Low-dimensional Structures and Deep Models for High-dimensional (Visual) Data

Yi Ma

EECS Department, UC Berkeley

Dutch Mathematical Congress, April 4, 2018

My Interests – From 3-D Vision to High-Dim Data

In order to recover 3D geometry from 2D images, we need to understand low-dim structures in high-dim spaces...

2016

2003

Interdisciplinary Applied Mathematics 40 René Vidal Yi Ma Shankar Sastry Generalized Principal Component Analysis D Springer

soon

High-Dimensional Data Analysis with

Sparse and Low-Dimensional Models

Theory, Algorithms, and Applications John Wright (Columbia University) Yi Ma (University of California, Berkeley) Allen Y. Yang (University of California, Berkeley)

February 26, 2018

 $\label{eq:copyright} Copyright @2014 Reserved \\$ No parts of this draft may be reproduced without written permission from the authors.

Shanghai Museum Items On HTC VIVE

On iPhone VR kit

With Jingyi Yu of ShanghaiTech, 2017

CONTEXT – Data increasingly massive, high-dimensional...

How to extract low-dim structures from such high-dim data?

CONTEXT – Low dimensional structures in visual data

(1)) which turns out in the end to be mathematically equivalent to maximum entropy the problem is inserving also in that we can see a continuous gradation from decise bleams so simple, with our stores serve trils us the answer instantial, with our store thematical theory, through problems more and more involved so that common senmore and more difficulty is making a decision, sutil finally we reach a point whe ooly has yet claimed to be able to see the right decision instatively, and we require the pression to the so-the so-theory.

nally, the widget problem turns out to be very close to an important ital problem face al prospectors. The details of the real problem are shrouded in proprietary caution: bu one giving away any secrets to report that, a few years ago, the writer speet a week a escarch laboratories of one of our large oil companies, lecturing for over 20 hours or sidget problem. We were through every part of the calculation in extractating detail a norm full of engineers armed with calculations, checking up on every stage of the necal work.

re is the problem: Mr A is in charge of a weight factory, which providy advertises that is uake delivery in 24 hours on any size order. This, of cousie, is not really store, and Mr A's to protect, as been to caus, the advertising manager's reputation for venscity. This means adv morning he most decide whether the day's run of 200 widgets will be painted red or green. (For complex technological reasons, not relevant to the present publics not necessary to be produced per day.) We follow his problem of decision through tevers

Visual data exhibit *low-dimensional structures* due to rich *local* regularities, *global* symmetries, *repetitive* patterns, or *redundant* sampling.

CONTEXT – PCA: Fitting Data with a Low-dim. Subspace

If we view the data (image) as a matrix

$$A = [\mathbf{a}_1 \mid \cdots \mid \mathbf{a}_n] \in \mathbb{R}^{m imes n}$$

then

 $r \doteq \operatorname{rank}(A) \ll m.$

Principal Component Analysis (PCA) via singular value decomposition (SVD):

- Optimal estimate of A under iid Gaussian noise D = A + Z
- Efficient and scalable computation
- Fundamental statistical tool, with huge impact in image processing, vision, web search, bioinformatics...

But... PCA breaks down under even a single corrupted observation.

CONTEXT – But life is not so easy...

Real application data often contain **missing observations**, **corruptions**, or subject to unknown **deformation or misalignment**.

Classical methods (e.g., PCA, least square regression) break down...

A **long and rich history** of robust estimation with error correction and missing data imputation:

R. J. Boscovich. *De calculo probailitatum que respondent diversis valoribus summe errorum post plures observationes* ..., before 1756

A. Legendre. *Nouvelles methodes pour la determination des orbites des cometes*, 1806

over-determined + dense, Gaussian

C. Gauss. Theory of motion of heavenly bodies, 1809

A. Beurling. *Sur les integrales de Fourier absolument convergentes et leur application a une transformation functionelle*, 1938

underdetermined + sparse, Laplacian

CONTEXT – Recent related progress

CONTEXT – Recent related progress

Hugely active area: Candès+Tao'05, Wright+Ma'10, Nguyen+Tran'11, Li '11, also Zhang, Yang, Huang'11, Oymak+Tropp'15 etc...

EXPERIMENTS – Varying Level of Random Corruption

Extended Yale B Database (38 subjects)

Training: subsets 1 and 2 (717 images) Testing: subset 3 (453 images)

Wright, Yang, Ganesh, Sastry, and Ma. Robust Face Recognition via Sparse Representation, TPAMI 2009

Theory – Geometry and Statistics of Face Images

Theorem 1. For any $\delta > 0$, $\exists \nu_0(\delta) > 0$ such that if $\nu < \nu_0$ and $\rho < 1$, in weak proportional growth, with error support J and signs σ chosen uniformly at random,

$$\lim_{m \to \infty} P_{A,J,\sigma} \left[\ell^1 \text{-recoverability at} (I, J, \boldsymbol{\sigma}) \ \forall I \in \binom{[n]}{k_1} \right] = 1.$$

' ℓ^1 recovers any sparse signal from almost any error with density less than 1 "

Dense Error Correction via L1 – minimization, IEEE Trans. Information Theory, 2010

CONTEXT – Basic Algorithm for Sparsity (ISTA)

Algorithm 8.1 Iterative Soft-Thresholding Algorithm (ISTA) for BPDN

- 1: Problem: $\min_{\boldsymbol{x}} \frac{1}{2} \|\boldsymbol{y} \boldsymbol{A}\boldsymbol{x}\|_{2}^{2} + \lambda \|\boldsymbol{x}\|_{1}$, given $\boldsymbol{y} \in \mathbb{R}^{d}$, $\boldsymbol{A} \in \mathbb{R}^{d \times n}$.
- 2: Input: $\boldsymbol{x}_0 \in \mathbb{R}^n$ and $L \geq \lambda_{\max}(\boldsymbol{A}^T \boldsymbol{A})$.
- 3: while x_k not converged (k = 1, 2, ...) do
- 4: $\boldsymbol{w}_k \leftarrow \boldsymbol{x}_k \frac{1}{L} \boldsymbol{A}^T (\boldsymbol{A} \boldsymbol{x}_k \boldsymbol{y}).$
- 5: $\boldsymbol{x}_{k+1} \leftarrow \operatorname{soft}(\boldsymbol{w}_k, \lambda/L).$
- 6: end while
- 7: Output: $x_{\star} \leftarrow x_k$.

