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Foreword

I recall a moment, perhaps ten or fifteen years ago, of prodigious scientific ac-

tivity. To give our reader a sense of this blessed time, consider a series of regular

scientific workshops, each involving at most forty participants. Despite the small

size and almost intimate nature of these workshops, they brought together an

energized and enthusiastic mix of people from an array of disciplines, including

mathematics, computer science, engineering, and the life sciences. What a privi-

lege to be in a room with mathematicians such as Terence Tao and Roman Ver-

shynin and learn about high-dimensional geometry; with applied mathematicians

and engineers such as David Donoho, Joel Tropp, Thomas Ströhmer, Michael

Elad, and Freddy Bruckstein and learn about the power of algorithms; with sta-

tistical physicists such as Andrea Montanari and learn about phase transitions

in large stochastic systems. What a privilege to learn about fast numerical meth-

ods for large-scale optimization from computer scientists such as Stephen Wright

and Stanley Osher. What a privilege to learn about compressive optical systems

from David Brady and Richard Baraniuk and Kevin Kelly (of single-pixel camera

fame); about compressive analog-to-digital conversion and wideband spectrum

sensing from Dennis Healy, Yonina Eldar, and Azita Emami Neyestanak; about

breakthroughs in computer vision from Yi Ma, John Wright, and René Vidal;

and about dramatically faster scan times in magnetic resonance imaging from

Michael Lustig and Leon Axel. Bringing all these people—and others I regretfully

cannot name for lack of space—together, with their different perspectives and

interests, sparked spirited discussions. Excitement was in the air and progress

quickly followed.

Yi Ma and John Wright were frequent participants to these workshops and

their book magically captures their spirit and richness. It exposes readers to

(1) a variety of real-world applications including medical and scientific imaging,

computer vision, wideband spectrum sensing, and so on, (2) the mathematical

ideas powering algorithms in use in these fields, and (3) the algorithmic ideas

needed to implement them. Let me illustrate with an example. On the one hand,

this is a book in which we learn about the principles of magnetic resonance

(MR) imaging. There is a chapter in which we learn how an MR scan excites

the nucleus of atoms by means of a magnetic field. These nuclei have a magnetic

spin, and will respond to this excitation, and it is precisely this response that

gets recorded. As for other imaging modalities, such as computed tomography,
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there is a mathematical transformation, which relates the object we wish to infer

and the data we collect. In this case, after performing a few approximations,

this mathematical transformation is given by the Fourier transform. On the

other hand, this is a book in which we learn that most of the mass of a high-

dimensional sphere is concentrated not just around the equator—this is already

sufficiently surprising—but around any equator! Or that the intersection between

two identical high-dimensional cubes, one being randomly oriented vis-à-vis the

other, is essentially a sphere! These are fascinating subjects, but what is the

connection? There is one, of course, and explaining it is the most wonderful

strength of the book. In a nutshell, ideas and tools from probability theory, high-

dimensional geometry, and convex analysis inform concrete applied problems and

explain why algorithms actually work. Returning to our MR imaging problem,

we learn how to leverage mathematical models of sparsity to recover exquisite

images of body tissues from what appear to be far too few data points. Such a

feat allows us to scan patients ten times faster today.

Through three fairly distinct parts — roughly: theory, computations, and ap-

plications — the book proposes a scientific vision concerned by the development

of insightful mathematics to create models for data, to create processing algo-

rithms, and to ultimately inspire real concrete improvements; for instance, in

human health as in the example above.

The first part of the book explores data models around two main themes,

namely, sparsity, and low-rankedness. Sparsity expresses the idea that most of

the entries of an n-dimensional signal vanish or nearly vanish so that the informa-

tion can be effectively summarized using fewer than n data bits. Low-rankedness

expresses the idea that the columns of a data matrix ‘live’ near a linear sub-

space of lower dimension, thereby also suggesting the possibility of an effective

summary. We then find out how to use these data models to create data pro-

cessing algorithms, for instance, to find solutions of underdetermined systems of

linear equations. The emphasis is on algorithms formulated as solutions to well-

formulated convex optimization problems. That said, we are also introduced to

nonconvex methods in Chapter 7 to learn effective empirical representations from

data in which signals exhibit enhanced sparsity. All along, the authors use their

rich experiences to communicate insights and to explain why some things work

while others do not.

The second part reviews effective methods for solving optimization problems—

convex or not—at scale; that is, involving possibly millions of decision variables

and a possibly equally large number of constraints. This is an area that has seen

tremendous progress in the last fifteen years and the book provides readers with

a valuable point of entry to the key ideas and vast literature.

The last part is a deep dive into applications. In addition to the imaging

challenges I already mentioned, we find a chapter on wireless radio communi-

cation, where we see how ideas from sparse signal processing and compressed

sensing allow cognitive radios to efficiently identify the available spectrum. We

also find three chapters on crucial problems in computer vision, a field in which
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the authors have brought and developed formidable tools, enabling major ad-

vances and opening new perspectives. Exposition starts with a special contribu-

tion, which also exploits ideas from compressed sensing, to the crucial problem

of face recognition in the presence of occlusions and other nonidealities. (I recall

an exciting Wired article about this work when it came out.) The book then

introduces methods for inferring 3D structure from a series of 2D photographs,

and to identify structured textures from a single photograph; solving the latter

problem is often the starting point to recover the appearance, pose, and shape

of multiple objects in a scene. Finally, at the time of this writing, deep learning

(DL) is all the rage. The book contains an epilogue which establishes connections

between all the better understood data models reviewed in the book and DL: the

one hundred million dollar question is whether they will shed significant insights

on deep learning and influence or improve its practice.

Who would enjoy this book? First and foremost, students in mathematics,

applied mathematics, statistics, computer science, electrical engineering, and re-

lated disciplines. Students will learn a lot from reading this book because it is

so much more than a text about a tool being applied with minor variations.

They will learn about mathematical reasoning, they will learn about data mod-

els and about connecting those to reality, and they will learn about algorithms.

The book also contains computer scripts so that we can see ideas in action and

carefully crafted exercises making it perfect for upper-level undergraduate or

graduate-level instruction. The breadth and depth makes this a reference for

anyone interested in the mathematical foundations of data science. I also believe

that members of the applied mathematical sciences community at large would

enjoy this book. They will be reminded of the power of mathematical reasoning

and of the all-around positive impact it can have.

Emmanuel Candès

Stanford, California

December 2020





Preface

“The coming century is surely the century of data. A combination of blind faith and
serious purpose makes our society invest massively in the collection and processing of
data of all kinds, on scales unimaginable until recently.”

