 2015



From Supervised to Unsupervised Learning, 
From One Subspace to Multiple Subspaces.

A recent book: 

• Generalized Principal Component Analysis

R. Vidal, Yi Ma, S. Sastry, Springer 2016
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Core References: 
• Robust Principal Component Analysis? Candes, Li, Ma, Wright, Journal of the ACM, 2011.

• TILT: Transform Invariant Low-rank Textures, Zhang, Liang, Ganesh, and Ma, IJCV 2012.

• Compressive Principal Component Pursuit, Wright, Ganesh, Min, and Ma, IMA I&I 2013.

Website (codes, applications, & references):

http://perception.csl.illinois.edu/matrix-rank/home.html
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A New Graduate Textbook: 
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Cloud Computing
(parallel, distributed, 
scalable platforms)

Mathematical Theory
(high-dimensional statistics, convex geometry, 

measure concentration, combinatorics…)

Computational Methods
(convex optimization, first-order algorithms, 

random sampling, deep networks…)

BIG DATA
(images, videos,

voices, texts, 
biomedical, geospatial,

consumer data…)

Applications
& Services

(data processing,
analysis, compression,
knowledge discovery,
search, recognition…)U.S. COMMERCE'S ORTNER SAYS YEN UNDERVALUED

Commerce Dept . undersecret ary of economic a®airs Robert Ortner said that
he believed the dollar at current levels was fairly priced against most European
currencies.
In a wide ranging address sponsored by the Export -Import Bank, Ortner,

t he bank's senior economist also said he believed that t he yen was undervalued
and could go up by 10 or 15 pct .
" I do not regard the dollar as undervalued at t his point against t he yen,"

he said.
On the other hand, Ortner said that he thought that " the yen is st ill a

lit t le bit undervalued," and "could go up another 10 or 15 pct ."
In addit ion, Ortner, who said he was speaking personally, said he thought

that t he dollar against most European currencies was "fairly priced."
Ortner said his analysis of the various exchange rate values was based on

such economic part iculars as wage rat e di®erent iat ions.
Ortner said there had been lit t le impact on U.S. t rade de¯cit by the decline

of t he dollar because at t he t ime of the P laza Accord, t he dollar was ext remely
overvalued and that t he ¯rst 15 pct decline had lit t le impact .
He said there were indicat ions now that t he t rade de¯cit was beginning to

level o®.
Turning to Brazil and Mexico, Ortner made it clear t hat it would be

almost impossible for those count ries to earn enough foreign exchange to pay
the service on their debt s. He said the best way to deal with this was to use
the policies out lined in Treasury Secret ary J ames Baker' s debt init iat ive.

A Perfect Storm… 
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Questions, please?

o

THANK YOU!