Soft Thresholding

If only interested in one instance: y = Ax AND with many training data: {(y_i, x_i)}. We can optimize the optimization path of ISTA using supervised learning:

Algorithm 3 LISTA::fprop	Algorithm 4 LISTA::bprop		
LISTA :: $\mathbf{fprop}(X, Z, W_e, S, \theta)$	LISTA :: bprop $(Z^*, X, Z, W_e, S, \theta, \delta X, \delta W_e, \delta S, \delta \theta)$		
;; Arguments are passed by reference.	;; Arguments are passed by reference.		
;; variables $Z(t)$, $C(t)$ and B are saved for bprop.	;; Variables $Z(t)$, $C(t)$, and B were saved in fprop.		
$B = W_e X; Z(0) = h_{\theta}(B)$	Initialize: $\delta B = 0$; $\delta S = 0$; $\delta \theta = 0$		
for $t = 1$ to T do	$\delta Z(T) = (Z(T) - Z^*)$		
C(t) = B + SZ(t-1)	for $t = T$ down to 1 do		
$Z(t) = h_{\theta}(C(t))$	$\delta C(t) = h'_{\theta}(C(t)).\delta Z(t)$		
end for	$\delta \theta = \delta \theta - \operatorname{sign}(C(t)).\delta C(t)$		
Z = Z(T)	$\delta B = \delta B + \delta C(t)$		
	$\delta S = \delta S + \delta C(t) Z(t-1)^T$		
	$\delta Z(t-1) = S^T \delta C(t)$		
	end for		
	$\delta B = \delta B + h'_{\theta}(B).\delta Z(0)$		
	$\delta \theta = \delta \theta - \operatorname{sign}(B) . h'_{\theta}(B) \delta Z(0)$		
	$\delta W_e = \delta B X^T; \ \delta X = W_e^T \delta B$		

CONTEXT – Recent related progress

Hugely active area: Recht+Fazel+Parillo'07, Candès+Plan'10, Mohan+Fazel'10, Recht+Xu+Hassibi'11, Chandrasekaran+Recht+Parillo+Willsky'11, Negahban+Wainwright'11, Oymak+Tropp'15 ...

CONTEXT – Recent related progress

Matrix completion: Given $y = \mathcal{P}_{\Omega}[\mathbf{A}_0], \ \Omega \subset [m] \times [n]$, recover \mathbf{A}_0 .

Impossible in general ($|\Omega| \ll mn$)

Well-posed if A_0 is structured (*low-rank*), but still NP-hard

Tractable via convex optimization: $\min ||A||_*$ s.t. $y = \mathcal{P}_Q(A)$

... if Ω is "nice" (random subset) ...

... and A_0 interacts "nicely" with \mathcal{P}_{Ω} (A_0 incoherent – not "spiky").

Hugely active area: Candès+Recht '08, Keshevan+Oh+Montonari '09, Candès+Tao '09, Gross '10, Recht '10, Negahban+Wainwright '10, Oymak+Tropp'15...

CONTEXT – Why Should You Care?

Learning Graphical Models

$$X = (X_o, X_h) \sim \mathcal{N}(0, \Sigma)$$

$$X_h$$

$$\Sigma = \begin{bmatrix} \Sigma_o & \Sigma_{oh} \\ \Sigma_{ho} & \Sigma_h \end{bmatrix} \Rightarrow \Sigma^{-1} = \begin{bmatrix} J_o & J_{oh} \\ J_{ho} & J_h \end{bmatrix}$$

 X_i, X_j cond. indep. given other variables $\Leftrightarrow (\Sigma^{-1})_{ij} = 0$

Separation Principle:

$$\Sigma_o^{-1} = J_o - J_{oh}J_h^{-1}J_{ho}$$

observed = sparse + low-rank

• sparse pattern \rightarrow conditional (in)dependence

• rank of second component \rightarrow number of hidden variables

Chandrasekharan, Parrilo, and Wilsky of MIT, Annual of Statistics, 2012

CONTEXT – Why Should You Care?

Learning Deep Neural Networks

Figure 2. A simple neural network with one layer of hidden nodes, with softmax output, can be viewed as selecting features.

Theorem 1. *The softmax function* (17) *can be approximated as*

$$Q_{Y|X}^{(v,b)}(y|x) = P_Y(y) \left(1 + \tilde{v}^{\mathrm{T}}(y)s(x) + \tilde{d}(y) \right) + o(\epsilon)$$

and the loss (16), equivalently expressed as the K-L divergence, can be approximated as

$$D(P_{Y,X} \| P_X Q_{Y|X}^{(v,b)})$$

$$= \frac{1}{2} \| \tilde{\mathbf{B}} - \Psi \Phi^{\mathrm{T}} \|_{\mathrm{F}}^2 + \frac{1}{2} \eta^{(v,b)}(s) + o(\epsilon^2),$$
(18)

where $\eta^{(v,b)}(s) \triangleq \mathbb{E}_{P_Y}\left[(\mu_s^{\mathrm{T}}\tilde{v}(Y) + \tilde{d}(Y))^2\right]$. Moreover, the loss (18) is minimized when $\tilde{d}(y) + \mu_s^{\mathrm{T}}\tilde{v}(y) = 0$, and Φ , Ψ are designed from

$$(\Psi, \Phi)^* = \underset{(\Psi, \Phi)}{\operatorname{arg\,min}} \|\tilde{\mathbf{B}} - \Psi \Phi^{\mathrm{T}}\|_{\mathrm{F}}^2.$$
(19)

From information-theoretic perspective, DNNs (with softmax objective) is to learn a low-rank approximation of the joint distribution P(X, Y) of the input X and output Y.

Lizhong Zheng of MIT, Submitted to ICML 2018

The data should be **low-dimensional (low-rank)**:

 $\mathbf{A} = [\mathbf{a}_1 \mid \cdots \mid \mathbf{a}_n] \in \mathbb{R}^{m \times n}, \quad \operatorname{rank}(\mathbf{A}) \ll m.$

The data should be **low-dimensional**:

 $A = [\mathbf{a}_1 \mid \dots \mid \mathbf{a}_n] \in \mathbb{R}^{m \times n}, \quad \operatorname{rank}(A) \ll m.$

... but some of the observations are **grossly corrupted**:

A + E, $|E_{ij}|$ E_{ij} arbitrarily large, but most are zero.

The data should be **low-dimensional**:

 $A = [\mathbf{a}_1 \mid \dots \mid \mathbf{a}_n] \in \mathbb{R}^{m \times n}, \quad \operatorname{rank}(A) \ll m.$

... but some of the observations are grossly corrupted: A + E, $|E_{ij}|$ E_{ij} arbitrarily large, but most are zero.