– David Donoho, High-Dimensional Data Analysis: The Curses and Blessings of
Dimensionality, 2000

The Era of Big Data.
In the past two decades, our world has entered the age of “Big Data.” The

information technology industry is now facing the challenge, and opportunity,

of processing and analyzing massive amounts of data on a daily basis. The size

and the dimension of the data have reached an unprecedented scale and are still

increasing at an unprecedented rate.

For instance, on the technological side, the resolution of consumer digital cam-

eras has increased nearly ten-fold in the past decade or so. Each day, over 300

million photos are uploaded to Facebook;1 300 hours of videos are posted on

Youtube every minute; and over 20 million entertaining short videos are pro-

duced and posted to Douyin (also known as TikTok) of China.

On the business side, on a single busy day, Alibaba.com needs to take in over

800 million purchase orders for over 15 million products, handle over a billion

payments, and deliver more than 30 million packages. Amazon.com also operates

at a similar scale, if not even larger. Those numbers are still growing and growing

fast!

On the scientific front, super-resolution microscopy imaging technologies have

undergone tremendous advances in the past decades,2 and some are now capa-

ble of producing massive quantities of images with subatomic resolution. High-

throughput gene sequencing technologies are capable of sequencing hundreds of

millions of DNA molecule fragments at a time,3 and can sequence in just a few

1 Almost all of them are passing through several processing pipelines for face detection, face

recognition, and general object classification for content screening, etc.
2 For example, in 2014, Eric Betzig, Stefan W. Hell, and William E. Moerner were awarded

the Nobel Prize in Chemistry for the development of super-resolution fluorescence

microscopy that bypasses the limit of 0.2 micrometers of traditional optical microscopy.
3 In 2002, Sydney Brenner, John Sulston, and Robert Horvitz were awarded the Nobel Prize

for their pioneering work and contributions to the Human Genome project.
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Figure 0.1 Images of Mary & Isabella: the resolution of the image on the left is
2, 500× 2, 500, whereas the image on the right is down-sampled to 250× 250, with
only 1/100th fraction of pixels of the original one.

hours an entire human genome that has a length of over 3 billion base pairs and

contains 20,000 protein-encoding genes!

Paradigm Shift in Information Acquisition, Processing, and Analysis.
In the past, scientists or engineers have sought to carefully control the data acqui-

sition apparatus and process. Since the apparatus was expensive and the process

time-consuming, typically only necessary data (or measurements) were collected

for a specific given task. The data or signals collected were mostly informative for

the task and did not contain much redundant or irrelevant information, except

for some uncontrollable noise. Hence, classical signal processing or data analysis

typically operated under the premise that

Classical Premise: Data ≈ Information,

and in this classical paradigm, practitioners mostly needed to deal with problems

such as removing noise or compressing the data for storage or transport.

As mentioned above, technologies such as the Internet, smart phones, high-

throughput imaging, and gene sequencing have fundamentally changed the na-

ture of data acquisition and analysis. We are moving from a “data-poor” era

to a “data-rich” era. As pointed out by Jim Gray (a Turing Award winner),

“increasingly, scientific breakthroughs will be powered by advanced computing

capabilities that help researchers manipulate and explore massive datasets.” This

is now heralded as the Fourth Paradigm of scientific discovery [HTT09].

Nevertheless, data-rich does not necessarily imply “information-rich,” at least

not for free. Massive amounts of data are being collected, sometimes without

any specific purpose in advance. Scientists or engineers often do not have direct

control of the data acquisition process anymore, neither in the quantity nor the

quality of the acquired data. Therefore, any given new task could be inundated

with massive amounts of irrelevant or redundant data.

To see intuitively why this is the case, let us first consider the problem of face

recognition. Figure 0.1 shows two images of two sisters. It is arguably the case
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Figure 0.2 Detecting and recognizing faces in a large group photo, from the BIRS
workshop on “Applied Harmonic Analysis, Massive Data Sets, Machine Learning, and
Signal Processing,” held at Casa Matemática Oaxaca (CMO) in Mexico, 2016.

that to human eyes, both images convey the identity of the persons equally well,

even though pixels of the second image are merely 1/100th of the first one. In

other words, if we view both images as vectors with their pixel values as coordi-

nates, then the dimension of the low-resolution image vector is merely 1/100th

of the original one. Clearly, the information about the identity of a person relies

on statistics of much lower dimension than the original high-resolution image4.

Hence, in such scenarios, we have a new premise:

New Premise I: Data � Information.

For object detection tasks such as face detection in images or pedestrian detec-

tion in surveillance videos, the issue is no longer with redundancy. Instead, the

difficulty is to find any relevant information at all in an ocean of irrelevant data.

For example, to detect and recognize familiar people from a group photo shown

in Figure 0.2, image pixels associated with human faces only occupy a very tiny

portion of the image pixels (10 millions in this case) whereas the mass majority

of the pixels belong to completely irrelevant objects in the surroundings. In ad-

dition, the subjects of interest, say the two authors, are only two among many

human faces. Now imagine scaling this problem to billions of images or millions of

videos captured with mobile phones or surveillance cameras. Similar “detection”

4 In fact, one can continue to argue that even such a low-resolution image is still highly

redundant. Studies have shown that humans can recognize familiar faces from images with
a resolution as low as around 7× 10 pixels [SBOR06]. Recent studies in
neuroscience [CT17] reveal that it is possible for the brain to encode and decode any

human face using just 200 cells in the inferotemporal (IT) cortex. Modern face recognition

algorithms extract merely a few hundred features for reliable face verification.



xii Preface

??	

CONTEXT	–	Recent	related	progress	

Figure 0.3 An example of collaborative filtering of user preferences: how to guess a
customer’s rating for a movie even if he or she has not seen it yet?

and “recognition” tasks also arise in studying genetics: out of the nearly 20,000

genes and millions of proteins they encode, scientists need to identify which one

(or handful of ones) is responsible for certain genetic diseases. In scenarios like

these, we have:

New Premise II: Data = Information + Irrelevant Data.

The explosive growth of e-commerce, online shopping, and social networks

has created tremendous datasets of user preferences. Major internet companies

typically have records of billions of people’s preferences, across millions of com-

mercial products, media contents, and more. By nature, such datasets of user

preferences, however massive, are far from complete. For instance, in the case of

a dataset of movie ratings as shown in Figure 0.3, no one could have seen all the

movies and no movie would have been seen by all people. Nevertheless, companies

like Netflix need to guess from such incomplete datasets a customer’s preferences

so that they could send the most relevant recommendations or advertisements

to the customer. This problem in information retrieval literature is known as

collaborative filtering, and most internet companies’ business5 relies on solving

problems such as this one effectively and efficiently. The most fundamental rea-

son why complete information can be derived from such a highly-incomplete

dataset is that user preferences are not random and the data have structure. For

instance, many people have similar tastes in movies and many movies are sim-

ilar in style. Rows and columns of the user preference table would be strongly

correlated, hence the intrinsic dimension (or rank) of the complete table is in

fact extremely low compared to its size. Hence, for large (incomplete) datasets

drawn from low-dimensional structures, we have:

New Premise III: Incomplete Data ≈ Complete Information.

As above examples suggest, in the modern era of big data, we often face

5 Most internet companies make money from advertisements, including but not limited to

Google, Baidu, Facebook, Bytedance, Amazon, Alibaba, Netflix, etc.
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problems of recovering specific information that is buried in highly redundant,

irrelevant, seemingly incomplete, or even corrupted6 data sets. Such information

without exception is encoded as certain low-dimensional structures underlying

the data, and may only depends on a small (or sparse) subset of the (massive)

dataset. This is very different from the classical settings and is precisely the

reason why modern data science and engineering are undergoing a fundamen-

tal shift in their mathematical and computational paradigms. At its foundation,

we need to develop a new mathematical framework that characterizes precise

conditions under which such low-dimensional information can be correctly and

effectively acquired and retained. Equally importantly, we need to develop ef-

ficient algorithms that are capable of retrieving such information from massive

high-dimensional datasets, at unprecedented speed, at arbitrary scale, and with

guaranteed accuracy.

Purposes of This Book.
Over the past two decades, there have been explosive developments in the study

of low-dimensional structures in high-dimensional spaces. To a large extent, the

geometric and statistical properties of representative low-dimensional models

(such as sparse and low-rank and their variants and extensions) are now well un-

derstood. Conditions under which such models can be effectively and efficiently

recovered from (minimal amount of sampled) data have been clearly charac-

terized. Many highly efficient and scalable algorithms have been developed for

recovering such low-dimensional models from high-dimensional data. The work-

ing conditions and data and computational complexities of these algorithms have

also been thoroughly and precisely characterized. These new theoretical results

and algorithms have revolutionized the practice of data science and signal pro-

cessing, and have had significant impacts on sensing, imaging, and information

processing. They have significantly advanced the state of the art for many appli-

cations in areas such as scientific imaging7, image processing8, computer vision9,

bioinformatics10, information retrieval11, and machine learning12. As we will see

from applications featured in this book, some of these developments seem to defy

conventional wisdom.

As witnesses to such historical advancements, we believe that the time is now

ripe to give a comprehensive survey of this new body of knowledge and to orga-

nize these rich results under a unified theoretical and computational paradigm.

There are a number of excellent existing books on this topic that already focus on

the mathematical/statistical principles of compressive sensing and sparse/low-

dimensional modeling [FR13,HTW15,Van16,Wai19,FLZZ20]. Nevertheless, the

6 say due to negligence, misinformation, rumors, or malicious tampering.
7 compressive sampling and recovery of medical and microscopic images, etc.
8 denoising, super-resolution, inpainting of natural images, etc.
9 regular texture synthesis, camera calibration, and 3D reconstruction, etc.

10 microarray data analysis for gene-protein relations etc.
11 collaborative filtering of user preferences, documents and multimedia data etc.
12 especially for interpreting, understanding, and improving deep networks.
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goal of this book is to bridge, through truly tractable and scalable computa-

tion, the gap between principles and applications of low-dimensional models for

high-dimensional data analysis:

A New Paradigm: Principles
Computation←−−−−−−−−−−−−→ Applications.

Hence, not only does this book establish mathematical principles for modeling

low-dimensional structures and understanding the limits on when they can be

recovered, but it also shows how to systematically develop provably efficient and

scalable algorithms for solving the recovery problems, leveraging both classical

and recent developments in optimization.

Furthermore, through a rich collection of exemplar applications in science and

technology, the book aims to further coach readers and students on how to incor-

porate additional domain knowledge or other non-ideal factors (e.g. nonlinearity)

in order to correctly apply these new principles and methods to model real-world

data and solve real-world problems successfully.

Although the applications featured in this book are inevitably biased by the

authors’ own expertise and experiences in practicing these general principles and

methods, they are carefully chosen to convey diverse and complementary lessons

we have learned (often in a hard way). We believe these lessons have value for

both theoreticians and practitioners.

Intended Audience.
In many ways, the body of knowledge covered in this book has great pedagogical

value to young researchers and students in the area of data science. Through

rigorous mathematical development, we hope our readers are able to gain new

knowledge and insights about high-dimensional geometry and statistics, far be-

yond what has been established in classical signal processing and data analysis.

Such insights are generalizable to a wide range of useful low-dimensional struc-

tures and models, including modern deep networks, and can lead to entirely new

methods and algorithms for important scientific and engineering problems.

Therefore, this book is intended to be a textbook for a course that introduces

basic mathematical and computational principles for sensing, processing, ana-

lyzing and learning low-dimensional structures from high-dimensional data. The

targeted core audience of this book are entry-level graduate students in Electrical

Engineering and Computer Science (EECS), especially in the areas of

data science, signal processing, optimization, machine learning,

and applications. This book equips students with systematic and rigorous train-

ing in concepts and methods of high-dimensional geometry, statistics, and opti-

mization. Through a very diverse and rich set of applications and (programming)

exercises, the book also coaches students how to correctly use such concepts and

methods to model real-world data and solve real-world engineering and scientific

problems.

The book is written to be friendly to both instructors and students. It pro-

vides ample illustrations, examples, exercises, and programs from which students
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may gain hands-on experience with the concepts and methods covered in the

book. Materials in this book were developed from several one-semester gradu-

ate courses or summer courses offered at the University of Illinois at Urbana-

Champaign, Columbia University, ShanghaiTech University, Tsinghua Univer-

sity, and the University of California at Berkeley in the past ten years. The main

prerequisites for such a course are college-level linear algebra, optimization, and

probability. To make this book accessible to a broader audience, we have tried

to make the book as self-contained as possible: we give a crisp summary of facts

used in this book from linear algebra, optimization, and statistics in the Ap-

pendices. For EECS students, preliminary courses on signal processing, matrix

analysis, optimization or machine learning will improve their appreciation. From

our experiences, besides beginning graduate students, many senior undergradu-

ate students at these institutes were able to take the course and read the book

without serious difficulty.

Organization of This Book.
The main body of this book consists of three inter-related Parts: Principles,

Computation, and Applications (PCA). The book also contains five Appendices

on related background knowledge.

• Part I: Principles (Chapters 2–7) develops the fundamental properties and

theoretical results for sparse, low-rank, and general low-dimensional models. It

characterizes the conditions, in terms of sample/data complexity, under which

the inverse problems of recovering such low-dimensional structures become

tractable and can be solved efficiently, with guaranteed correctness or accuracy.