... and some of them can be **missing** too:

 $D = \mathcal{P}_{\Omega}[\mathbf{A} + E],$ $\Omega \subset [m] \times [n] \text{ the set of observed entries.}$

The data should be **low-dimensional**:

 $A = [\mathbf{a}_1 \mid \dots \mid \mathbf{a}_n] \in \mathbb{R}^{m \times n}, \quad \operatorname{rank}(A) \ll m.$

... but some of the observations are grossly corrupted: A + E, $|E_{ij}|$ E_{ij} arbitrarily large, but most are zero.

... and some of them can be **missing** too:

 $D = \mathcal{P}_{\Omega}[A + E],$ $\Omega \subset [m] \times [n] \text{ the set of observed entries.}$

... special cases of a more general problem:

 $D = \mathcal{L}_1(A) + \mathcal{L}_2(E) + Z$ A, E either sparse or low-rank

THIS TALK

Given observations D = P_Q[A + E + Z], with A low-rank, E sparse, Z small, dense noise, recover a good estimate of A and E.
□ Theory and Algorithm
• Provably Correct and Tractable Solution
• Provably Optimal and Efficient Algorithms

Potential Applications

- Visual Data (Restoration, Reconstruction, Recognition)
- Other Data

Extensions and Conclusions

ROBUST PCA – Problem Formulation

Problem: Given $D = A_0 + E_0$, recover A_0 and E_0 .

Low-rank component Sparse component (gross errors)

Numerous approaches in the literature:

- Multivariate trimming [Gnanadesikan and Kettering '72]
- Power Factorization [Wieber'70s]
- Random sampling [Fischler and Bolles '81]
- Alternating minimization [Shum & Ikeuchi'96, Ke and Kanade '03]
- Influence functions [de la Torre and Black '03]

Key question: can guarantee correctness with an efficient algorithm?

ROBUST PCA – Convex Surrogates for Sparsity and Rank

Seek the lowest-rank A that agrees with the data up to some sparse error E:

min rank(A) + $\gamma ||E||_0$ subj A + E = D.

But INTRACTABLE! Relax with convex surrogates:

 $||E||_0 = \#\{E_{ij} \neq 0\} \rightarrow ||E||_1 = \sum_{ij} |E_{ij}|.$ L₁ norm

 $\operatorname{rank}(A) = \#\{\sigma_i(A) \neq 0\} \rightarrow \|A\|_* = \sum_i \sigma_i(A).$ Nuclear norm

Convex envelope over $B_{2,2} \times B_{1,\infty}$

ROBUST PCA – By Convex Optimization

Seek the lowest-rank A that agrees with the data up to some sparse error E:

min rank(A) + $\gamma ||E||_0$ subj A + E = D.

But INTRACTABLE! Relax with convex surrogates:

 $||E||_0 = \#\{E_{ij} \neq 0\} \rightarrow ||E||_1 = \sum_{ij} |E_{ij}|.$ L₁ norm

 $\operatorname{rank}(A) = \#\{\sigma_i(A) \neq 0\} \rightarrow \|A\|_* = \sum_i \sigma_i(A).$ Nuclear norm

min $||A||_* + \lambda ||E||_1$ subj A + E = D. Semidefinite program, solvable in polynomial time

V. Chandrasekaran et. al. IFAC 2009, J. Wright et. al. NIPS 2009.

ROBUST PCA – When the Convex Program Works?

White regions are instances with perfect recovery.

Correct recovery when A is indeed **low-rank** and E is indeed **sparse**?

MAIN THEORY – Exact Solution by Convex Optimization

Theorem 1 (Principal Component Pursuit). If $A_0 \in \mathbb{R}^{m \times n}$, $m \ge n$ has rank

Non-adaptive weight factor

and E_0 has Bernoulli support with error probability $\rho \leq \rho_s^*$, then with very high probability

$$(\mathbf{A_0}, E_0) = \arg \min \|\mathbf{A}\|_* + \frac{1}{\sqrt{m}} \|E\|_1 \quad \text{subj} \quad \mathbf{A} + E = \mathbf{A_0} + E_0,$$

and the minimizer is unique.

GREAT NEWS: "Convex optimization recovers almost any matrix of rank $O\left(\frac{m}{\log^2 n}\right)$ from errors corrupting O(mn) of the observations!"

Candes, Li, Ma, and Wright, Journal of the ACM, May 2011.

MAIN THEORY – Corrupted, Incomplete Matrix

$$D = \mathcal{P}_{\Omega} \left[\begin{array}{c} A_0 + E_0 \end{array} \right], \qquad \Omega \sim \operatorname{uni} \left(\begin{array}{c} [m] \times [n] \\ mn \end{array} \right)$$

Theorem 2 (Matrix Completion and Recovery). If $A_0, E_0 \in \mathbb{R}^{m \times n}, m \ge n$, with

$$\operatorname{rank}(A_0) \leq C \frac{n}{\mu \log^2(m)}, \quad and \quad \|E_0\|_0 \leq \rho^* mn,$$

and we observe only a random subset of size

 $|\Omega| = mn/10$

entries, then with very high probability, solving the convex program

$$\min \|\boldsymbol{A}\|_* + \frac{1}{\sqrt{m}} \|\boldsymbol{E}\|_1 \quad \text{subj} \quad P_{\Omega}[\boldsymbol{A} + \boldsymbol{E}] = D,$$

uniquely recovers (A_0, E_0) .

Candes, Li, Ma, and Wright, Journal of the ACM, May 2011.

MAIN THEORY – With Dense Errors and Noise

Theorem 3 (Dense Error Correction). If A_0 has rank $r \leq \rho_r \frac{m}{\mu^2 \log^2(n)}$ and E_0 has random signs and Bernoulli support with error probability $\rho < 1$, then with very high probability

 $(A_0, E_0) = \arg \min ||A||_* + \lambda ||E||_1 \quad \text{subj} \quad A + E = A_0 + E_0,$

and the minimizer is unique.

Theorem 4 (Robust PCA with Noise). Given $D = A_0 + E_0 + Z$ for any $||Z||_F \leq \eta$, if A_0 has rank $r \leq \rho_r \frac{m}{\mu^2 \log^2(n)}$ and E_0 has Bernoulli support with error probability $\rho \leq \rho_s^*$, then with very high probability

$$(\hat{A}, \hat{E}) = \arg \min \|A\|_* + \frac{1}{\sqrt{m}} \|E\|_1 \quad \text{subj} \quad \|D - A - E\| \le \eta,$$

satisfies $\|(\hat{A}, \hat{E}) - (A_0, E_0)\| \leq C\eta$ for some constant C > 0.