• Part II: Computation (Chapters 8–9) introduces methods from convex and

nonconvex optimization to develop practical algorithms that are tailored for

recovering the low-dimensional models. These methods show powerful ideas

how to systematically improve algorithm efficiency and reduce overall compu-

tational complexity so that the resulting algorithms are fast and scalable to

large-size and high-dimensional data.

• Part III: Applications (Chapters 10–16) demonstrates how principles and com-

putational methods in the first two parts could significantly improve the so-

lutions to a variety of real-world problems and practices. These applications

also coach how the idealistic models and algorithms introduced in this book

should be properly customized and extended to incorporate additional domain-

specific knowledge (priors or constraints) about the applications.

• Appendices A–E at the end of the book are meant to make the book largely

self-contained. The appendices cover basic mathematical concepts and results

from Linear Algebra, Optimization, and High-Dimensional Statistics that are

used in the main body of the book.

The overall organization of these chapters (and appendices) as well as their

logical dependency is illustrated in Figure 0.4.
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Ch. 1Ap. AAp. B

Ap. C Ch. 2

Ch. 3 Ch. 4

Ap. E

Ch. 5Ch. 6 Ch. 7

Ch. 8 Ch. 9

Ap. D

Ch. 13Ch. 12Ch. 11Ch. 10 Ch. 14 Ch. 15

Ch. 16

Figure 0.4 Organization Chart of the Book: dependency among chapters and
appendices. Red route: sparse recovery via convex optimization; Blue route: low-rank
recovery via convex optimization; Green route: nonconvex approach to
low-dimensional models; Orange route: development of optimization algorithms.

How to Use This Book to Teach or to Learn.
The book contains enough material for a two-semester course series. We have

purposely organized the material in the book in a modular fashion so that the

chapters and even sections can be easily selected and organized to support dif-

ferent types of courses. Here are some examples:

• A One-Quarter Course on Sparse Models and Methods for Graduate or Upper

Division Undergraduate Students: the introduction Chapter 1 and two theo-

retical Chapters 2 and 3; the convex optimization Chapter 8, and two to three

applications from Chapters 10, 11, and 13, plus some appendices will be ideal
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for an eight to ten-week summer or quarter course for senior undergraduate

students and early year graduate students. That is essentially the red route

highlighted in Figure 0.4.

• A One-Semester Course on Low-Dimensional Models for early year Graduate

Students: the introduction Chapter 1 and the four theoretical Chapters 2–5;

the convex optimization Chapter 8, and the several application Chapters 10,

11, 13–15, plus the appendices will be adequate for a one-semester course on

low-dimensional models for graduate students. That is essentially both the red

and the blue routes highlighted in Figure 0.4.

• An Advanced-Topic Course on High-Dimensional Data Analysis for senior

Graduate Students who conduct research in related areas: with the previ-

ous course as prerequisite, a more in-depth exposition of the mathematical

principles including Chapter 6 on convex methods for general low-dimensional

models and Chapter 7 on nonconvex methods. One then can give a more

in-depth account of the associated convex and nonconvex optimization meth-

ods in Chapters 8 and 9, and several application Chapters 12, 15, and 16 for

nonlinear and nonconvex problems. Those are essentially the green and the or-

ange routes highlighted in Figure 0.4. In addition, the instructor may choose

to cover new developments in the latest literature, such as broader families

of low-dimensional models, more advanced optimization methods, and exten-

sions to deep networks (for low-dimensional submanifolds), say along open

directions suggested in the epilogue of Chapter 16.

Certainly, this book can be used as a supplementary textbook for existing

(graduate-level) courses on Signal Processing or Image Processing, since it offers

more advanced new models, methods, and applications. It can also be used as a

complementary textbook for more traditional courses on Optimization as Chap-

ters 8 and 9 give a rather complete and modern coverage of the first-order (hence

more scalable) methods. For a conventional Machine Learning or Statistical Data

Analysis course, this book may serve as an additional reference for deeper and

broader extensions to classic regression analysis, principal component analysis,

and deep learning. For a more theoretical course on High-dimensional Statistics

and Probability, this book can be used as a secondary text and provides ample

motivating and practical examples.

In the future, we would very much like to hear from experienced instructors

and seasoned researchers about other good ways to teach or study material in this

book. We will share those experiences, suggestions, and even new contributions

(examples, exercises, illustrations etc.) at the book’s website:

https://book-wright-ma.github.io.

Yi Ma, Berkeley, California

John Wright, New York, New York

December 2020

https://book-wright-ma.github.io
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1 Introduction

“Entities should not be multiplied without necessity.”
– William of Ockham, Law of Parsimony

1.1 A Universal Task: Pursuit of Low-Dimensional Structure

The problem of identifying low-dimensional structure of signals or data in high-

dimensional spaces is one of the most fundamental problems that, through a long

history, interweaves many engineering and mathematical fields such as system

theory, pattern recognition, signal processing, machine learning, and statistics.

1.1.1 Identifying Dynamical Systems and Serial Data

The low-dimensionality of real-world signals or data often arises from the in-

trinsic physical mechanisms from which the data are generated. Many real-world

signals or data are observations of physical processes governed by certain genera-

tive mechanisms. For instance, magnetic resonance (MR) images1 are generated

by manipulating magnetic fields that obey Maxwell’s equations; dynamics of

any mechanical systems such as cars and legged robots follow Newton’s laws of

motion.

Mathematically such dynamics can often be modeled by a set of differential

equations,2 also known as a state-space model in system theory [CD91,Sas99]:

{
ẋ(t) = f(x(t),u(t)),

y(t) = g(x(t),u(t)),
(1.1.1)

where x ∈ Rn is the state, u ∈ Rni is the input, and y ∈ Rno is the (observed)

output. Governed by such dynamical models, the output y(t) and state x(t)

as functions in time t cannot be free and they are restricted to certain low-

dimensional submanifold in their respective functional space.

To see this more clearly, we consider the simplified case when the dynamical

1 that we will study in detail in Chapter 10.
2 Here for simplicity, we only consider ordinary differential equations. But the same

argument carries over to data or signals associated with partial differential equations.
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model is (discrete) linear time invariant [CD91,OSB99]3:
{
x(t+ 1) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t).
(1.1.2)

According to the theory of system identification [VdM96], the observed output

{y(t)}∞t=1 are correlated with the input {u(t)}∞t=1 through a subspace of dimen-

sion no more than n = dim(x). To be more precise, let us define two Hankel type

matrices:

Y
.
=


y(1) y(2) ··· y(N)
y(2) y(3) ··· y(N+1)

...
...

. . .
...

y(N) y(N+1) ··· y(2N−1)

 ∈ RnoN×N , U
.
=


u(1) u(2) ··· u(N)
u(2) u(3) ··· u(N+1)

...
...

. . .
...

u(N) u(N+1) ··· u(2N−1)

 ∈ RniN×N .

Then from (1.1.2), the two matrices Y and U are related as:

Y = GX +HU , (1.1.3)

where G and H are matrices with blocks of the form CAi and CAiB respec-

tively, and

X = [x(1),x(2), . . . ,x(N)] ∈ Rn×N .

Let U⊥ be the orthogonal complement to U .4 We have:

Y U⊥ = GXU⊥. (1.1.4)

Hence we have:

Fact 1.1 (Linear System Identification). Regardless of the measurement se-

quence length N , the so-defined input-output matrix Y U⊥ is always of rank

less than or equal to the dimension n of the state space:

rank(Y U⊥) ≤ n. (1.1.5)

In other words, the column vectors of the matrix Y U⊥ span an n-dimensional

subspace in an ambient space of RnoN . From the theory of system identification

[VdM96, LV09, LV10], recovering this n-dimensional subspace associated with

the input and output is the key to identifying the (unknown) parameters of the

system (A,B,C,D) as they can subsequently be computed from the singular

value decomposition5 of the matrix Y U⊥. In fact, system identification is one

of the first problems that have inspired the convex approach for low-rank models

[FHB01], which we will thoroughly study in Chapter 4.

3 In many applications, linear time invariant models can be viewed as a good approximation

to real dynamical systems that could be mildly nonlinear or slowly time-varying. Or for
many classes of nonlinear systems, they can be converted, either via feedback

linearization [Sas99] or via a smooth nonlinear Koopman operator [Koo31,LKB18], to

linear dynamical systems.
4 That is, columns of U⊥ span the null space of U . See Appendix A.
5 For details on singular value decomposition, please see Section A.8 of Appendix A.
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Figure 1.1 From Left to Right: a texture image of regular pattern, a binary image
of a Chinese character which is nearly symmetric, and an image of the Tiantan
Temple of Beijing, which has a cylindrical body with its surface decorated with
regular structural patterns.

Example 1.2 (Recurrent Neural Network). Notice that, in modern practice of

deep neural networks (DNNs), variants to such state-space models6 have been

widely adopted, also known as recurrent neural networks (RNNs). A typical RNN

model is of the so-called Jordan form [Jor97]:
{
x(t+ 1) = σx

(
Ax(t) +Bu(t) + b

)
,

y(t) = σy
(
Cx(t) + d),

(1.1.6)

where σx and σy are certain nonlinear activation functions7. RNNs and its many

variants have empirically proven to be very effective for modeling serial data such

as speech signals, videos, and natural languages. The intrinsic low-dimensionality

of such models is the key to capturing structure or order in such serial data.

Fundamental concepts, principles, and methods developed in this book will lead

to a principled understanding of such deep models, as we will see in Chapter 16.

1.1.2 Patterns and Orders in Man-Made World

Of course, many other factors may attribute to the ubiquitous presence of low-

dimensional structures in real world data that do not necessarily involve natural

dynamics or serial order. Another ample source of low-dimensional structures

is due to human influence: almost all man-made objects are built by following

simple code, rules, and procedures, both for economy and beauty. Those struc-

tures often visually manifest as repeated patterns in textures and decorations;

symmetry in letters and characters; parallel, orthogonal, and regular shapes in

man-made objects and architectures etc, as the few examples shown in Figure

1.1 and many more to be given in Chapter 15.

If we are to model such structures mathematically, low-dimensional models

become the natural choices. For example, consider the leftmost image of a regular

texture in Figure 1.1. We may view pixels of the 2D image array as the entries of

6 usually with additional nonlinear activations introduced to places in the state space model.
7 Popular choices of activation functions include the sigmoid function σ(x) = ex

ex+1
or the

rectified linear unit (ReLU) function σ(x) = max{0, x}.
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x1

x2

xn

Rn

0

S

v1

vi

Figure 1.2 Column vectors vi ∈ Rn of a low-rank n× n matrix span a low-dimensional
subspace S ⊂ Rn.

a matrix M , say a matrix of n×n pixels. Obviously the column (or row) vectors

of this matrix, viewed as vectors vi in Rn, are highly linearly dependent. They

actually span only a very low-dimensional subspace S whose dimension, say d, is

much less than n, as illustrated in Figure 1.2. That is

rank (M) = d� n. (1.1.7)

Notice that this is the same type of low-rank condition that we have seen in

the system identification problem (1.1.4). In the application Chapter 15, we will

see how such natural low-rank regular textures would allow us to efficiently,

accurately and robustly recover geometric information encoded in such images –

revealing the reason why we are able to accurately perceive 3D geometry of the

Tiantan Temple and recover the rectified 2D texture from only a single image,

shown on the right of Figure 1.1.

As a matter of fact, even for any generic 3D scene, when taken photos from

multiple poses, the multiple 2D images of the same point, line, plane or (sym-

metric) object in 3D are all related in such a way that certain measurement

matrix, known as the multiple-view matrix M , becomes low-rank [MSKS04]. In

fact, somewhat remarkably, the rank of such matrices will always be

rank (M) = 1 or 2, (1.1.8)

regardless of the number of views or the size of the matrix. A similar low-rank

condition applies to multiple images of the same scene taken under different

lighting conditions: rank (M) = 3, as we will study thoroughly in Chapter 14.

In general, we do not expect all data in human society to be equally regular
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ω

x̂(ω)

Ω−Ω (k − 1)Ω kΩ−kΩ −(k − 1)Ω

Figure 1.3 Functions with spectrum supported in the red region are known as
band-limited function. They have the same size of spectral support as functions with
spectrum supported in the two blue regions.

and orderly. Nevertheless, many data that arise from societal, commercial, and

financial activities or from social networks do exhibit very good patterns that can

be well approximated by low-dimensional models, as we will see from plenty of

examples in Chapters 4 and 5 and in the application Chapters 14–16. In this book

we will establish the fundamental principles and algorithms that would allow us

to exploit such low-dimensional structures in real data for correct and efficient

recovering information from minimal (incomplete or imperfect) observations.

1.1.3 Efficient Data Acquisition and Processing

In classical signal processing, the intrinsic low-dimensionality of data is mostly

exploited for purposes of efficient sampling, storage, and transport [OSB99,

PV08]. In applications such as communication, it is often reasonable to assume

the signals of interest mainly consist of limited frequency components8. To be

more precise, consider a signal x(t) as a function of time t and its Fourier trans-

form:9

x̂(ω)
.
=

∫ ∞

−∞
x(t) exp(−iωt)dt. (1.1.9)

Typically x̂(ω) will be zero when |ω| ≥ Ω for some Ω > 0. Let B1(Ω) be the set of

band-limited functions whose Fourier transform vanishes outside of the spectrum

[−Ω,Ω]:

B1(Ω)
.
=
{
x ∈ L1(R) | x̂(ω) = 0 ∀ |ω| > Ω

}
, (1.1.10)

as illustrated in Figure 1.3.