Ganesh, Zhou, Li, Wright, Ma, Candes, ISIT, 2010.

BIG PICTURE – Landscape of Theoretical Guarantees

Many have made contributions in the past few years:

Universality of phase transition (Oymak & Tropp). But does not yet apply here...

ALGORITHMS – Are scalable solutions possible?

Seemingly BAD NEWS: Our optimization problem

$$\min \|\boldsymbol{A}\|_* + \lambda \|\boldsymbol{E}\|_1 \quad \text{subj} \quad \boldsymbol{A} + \boldsymbol{E} = D.$$

is high-dimensional and non-smooth.

Convergence rate of solving a generic convex program: $\min_{x} f(x)$

Second-order Newton method, linear rate of convergence , but not scalable! First-order methods depend strongly on the smoothness of f:

Function class ${\cal F}$	Suboptimality $f(\boldsymbol{x}_k) - f(\boldsymbol{x}^*)$
smooth f convex, differentiable $\ \nabla f(\mathbf{x}) - \nabla f(\mathbf{x}')\ \le L \ \mathbf{x} - \mathbf{x}'\ $	$\frac{CL \ \boldsymbol{x}_0 - \boldsymbol{x}^*\ ^2}{k^2} = \Theta\left(\frac{1}{k^2}\right)$
smooth + structured nonsmooth: $F = f + g$ + $f, g \text{ convex},$ $\ \nabla f(x) - \nabla f(x')\ \le L \ x - x'\ $	$\frac{CL \ \boldsymbol{x}_0 - \boldsymbol{x}^*\ ^2}{k^2} = \Theta\left(\frac{1}{k^2}\right)$
<i>nonsmooth</i> f convex $ f(\mathbf{x}) - f(\mathbf{x}') \le M \mathbf{x} - \mathbf{x}' $	$\frac{CM\ \boldsymbol{x}_0 - \boldsymbol{x}^*\ }{\sqrt{k}} = \Theta\left(\frac{1}{\sqrt{k}}\right)$

Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, 2003.

ALGORITHMS – Why are scalable solutions possible?

$$\min \|A\|_* + \lambda \|E\|_1 \text{ subj } A + E = D$$

$$\mathcal{D}_{\varepsilon}(Q) = \operatorname{argmin}_{X} \varepsilon \|X\|_{*} + \frac{1}{2} \|X - Q\|_{F}^{2}$$

ALGORITHMS – Evolution of scalable algorithms

GOOD NEWS: Scalable first-order gradient-descent algorithms:

- Proximal Gradient [Osher, Mao, Dong, Yin '09, Wright et. al.'09, Cai et. al.'09].
- Accelerated Proximal Gradient [Nesterov '83, Beck and Teboulle '09]:
- Augmented Lagrange Multiplier [Hestenes '69, Powell '69]:
- Alternating Direction Method of Multipliers [Gabay and Mercier '76].

For a 1000x1000 matrix of rank 50, with 10% (100,000) entries randomly corrupted: min $||A||_* + \lambda ||E||_1$ subj A + E = D.

Algorithms	Accuracy	Rank	E _0	# iterations	time (sec)
IT	5.99e-006	50	101,268	8,550	119,370.3
DUAL	8.65e-006	50	100,024	822	1,855.4
APG	5.85e-006	50	100,347	134	1,468.9
APG _P	5.91e-006	50	100,347	134	82.7
EALM _P	2.07e-007	50	100,014	34	37.5
IALM _P	3.83e-007	50	99,996	23	11.8

10,000 times speedup!

Lin, Chen, and Ma, UILU-ENG-09-2214, 2010.

ALGORITHMS – Evolution of scalable algorithms

A scalable algorithm: alternating direction method (ADMoM) for ALM:

$$l(A, E, Y) = ||A||_* + \lambda ||E||_1 + \langle Y, D - A - E \rangle + \frac{\mu}{2} ||D - A - E||_F^2$$

Lin, Chen, and Ma, UILU-ENG-09-2214, 2010.

ALGORITHMS – Evolution of fast algorithms (around 2009)

For a 1000x1000 matrix of rank 50, with 10% (100,000) entries randomly corrupted: min $||A||_* + \lambda ||E||_1$ subj A + E = D.

Algorithms	Accuracy	Rank	E _0	# iterations	time (sec)	
IT	5.99e-006	50	101,268	8,550	119,370.3	
DUAL	8.65e-006	50	100,024	822	1,855.4	1
APG	5.85e-006	50	100,347	134	1,468.9	t
APG _P	5.91e-006	50	100,347	134	82.7	S
EALM _P	2.07e-007	50	100,014	34	37.5	
IALM _P	3.83e-007	50	99,996	23	11.8	Ļ

10,000 times speedup!

Provably Robust PCA at only a constant factor (≈20) more computation than conventional PCA!
ALGORITHMS – Convergence rate with strong convexity

GREAT NEWS: Geometric convergence for gradient algorithms!

Figure 1. Convergence rates of projected gradient descent in application to Lasso programs (ℓ_1 constrained least-squares). Each panel shows the log optimization error log $\|\theta^s - \hat{\theta}\|$ versus the iteration number t. Panel (a) shows three curves, corresponding to dimensions $d \in \{5000, 10000, 20000\}$, sparsity $s - \lceil \sqrt{d} \rceil$, and all with the same sample size n - 2500. All cases show geometric convergence, but the rate for larger problems becomes progressively slower. (b) For an appropriately rescaled sample size $(\alpha - \frac{n}{s \log d})$, all three convergence rates should be roughly the same, as predicted by the theory.

ALGORITHMS – Recap and Conclusions

Key challenges of **nonsmoothness** and **scale** can be mitigated by using **special structure** in sparse and low-rank optimization problems:

Efficient proximity operators \Rightarrow proximal gradient methods Separable objectives \Rightarrow alternating directions methods

Efficient moderate-accuracy solutions for very large problems. Special tricks can further improve specific cases (factorization for low-rank)

Techniques in this literature apply quite broadly. Extremely useful tools for creative problem formulation / solution.

Fundamental theory guiding engineering practice:

What are the basic principles and limitations? What specific structure in my problem can allow me to do better?

- Repairing Images and Videos
 - Image Repairing, Background Extraction, Street Panorama
- Reconstructing 3D Geometry
 - Shape from Texture, Featureless 3D Reconstruction
- Registering Multiple Images
 - Multiple Image Alignment, Video Stabilization
- Recognizing Objects
 - Faces, Texts, etc.
- Other Data and Applications

Recover low-dimensional structures from a fraction of missing measurements with structured support.

Repairing Images – Highly Robust Repairing of Low-rank Textures!

Liang, Ren, Zhang, and Ma, in ECCV 2012.

Repairing Low-rank Textures

Low-rank Method

Input

Photoshop

Liang, Ren, Zhang, and Ma, in ECCV 2012.

Output

Repairing (Distorted) Low-rank Textures

Low-rank Method

Input

Output

Liang, Ren, Zhang, and Ma, in ECCV 2012.

Structured Texture Completion and Repairing

Liang, Ren, Zhang, and Ma, in ECCV 2012.

Repairing Multiple Correlated Images

58 images of one person under varying lighting:

Candes, Li, Ma, and Wright, Journal of the ACM, May 2011.

Repairing Images – robust photometric stereo

Input images

min $||A||_* + \lambda ||E||_1$ subj $D = \mathcal{P}_{\Omega}(A + E)$. $\frac{\Omega^c \sim \text{shadow}(20.7\%)}{E \sim \text{specularities}(13.6\%)}$

Wu, Ganesh, Li, Matsushita, and Ma, in ACCV 2010.

Repairing Video Frames – background modeling from video

Surveillance video

200 frames, 144 x 172 pixels,

Significant foreground

Low-rank appx. A + Sparse error EVideo D=

Candès, Li, Ma, and Wright, JACM, May 2011.

Implications – Highly Compressive Sensing of Structured Information!

Recover low-dimensional structures from diminishing fraction of corrupted measurements.

Repairing Video Frames – Street Panorama

A

E

Repairing Video Frames – Street Panorama

Low-rank

Photoshop

Repairing Video Frames – Street Panorama

Low-rank

AutoStitch

Photoshop

Sensing or Imaging of Low-rank and Sparse Structures

Fundamental Problem: How to recover low-rank and sparse structures from

subject to either nonlinear deformation au or linear compressive sampling \mathcal{P} ?

Reconstructing 3D Geometry and Structures

Problem: Given $D \circ \tau = A_0 + E_0$, recover τ , A_0 and E_0 simultaneously.

Low-rank component (regular patterns...)

Sparse component (occlusion, corruption, foreground…)

Parametric deformations (affine, projective, radial distortion, 3D shape...)

Transform Invariant Low-rank Textures (TILT)

- $D \text{deformed observation} \qquad A \text{low-rank structures} \qquad E \text{sparse errors}$ $\int \mathbf{O} \cdot \mathbf{T} = \int \mathbf{O} \cdot \mathbf{T} = \int \mathbf{O} \cdot \mathbf{T} \cdot \mathbf{T$
 - **Objective:** Transformed Principal Component Pursuit:: $\min \|A\|_* + \lambda \|E\|_1 \quad \text{subj} \quad A + E = D \circ \tau$

Solution: Iteratively solving the linearized convex program::

 $\begin{array}{c} & & \\$

Zhang, Liang, Ganesh, Ma, ACCV'10, IJCV'12

THEORY – Compressive Robust PCA

Theorem 5 (Compressive Principal Component Pursuit). Let $A_0 \in \mathbb{R}^{m \times n}$, $m \ge n$ have rank $r \le \rho_r \frac{m}{\mu^2 \log^2(n)}$, and E_0 have a Bernoulli support with error probability $\rho < \rho^*$. Let Q^{\perp} be a random subspac of $\mathbb{R}^{m \times n}$ of dimension

$$\dim(Q) \ge C_Q(\rho mn + mr) \cdot \log^2 m,$$

distributed according to the Haar measure, independent of the support of E_0 . Then with very high probability

$$(A_0, E_0) = \arg \min ||A||_* + \frac{1}{\sqrt{m}} ||E||_1 \quad \text{subj} \quad \mathcal{P}_Q[A + E] = \mathcal{P}_Q[A_0 + E_0],$$

for some numerical constant ρ_r , C_p and ρ^* , and the minimizer is unique.

A nearly optimal lower bound on minimum # of measurements!

Wright, Ganesh, Min, and Ma, IMA Information & Inference 2015, the Best Paper 2nd Prize

TILT – Shape from texture

Input (red window D)

Output (rectified green window A)

Zhang, Liang, Ganesh, Ma, ACCV'10, IJCV'12

TILT – Shape and geometry from textures

Zhang, Liang, and Ma, in ICCV 2011

TILT – Virtual reality

Zhang, Liang, and Ma, in ICCV 2011

TILT – Camera Calibration with Radial Distortion

$$r = \sqrt{x_0^2 + y_0^2, f(r)} = 1 + kc(1)r^2 + kc(2)r^4 + kc(5)r^6$$

$$\binom{x}{y} = \binom{f(r)x_0 + 2kc(3)x_0y_0 + kc(4)(r^2 + 2x_0^2)}{f(r)y_0 + 2kc(4)x_0y_0 + kc(3)(r^2 + 2y_0^2)}$$

$$K = \begin{bmatrix} f_x & \theta & o_x \\ 0 & f_y & o_y \\ 0 & 0 & 1 \end{bmatrix}$$

		###	#
			1

Zhang, Matsushita, and Ma, in CVPR 2011

TILT – Camera Calibration with Radial Distortion

min
$$\sum_{i=1}^{N} \|\mathbf{A}_{i}\|_{*} + \lambda \|E_{i}\|_{1}$$
 subj $\mathbf{A}_{i} + E_{i} = D \circ (\tau_{0}, \tau_{i})$
 $\tau_{0} = (K, K_{c}), \quad \tau_{i} = (R_{i}, T_{i}).$

Previous approach

Low-rank method

Zhang, Matsushita, and Ma, in CVPR 2011

TILT – Holistic 3D Reconstruction of Urban Scenes

 $\min \|A\|_* + \|E\|_1 \quad \text{s.t.}$

$$\mathbf{A} + E = [D_1 \circ \tau_1, D_2 \circ \tau_2]$$

Mobahi, Zhou, and Ma, in ICCV 2011

TILT – Holistic 3D Reconstruction of Urban Scenes

From one input image

From four input images

Mobahi, Zhou, and Ma, in ICCV 2011

TILT – Holistic 3D Reconstruction of Urban Scenes

From eight input images

Mobahi, Zhou, and Ma, in ICCV 2011

Virtual reality in urban scenes

Registering Multiple Images – Robust Alignment

Solution: Robust Alignment via Low-rank and Sparse (RASL) Decomposition

Iteratively solving the linearized convex program:

$$\min \|\mathbf{A}\|_* + \lambda \|E\|_1 \quad \text{subj} \quad \mathbf{A} + E = D \circ \tau_k + J \Delta \tau$$
$$(\text{or} \quad Q(\mathbf{A} + E) = QD \circ \tau_k, \ QJ = 0)$$