In other words, all functions in B1 has a maximal cut-off frequency fmax =

8 as analog and digital information is often physically carried by modulating periodic signals
generated by resonant circuits, as we will elaborate more in Chapter 11.

9 One may see Appendix A for a discretized version of the Fourier transform, equation

(A.7.13), that can be applied to discretized signals or vectors.
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Signals
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Figure 1.4 Comparison of classical signal acquisition and processing pipeline (top) and
the compressive sensing paradigm to be introduced in this book (bottom).

Ω/2π. Notice that B1 forms a subspace in the space of all functions, just like the

range of low-rank matrix is a subspace in a vector space. This structure allows us

to represent such functions rather efficiently with their discrete samples. To see

this, given x̂(ω) the signal x(t) can be expressed by the inverse Fourier transform:

x(t) =
1

2π

∫ ∞

−∞
x̂(ω) exp(iωt)dω =

1

2π

∫ Ω

−Ω

x̂(ω) exp(iωt)dω. (1.1.11)

So if we view x̂(ω) as a periodic function in the spectral domain with a period

2Ω, it is fully determined by all its Fourier coefficients:

x
(nπ

Ω

)
.
=

1

2π

∫ Ω

−Ω

x̂(ω) exp
(
iω
nπ

Ω

)
dω, n = 0,±1,±2, . . . . (1.1.12)

Notice that the left hand side is precisely the values of the function x(t) sampled

with a period T = π
Ω , or equivalently at a frequency

f =
1

T
= 2 · Ω

2π
. (1.1.13)

Hence we have:

Fact 1.3 (Nyquist-Shannon Sampling). To perfectly recover a band-limited sig-

nal x(t), we need to sample it at a rate that is twice its maximal frequency

fmax = Ω/2π.

This is known as the classical Nyquist-Shannon sampling theorem [OSB99].

The sampled (hence discrete) signal can then be digitized and compressed based

on its additional statistics. For images, such sampling and subsequent compres-

sion are done by the popular schemes such as JPEG or MPEG for videos. The

compressed data are then used for storage, transport, and to be decoded later for

various applications. Figure 1.4 (top) illustrates a traditional pipeline for data

acquisition and processing.

However, for signals that contain both low-frequency and high-frequency com-

ponents, sampling at the Nyquist rate sometimes can be rather costly. For in-

stance, as shown in Figure 1.3, for signals with their spectrum supported only

in the red area, their maximum cut-off frequency is Ω/2π; yet for signals with

spectrum supported only in the blue areas, the maximum frequency is k ·Ω/2π.
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So when k is very large (which is the situation in modern wide-band wireless

communication, see Chapter 11), the Nyquist sampling scheme would be rather

expensive to realize. As an important example, in order to capture sharp edges

or boundaries in natural images,10 the number of pixels of imaging sensors in

digital cameras has increased dramatically in recent years. Such a brute force

sensing scheme is obviously rather wasteful since sharp edges occupy only a very

tiny fraction of the image and yet all the relatively smooth regions are sampled

at the same rate! In medical imaging, such brute force increasing of sampling

density is not even allowed due to patient comfort and safety [LDP07].

As we will see in this book, the number of samples truly needed to recover a

signal should be proportional to the total width of its spectral support regard-

less of the location! For the examples shown in Figure 1.3, both types of signals

would have the same effective bandwidth of 2Ω and in principle can be correctly

recovered with effectively the same sampling rate. As a result, to acquire signals

with spectrum supported in the blue regions, the sampling rate can be signifi-

cantly lower than the Nyquist sampling rate [Tro10,ME10], hence the notion of

“compressed sensing” or “compressive sensing”, coined by [Don06a,Can06]. We

will see in Chapter 11 precisely how such a new sampling scheme is realized in

the context of modern wide-band wireless communications.

In this book, we will systematically study the theoretical foundation for de-

signing such compressive sampling schemes in a principled manner and develop

algorithms for recovering the full signal from such samples correctly and effi-

ciently. In general, such compressive samples of the signals are already compact

enough for storage and transport, and the original signals can be fully recov-

ered later when they are eventually being used. Figure 1.4 (bottom) illustrates

this new data acquisition and processing paradigm. In additional to wide-band

communications, we will also see a few striking applications of this paradigm at

work. For instance, this new paradigm has revolutionized the field of medical

imaging [LDP07], as we will elaborate more in Chapter 2 and further in Chapter

10.

1.1.4 Interpretation of Data with Graphical Models

In the practice of modern data science, we often deal with data that are not

necessarily generated from any clear physical processes or artificial protocols.

Their generative mechanisms can be hidden from us or are difficult to derive

from first principles. Data such as customer ratings, web documents, natural

languages, and gene expression data are such examples. Nevertheless, such data

are by no means structureless, and there are usually strong and rich statistical

correlation, dependency/independency, and causal relationships among the data.

To model such structure, one may view the observed data as samples of a set

of random variables xo ∈ Rno , which are generated through certain conditional

10 A sharp edge can be represented by a step function which is not band-limited!
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Figure 1.5 Graphical model for a set of jointly Gaussian random variables. The inverse
covariance matrix Θ is often sparse if the dependency graph is sparsely connected.
Suppose that gray nodes represent observed variables xo = [x1, x2, . . . , x6]∗ and blue
ones xh = [x7, x8]∗ are hidden.

probability distribution given another set of hidden or latent variables xh ∈ Rnh .

The structure of the data is fully described by the joint distribution of the random

vector x = (xo,xh) ∈ Rn with n = no+nh. Now consider the n random variables

{xi}ni=1 in x. For simplicity, let us assume that {xi}ni=1 are jointly zero-mean

Gaussian11, i.e., x ∼ N (0,Σ) with a covariance matrix Σ ∈ Rn×n. Let

Θ ≡ Σ−1 ∈ Rn×n

be the inverse of its covariance matrix. From statistics, we have the following

well-known fact:

Fact 1.4 (Conditional Independence in Graphical Model). Any two variables xi
and xj are conditionally independent given all other variables {xk | k 6= i, j} if

and only if the (i, j)-th entry of Θ satisfies θij = 0.

In machine learning, such dependencies among random variables in x = {xi}ni=1

is often described with a graphical model [Pea00, Jor03, WJ08], denoted as G =

(V,E): The set of vertices V consists of all the random variables V = {xi}ni=1, and

the set of edges E = {eij} indicate dependency among pairs of random variables

(xi, xj) – there is an edge between xi and xj if and only if they are conditionally

dependent. Figure 1.5 shows one such example. In fact, the state-space model

(1.1.1) in Section 1.1.1 can be viewed as a special case of such latent variable

graphical models12.

A fundamental and challenging problem in statistical learning is how to infer

the joint distribution of x from marginal statistics of the observed variables xo

11 In practice, Gaussian can be used to approximate any distribution up to its second-order
statistics.

12 the input u and output y would be the observations and the (randomly initialized) state x

would be the hidden latent variables.
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even if the number of latent variables and their relationships with the observed

ones are unknown. In the most basic case when all the variables are jointly

Gaussian, we may partition the covariance matrix Σ of x = (xo,xh) as:

Σ =

[
Σo Σo,h

Σ∗o,h Σh

]
≡
[

Θo Θo,h

Θ∗o,h Θh

]−1

∈ Rn×n. (1.1.14)

Notice that in the above covariance matrix, only the covariance associated with

the observed data Σo can be obtained from (statistics of) the data. Using facts

from linear algebra, one can show that Σo is of the form:

Σ−1
o = Θo −Θo,hΘ

−1
h Θ∗o,h ∈ Rno×no . (1.1.15)

In the above expression, the first term Θo will be sparse if the graph G is and the

second term Θo,hΘ
−1
h Θ∗o,h has a rank less than the number of latent variables,

which is often relatively small. For the example shown in Figure 1.5, there are

only two hidden nodes; hence the rank of the second term would be at most 2 and

the first term Σo would have the same pattern as the upper-left 6× 6 submatrix

of Θ shown on the right of the figure. It has been shown that, in general, a

graphical model is identifiable via tractable means only if the graphical model

G is sufficiently sparse [CPW12]. Popular models such as trees and multi-layer

deep networks are representative examples of such graphical models.

Under such conditions, the covariance matrix Σo of the observed variables xo
always has the following decomposable structure:

Σ−1
o = S +L ∈ Rno×no , (1.1.16)

where S is a sparse matrix and L is a low-rank matrix. The rank ofL is associated

with the number of (independent) latent variables in the graph: rank (L) =

dim(xh); the sparse matrix S is associated with the conditional dependency of

the observed variables – an entry sij of S is zero if the two observed variables

xi and xj are conditionally independent given the others.

So to a large extend, the problem of inferring the full graphical model G, or the

covariance matrix Σ in the Gaussian case, reduces to a problem of decomposing

a matrix Σ−1
o into a low-rank matrix L and a sparse matrix S. Although this

decomposition problem (1.1.16) is generally NP-hard,13 we will see in Chapter 5,

when both L and S are sufficiently low-dimensional, this problem actually be-

comes tractable and can be solved correctly and efficiently by methods introduced

in this book.

13 The well studied “planted clique” problem [GZ19,BB20] in complexity theory is a special
case of this problem, as we will discuss in Chapter 5.
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1.2 A Brief History

Due to the ubiquity and importance of low-dimensional structures, there has

been a long and rich history of studying, understanding, and exploiting them in

Science, Engineering, Statistics, and Computation.

1.2.1 Neural Science: Sparse Coding

Through millions of years of evolution, the brains of humans and other animals,

in particular the visual cortex, has adapted well to its living environment. The

natural vision systems of primates are able to exploit statistics of natural images

and achieves highly accurate visual perception with extreme efficiency in time

and energy. This phenomenon has long been observed and studied extensively in

neural science. Back in 1972, visual neuroscientist Horace Barlow proposed the

following dogma for natural vision [Bar72]:

“... the overall direction or aim of information processing in higher sensory centres is to
represent the input as completely as possible by activity in as few neurons as possible.”

In 1987, David Field provided the first scientific evidence in support of this

conjecture by showing that the oriented receptive fields of simple cells in the

visual cortex are well suited to encode natural images with a small fraction of

active units [Fie87]. His results support Barlow’s dogma that the goal of natural

vision is to represent the information in the natural environment with minimal

redundancy.

Later in 1996, Bruno Olshausen and David Field had further hypothesized in

their seminal work [OF97] that in biological vision systems, visual sensory input

data, say y ∈ Rm, are represented in terms of linear combination of a set of

elementary patterns (or features) ai ∈ Rm:

y =

n∑

i=1

xiai + ε ∈ Rm, (1.2.1)

where x = [x1, x2, . . . , xn]∗ ∈ Rn are sparse coefficients14 and ε ∈ Rm is some

small modeling errors. The collection of all patternsA = [a1,a2, . . . ,an] ∈ Rm×n

is called a dictionary, which is learned from statistics of the input. When adapted

to a large collection of image patches extracted from natural images, the dictio-

nary converges to a set of localized, oriented bandpass functions at different

scales (or spatial-frequencies) strikingly similar to the receptive fields found in

visual cortex (see Figure 1.6). Such a learned dictionary enables the vision sys-

tem to reformat sensory information into a sparse code x during the early stages

of visual processing. Subsequent studies of a wide range of animals (e.g. mouse,

rat, rabbit, cat, monkey) and human brain have provided further evidences for

sparse coding of sensory input in natural vision [OF04]. More recent studies of

14 That is, most xi’s are zeros.
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Figure 1.6 a. Results from training a system of 192 basis functions on 16×16-pixel
image patches extracted form natural scenes [OF96b]. b. The receptive fields
corresponding to the last row of basis functions in a. c. The distribution of the learned
basis functions in space, orientation and scale. d. Activity histograms averaged over
all coefficients for the learned basis functions (solid line) and for random initial
conditions (broken line). Image reprinted with permission from Bruno Olshausen.

neurons in the monkey cerebellum by Reza Shadmehr’s group at Johns Hop-

kins [HKSS15, HKSS18] further suggest that the same sparse coding dictionary

organizes sensory motor control output and prediction errors which, in turn,

organizes the entire closed-loop learning network for natural vision.

The fact that sparse coding becomes a central principle for natural vision

sends two encouraging messages to engineers: first, seemingly complex real data,

such as natural images, do have good intrinsic structures that can be exploited

for compact and efficient representations [OF96a]; second, such structures and

representations are already learned effectively and efficiently by nature [OF97,

GS12, LLT18]. To mathematicians and computer scientists, the second message

might seem a little surprising. It contradicts a known fact that finding the sparse
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code x ∈ Rn for a given signal

y = Ax ∈ Rm (1.2.2)

is in general an NP-hard problem even when the dictionary A is known but

over-complete, i.e., m < n (see Theorem 2.8). Hence sparse coding can be com-

putationally prohibitive and yet nature seems to learn to do it effortlessly. To a

large extent, studies in this book reconcile this contradiction by characterizing

conditions under which the sparse coding problem can be solved efficiently and

effectively (Chapter 3). Furthermore, we will see in later part of this book (Chap-

ter 7) that, even when the dictionary A is not known in advance and needs to be

learned (as in natural vision), given sufficient observations Y = [y1,y2, . . . ,yN ]:

Y = AX ∈ Rm×N , (1.2.3)

both the correct dictionary A and associated sparse codes X = [x1,x2, . . . ,xN ]

can be learned correctly and efficiently, under fairly broad conditions! Even-

tually, towards the end of the last Chapter 16, we will see how mathematical

and computational principles developed in this book might provide compelling

mathematical justification for the need of sparse coding (even in nature), as well

as other computational mechanisms that resonate more deeply with phenomena

observed in neural science or cognitive science.