RASL – Aligning Face Images from the Internet

*48 images collected from internet

RASL – Faces Detected

Input: faces detected by a face detector (D)

Average

RASL – Faces Aligned

Output: aligned faces ($D \circ \tau$)

Average

RASL – Faces Repaired and Cleaned

Output: clean low-rank faces (A)

Average

RASL – Sparse Errors of the Face Images

Output: sparse error images (E)

Object Recognition – Regularity of Texts at All Scales!

Input (red window D)

Output (rectified green window A)

Zhang, Liang, Ganesh, Ma, ACCV'10 and IJCV'12

Recognition – Street Sign Rectification

$$\min \sum_{i=1}^{4} \|A_i\|_* + \lambda \|E_i\|_1$$

subj $D \circ \tau = [A_1 \cdots A_4] + [E_1 \cdots E_4].$

Xin Zhang, Zhouchen Lin, and Ma, ICDAR 2013
Microsoft OCR for rotated characters (2,500 common Chinese characters)

Microsoft OCR for skewed characters (2,500 common Chinese characters)

Xin Zhang, Zhouchen Lin, and Ma, ICDAR 2013

Super Resolution via Transform Invariant Group Sparsity

Super Resolution via Transform Invariant Group Sparsity

Aim: Exploiting non-local structures to perform super-resolution at large upsampling factors by

1. Learning the transformation that reveals the group-sparse structure of the image gradient (via TILT)

2. Enforcing this structure through group-sparse regularizers (DTV) that incorporates the transform and is consequently invariant to the transform

Carlos Fernandez and Emmanuel Candes of Stanford, ICCV2013

Super Resolution via Transform Invariant Group Sparsity

Carlos Fernandez and Emmanuel Candes of Stanford, ICCV2013

Take-home Messages for Visual Data Processing

- 1. (Transformed) **low-rank and sparse** structures are central to visual data modeling, processing, and analyzing;
- 2. Such structures can now be extracted **correctly**, **robustly**, **and efficiently**, from raw image pixels (or high-dim features);
- 3. These new algorithms **unleash tremendous local or global information** from single or multiple images, emulating or surpassing human capability;
- These algorithms start to exert significant impact on image/video processing,
 3D reconstruction, and object recognition.

But try not to abuse or misuse them...

Other Applications – Upright orientation of man-made objects

TILT for 3D: Unsupervised upright orientation of man-made 3D objects

Jin, Wu, and Liu of USTC, China, Graphical Models, 2012.

Other Data/Applications – Web Image/Tag Refinement

Zhu, Yan of NUS, Singapore, ACM MM 2010.

Other Data/Applications – Web Document Corpus Analysis

Low-rank "background" topic model Informative, discriminative "keywords" Reuters-21578 dataset: 1,000 longest documents; 3,000 most frequent words

CHRYSLER SETS STOCK SPLIT, HIGHER DIVIDEND

Chrysler Corp said its board declared a three-for-two stock split in the form of a 50 pct stock dividend and raised the quarterly dividend by seven pct.

The company said the dividend was raised to 37.5 cts a share from 35 cts on a pre-split basis, equal to a 25 ct dividend on a post-split basis.

Chrysler said the stock dividend is payable April 13 to holders of record March 23 while the cash dividend is payable April 15 to holders of record March 23. It said cash will be paid in lieu of fractional shares.

With the split, Chrysler said 13.2 mln shares remain to be purchased in its stock repurchase program that began in late 1984. That program now has a target of 56.3 mln shares with the latest stock split.

Chrysler said in a statement the actions "re^o ect not only our outstanding performance over the past few years but also our optimism about the company's future."

Min, Zhang, Wright, Ma, CIKM 2010.

Other Data/Applications – Protein-Gene Correlation

Fig. 1. The diagram of the workflow of the method presented in this paper.

Microarray data

Endothelial Epithelial Fibroblast Macrophage

Wang, Machiraju, and Huang of Ohio State Univ., Bioinformatics.

Other Data – Time Series Gene Expressions

Figure S4. Separation result: (1_{st} column) raw data (2_{nd} column) low-rank component and (3_{rd} column) highly corrupted sparse component using threshold (M1: H1047R (kinase domain mutation)) M2: E545K (helical domain mutation), and M3: K111N mutation in PIK3CA).

Chang, Korkola, Amin, Tomlin of Berkeley, BiorXiv, 2014.

Other Data/Applications – Lyrics and Music Separation

Po-Sen Huang, Scott Chen, Paris Smaragdis, Mark Hasegawa-Johnson of UIUC, ICASSP 2012.

Other Data/Applications – Internet Traffic Anomalies

Network Traffic = Normal Traffic + Sparse Anomalies + Noise

D = L + RS + N

Fig. 2. Network topology graph.

Mardani, Mateos, and Giannadis of Minnesota, Trans. Information Theory, 2013.

Other Data/Applications – Robust Filtering and System ID

Dynamical System Identification, Maryan Fazel, Stephen Boyd, 2000

CONCLUSIONS – A Unified Theory for Sparsity and Low-Rank

	Sparse Vector	Low-Rank Matrix			
Low-dimensionality of	individual signal	correlated signals			
Measure	L_{0} norm $\ x\ _{0}$	$\operatorname{rank}(X)$			
Convex Surrogate	L_1 norm $\ x\ _1$	Nuclear norm $\ X\ _*$			
Compressed Sensing	y = Ax	Y = A(X)			
Error Correction	y = Ax + e	Y = A(X) + E			
Domain Transform	$y \circ \tau = Ax + e$	$Y \circ \tau = A(X) + E$			
Mixed Structures	Y = A(X) + B(E) + Z				

Joint NSF Project with Candes and Wright, 2010 - 2015

Compressive Sensing of Low-Dimensional Structures

A norm $\|\cdot\|$ is said to be **decomposable** at X if there exists a subspace T and a matrix S such that

$$\partial \| \cdot \|(\boldsymbol{X}) = \{ \Lambda \mid \mathcal{P}_T(\Lambda) = \boldsymbol{S}, \| P_{T^{\perp}}(\Lambda) \|^* \leq 1 \},$$

where $\|\cdot\|^*$ is the dual norm of $\|\cdot\|$, and $\mathcal{P}_{T^{\perp}}$ is nonexpansive w.r.t. $\|\cdot\|^*$.

Theorem [Candes, Recht'11] Any low-complexity signal X^0 can be exactly recovered from high compressive measurements via convex optimization:

$$||\boldsymbol{X}||_{\diamond}$$
 subject to $\mathcal{P}_Q(\boldsymbol{X}) = \mathcal{P}_Q(\boldsymbol{X}^0),$

for a decomposable norm $\|\cdot\|_{\diamond}$.

Compressive Sensing and Unmixing of Low-dim Structures

Suppose $(\mathbf{X}_1^0, \dots, \mathbf{X}_k^0) = \arg \min \sum_{i=1}^k \lambda_i \|\mathbf{X}_i\|_{(i)}$ subj $\sum_{i=1}^k \mathbf{X}_i = \sum_{i=1}^k \mathbf{X}_i^0$, for decomposable norms $\|\cdot\|_{(i)}$ that majorize the Frobenius norm.

Theorem 6 (Compressive Sensing of Mixed Low-Comp. Structures). Let Q^{\perp} be a random subspac of $\mathbb{R}^{m \times n}$ of dimension

 $\dim(Q) \ge O(\log^2 m) \times \text{ intrinsic degrees of freedom of } (\boldsymbol{X}_1, \dots, \boldsymbol{X}_k),$

distributed according to the Haar measure, independent of X_i . Then with very high probability

$$(\boldsymbol{X}_1^0, \dots, \boldsymbol{X}_k^0) = \arg\min \sum_{i=1}^k \lambda_i \|\boldsymbol{X}_i\|_{(i)} \quad \text{subj} \quad \mathcal{P}_Q \Big[\sum_{i=1}^k \boldsymbol{X}_i\Big] = \mathcal{P}_Q \Big[\sum_{i=1}^k \boldsymbol{X}_i^0\Big],$$

and the minimizer is unique.

Wright, Ganesh, Min, and Ma, ISIT'12, IMA I&I Best Paper 2nd Prize

Extensions – A Suite of Powerful Regularizers

For compressive robust recovery of a family of low-dimensional structures:

- [Zhou et. al. '09] Spatially contiguous sparse errors via MRF
- [Bach '10] relaxations from submodular functions
- [Negahban+Yu+Wainwright '10] geometric analysis of recovery
- [Becker+Candès+Grant '10] algorithmic templates
- [Xu+Caramanis+Sanghavi '11] column sparse errors L_{2,1} norm
- [Recht+Parillo+Chandrasekaran+Wilsky '11'12] compressive sensing of various structures
- [Candes+Recht '11] compressive sensing of decomposable structures

$$X^0 = \arg \min ||X||_\diamond$$
 s.t. $\mathcal{P}_Q(X) = \mathcal{P}_Q(X^0)$

 [McCoy+Tropp'11,Amenlunxen+McCoy+Tropp'13] – phase transition for recovery and decomposition of structures

 $(X_1^0, X_2^0) = \arg \min ||X_1||_{(1)} + \lambda ||X_2||_{(2)}$ s.t. $X_1 + X_2 = X_1^0 + X_2^0$

 [Wright+Ganesh+Min+Ma, ISIT'12,I&I'13] – compressive superposition of decomposable structures

 $(X_1^0, \dots, X_k^0) = \arg\min \sum \lambda_i ||X_i||_{(i)}$ s.t. $\mathcal{P}_Q(\sum_i X_i) = \mathcal{P}_Q(\sum_i X_i^0)$

Take home message: Let the data and application tell you the structure...

Relationships with Deep Neural Networks

- 1. Evolution of the Structures of Deep Networks FNN -> CNN -> ResNet -> ???
- 2. Deep Learning and Sparsity Cascaded Structured Matrix Factorization Global Optimality of Training
- **3.** Supervision versus No-supervision Simple Shallow Networks by Design PCANet (and ScatteringNet and CapsuleNet)

Evolution of DNN – More Principled Structures

Evolution of DNN – Temporal Sparse Coding & Stacked RNN

Temporally coherent Sparse Coding for Anomaly Detection in Video

$$\min_{A,\alpha_t} \sum_{t=1}^T \|x_t - A\alpha_t\|_2^2 + \lambda_1 \|\alpha_t\|_1 + \lambda_2 S_{t,t-1} \|\alpha_t - \alpha_{t-1}\|_2^2$$

s.t.
$$||A(:,i)|| \le 1$$

Algorithm 1 Sequential iterative soft-thresholding algorithm. **Input:** extracted feature $x_{1:T}$, hyper-parameter $\lambda_1, \lambda_2, \gamma$, initial $\hat{\alpha}_0$, the steps of ISTA K 1: for t = 1 to T do $\hat{\alpha}_t^0 = \alpha_{t-1}$ 2: for k = 1 to K do 3: $z = [I - \frac{1}{\gamma} (A^T A + S_{t-1,t} \lambda_2 I)] \hat{\alpha}_t^{k-1} + \frac{1}{\gamma} A^T x_t$ 4: $\hat{\alpha}_t^{(k)} = \operatorname{soft}_{\lambda_1/\gamma} \left(z + \frac{S_{t-1,t}\lambda_2}{\gamma} \alpha_{t-1} \right)$ 5: end for 6: $\alpha_t = \hat{\alpha}_t^K$ 7: 8: end for 9: return $\alpha_{1:T}$;

RNN structures derived from group sparsity!

Figure 1. The blue boxes represent the input x_t of stacked RNNs. The green and orange boxes represent coding vectors α_t^k . The yellow circles are similarities between neighboring frames.

Luo, Liu and Gao of ShanghaiTech University, in ICCV 2017.

Evolution of DNN – Graphical Model Inference as Networks

Structured Attentions for Visual Question Answering

Figure 2. The whole picture of the proposed model. The unary potential $\psi_i(z_i)$ and pairwise potential $\psi_{ij}(z_i, z_j)$ are computed with Eq. (8), which are inputs to the recurrent inference layers. $\psi_i(z_i)$ is also used as an additional glimpse, which usually detects the key-word objects. In the inference layers, x^i represents $b^{(i)}$ for MF and $m^{(i)}$ for LBP. The recurrent inference layers generates a refined glimpse with Mean Field or Loopy Belief Propagation. The 2 glimpses are used to weight-sum the visual feature vectors. The classifier use both of the attended visual features and the question feature to predict the answer. The demonstrated image is a real case.

Recurrent inference layers derived from MF or LBP (for graphical models)!

Zhu, Tu, and Ma et. al. of ShanghaiTech University, in ICCV 2017.

Deep learning is a cascaded matrix factorization

Vidal, Haeffele, and Young of JHU, ICML2014

 $\min_{X^1,\ldots,X^K} \ell(Y,\Phi(X^1,\ldots,X^K)) + \lambda \Theta(X^1,\ldots,X^K)$

- Theorem: If the functions Φ and Θ are sums of positively homogeneous functions, then any local minimizer such that for some *i* and all k $X_i^k = 0$ gives a global minimizer
- Examples of positively homogeneous compositions Φ
 - Matrix multiplication: matrix factorization
 - CANDECOMP/PARAFAC decompositions: tensor factorization
 - Rectified linear units + max pooling: deep learning
- Examples of positively homogeneous regularizers Θ
 - Sums of products of norms (L1, L2, TV, etc.): structured factorizations

III. Supervision or None? - PCANet

2-3 layers, fixed topology, simplest data-adaptive linear mapping, and simplest nonlinear processing and simplest pooling...

PCANet, Chan and Ma et. al. in IEEE Trans. On Image Processing, 2015

PCANet – Basic Structure

- ScatteringNet (S. Mallat et. al. 2013)
- CapsuleNet (G. Hinton et. al. 2017)

- Two to three layers!
- By design, no supervision!
- Pure feed-forward, no BP!

PCANet, Chan and Ma et. al. in IEEE Trans. On Image Processing 2015

FERET contains images of 1,196 different individuals with up to 5 images of each individual.

- The probe set is divided into four subsets
 - Fb with different expression changes;
 - Fc with different lighting conditions;
 - Dup-I taken within the period of three to four months;
 - Dup-II taken at least one and a half year apart.

PCANet, Chan and Ma et. al. in IEEE Trans. On Image Processing 2015

PCANet – Test on NIST FERET

The non-overlapping block size (for histogram) is 15x15. The dimension of the PCANet features are reduced to 1000 by a whitening PCA (WPCA).

"Trn. CD" means trained with standard FERET CD dataset The NN classifier with cosine distance is used.

Probe sets	Fb	Fc	Dup-I	Dup-II	Avg.
LBP [18]	93.00	51.00	61.00	50.00	63.75
DMMA [25]	98.10	98.50	81.60	83.20	89.60
P-LBP [21]	98.00	98.00	90.00	85.00	92.75
POEM [26]	99.60	99.50	88.80	85.00	93.20
G-LQP [27]	99.90	100	93.20	91.00	96.03
LGBP-LGXP [28]	99.00	99.00	94.00	93.00	96.25
sPOEM+POD [29]	99.70	100	94.90	94.00	97.15
GOM [30]	99.90	100	95.70	93.10	97.18
PCANet-1 (Trn. CD)	99.33	99.48	88.92	84.19	92.98
PCANet-2 (Trn. CD)	99.67	99.48	95.84	94.02	97.25
PCANet-1	99.50	98.97	89.89	86.75	93.78
PCANet-2	99.58	100	95.43	94.02	97.26

Recognition rates (%) on FERET dataset.

PCANet, Chan and Ma et. al. in IEEE Trans. On Image Processing 2015

REFERENCES

From Supervised to Unsupervised Learning, From One Subspace to Multiple Subspaces.

A recent book:

• Generalized Principal Component Analysis

R. Vidal, Yi Ma, S. Sastry, Springer 2016

REFERENCES

Core References:

- Robust Principal Component Analysis? Candes, Li, Ma, Wright, Journal of the ACM, 2011.
- *TILT: Transform Invariant Low-rank Textures,* Zhang, Liang, Ganesh, and Ma, IJCV 2012.
- Compressive Principal Component Pursuit, Wright, Ganesh, Min, and Ma, IMA I&I 2013.

Website (codes, applications, & references):

http://perception.csl.illinois.edu/matrix-rank/home.html

A New Graduate Textbook:

High-Dimensional Data Analysis with Sparse and Low-Dimensional Models -- Theory, Algorithms, Applications High-Dimensional Data Analysis with Sparse and Low-Dimensional Models

Theory, Algorithms, and Applications

John Wright (Columbia University) Yi Ma (University of California, Berkeley) Allen Y. Yang (University of California, Berkeley)

February 26, 2018

A Perfect Storm...

Mathematical Theory

(high-dimensional statistics, convex geometry, measure concentration, combinatorics...)

BIG DATA (images, videos, voices, texts, biomedical, geospatial, consumer data...)

Cloud Computing (parallel, distributed, scalable platforms)

Applications & Services

(data processing, analysis, compression, knowledge discovery, search, recognition...)

Computational Methods

(convex optimization, first-order algorithms, random sampling, deep networks...)

ACKNOWLEDGEMENT

Colleagues:

- Prof. Emmanuel Candes (Stanford)
- Prof. Zhouchen Lin (MSRA, now Peking Univ.)
- Prof. Yasuyuki Matsushita (MSRA, now Osaka Univ.)
 Zhengdong Zhang (MSRA, now MIT)
- Prof. Shuicheng Yan (Na. Univ. Singapore)
- Prof. Lei Zhang (HK Polytech Univ.)
- Prof. Liangshen Zhuang (USTC)
- Prof. Weisheng Dong (Xidian Univ., China)
- Prof. Shenghua Gao (ShanghaiTech Univ., China)
- Prof. Rene Vidal (Johns Hopkins Univ.)

Students:

- John Wright (UIUC, now Columbia)
- Arvind Ganesh (UIUC, now Google)
- Xiao Liang (MSRA, Tsinghua University)
- Xin Zhang (MSRA, Tsinghua University)
- Kerui Min (UIUC, now BosonNLP)
- Zhihan Zhou (UIUC, now PennState)
- Hossein Mobahi (UIUC, now Google)
- Guangcan Liu (UIUC, now NUIST)
- Xiaodong Li (Stanford, now UC Davis)
- Carlos Fernandez (Stanford, now NYU)

Dutch Mathematical Congress, April 4, 2018

THANK YOU!

Questions, please?

$D \circ \tau = A + E \quad \min \ \|A\|_* + \lambda \|E\|_1$