1.2.2 Signal Processing: Sparse Error Correction

The properties of sparse signals and data have long been studied by mathemati-

cians and statisticians. Throughout history many have explored and proposed

computationally efficient ways to exploit such properties. A classical problem in

data analysis is to model an observation, say y ∈ R, as a linear function of a set

of known variables a∗ = [a1, a2, . . . , an] ∈ Rn:

y = f(a) = a∗x = a1x1 + a2x2 + · · ·+ anxn, (1.2.4)

where the x = [x1, x2, . . . , xn]∗ ∈ Rn are some unknown parameters to be deter-

mined. Given multiple, say m, observations of the form:

yi = a∗ix+ εi, i = 1, 2, . . . ,m, (1.2.5)

where εi is possible measurement noise or error, we may stack yi as entries of a

vector y ∈ Rm and a∗i ∈ Rn as rows of a matrix A ∈ Rm×n. The goal is then to

find a set of parameters x ∈ Rn such that Ax fits well with the given observation

y ∈ Rm. In the classical setting, we usually have the number of measurements

larger than the unknowns, i.e., m ≥ n. Hence there may be no solution x that

satisfies the equation y = Ax precisely due to measurement errors.

Least Absolute Deviations versus Least Squares.
As early as in 1750, French mathematician Roger Joseph Boscovich had proposed

to solve for x that minimizes the absolute deviations between y and Ax [Bos50],
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Figure 1.7 Data fitting with few but large errors versus small noises on almost every
data points. The least absolute deviations (minimizing `1 norm of ε) is more suitable
for the situation on the left whereas the least squares is for the right.

namely:

min
x
‖y −Ax‖1 =

m∑

i=1

|yi − a∗ix|, (1.2.6)

where ‖ · ‖1 is the `1 norm of a vector which is the sum of absolute values of

all its entries. This is also known as the method of least absolute deviations.

According to historical account [Pla72], this work has made significant influence

on Laplace’s conception of Laplace distribution [Lap74], see Exercise 1.5. During

the period which followed Boscovich and Laplace, mainly in early 1800’s, the

method of least squares was proposed independently by Legendre in 1805 [Leg05]

and Gauss in 1809 [Gau09]:

min
x
‖y −Ax‖22 =

m∑

i=1

(yi − a∗ix)2. (1.2.7)

The method of least squares (or minimizing the `2 norm of errors) is known to be

statistically optimal when the measurement errors εi’s are i.i.d. Gaussian noise15.

In addition, the optimal minimizer x? admits a closed-form solution (which we

leave as an exercise to the reader), hence is very appealing to practitioners before

the age of computers.

At the time of Boscovich and Gauss, people intuitively knew that the least

absolute deviations method (1.2.6) is more robust if the measurements contain

large but few errors, as illustrated in Figure 1.7. However, the precise working

conditions of `1 minimization were mostly not know or clarified, and unlike least

15 To Gauss’ credit, in his work [Gau09], he went beyond Legendre and established the

connection between least squares and statistics, and showed its optimality for errors with
Gaussian, also known as the normal, distribution. See Exercise 1.5.
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squares, there is no closed-form solution to `1 minimization16. As a result, the

method of least squares had dominated data analysis for the next nearly three

centuries! Nevertheless, as we will see in this book, the lack of closed-form solu-

tion for `1 minimization is very much alleviated by modern efficient optimization

methods. With computers, solving `1 minimization is no longer a bottleneck even

when the scale is very large (see Chapter 8). Advance in computation has paved

the way for a strong return of methods based on numerical solutions such as

`1 minimization. The remaining questions are when `1 minimization works and

why.

Logan’s Phenomenon.
The theoretical analysis of `1 minimization for error correction has its earliest

roots in work by Benjamin Logan17 in the 1960’s. His PhD thesis, completed at

the Electrical Engineering Department of the Columbia University, featured the

following intriguing result:

“Suppose we observe a signal y which consists of a band-limited signal xo, superimposed
with an error eo which is sparse in the time domain. If the product of the bandwidth of
xo and the size of the support of eo is less than π/2, the true band-limited signal can be
recovered by `1 minimization, no matter how large the error is in magnitude, or where
its support is located.”

This observation is known as Logan’s phenomenon. To state this result slightly

more formally, let B1(Ω) be the set of band-limited functions whose Fourier trans-

form vanishes outside of [−Ω,Ω], as previously defined in (1.1.10). A formal

statement of Logan’s theorem is as follows:

Fact 1.5 (Logan’s Theorem). Suppose that y = xo + eo, with xo ∈ B1(Ω),

‖eo‖1 =
∫
t
|eo(t)|dt < +∞ and supp(eo) ⊆ T . If

|T | × Ω <
π

2
, (1.2.8)

then x is the unique solution to the (conceptual) optimization problem

min ‖x− y‖1
subject to x ∈ B1(Ω).

(1.2.9)

Here, |T | should be interpreted as the length of T (if T is an interval) or the

Lebesgue measure of T (if T is a more general set). This result says that no

matter how large the error eo is in magnitude, as long as it is sparse enough, it

can be exactly corrected by `1 minimization. Figure 1.8 illustrates the implication

of this result. It highlights three different areas (red, blue, and green) of the same

size in the spectrum-time space for xo and eo, respectively. If the area size is less

than π/2, then xo and eo can be separated by `1 minimization.

16 nor were there computers at the time!
17 Harmonic analyst and signal processor at Bell Labs, and also a renowned bluegrass fiddler.
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eo(t)

x̂o(ω)

Figure 1.8 Illustration of Logan’s Phenomenon: horizontal axis indicates support
of eo in time t, and vertical axis indicates support of the Fourier transform x̂o of xo in
spectrum ω. All three colored areas have the same separability by `1 minimization
according to Logan’s statement.

Logan was working with an eye toward applications in audio signal processing,

in which a band-limited signal is the target of interest, and the corruption eo is

to be removed. Although Logan’s result is stated for continuous-time signals, we

will give a concrete example that shows how it works for discretized digital signals

in Section 2.3.4 of Chapter 2. At this point, acute readers may have recognized

strong conceptual similarity between Logan’s problem and the decomposition

problem (1.1.16) that we have encountered in learning graphical models.

Logan obtained his result in the mid-1960’s. It would be several decades before

the modern theory of `1 minimization began taking form. However, practition-

ers in many applied computational disciplines were very actively practicing `1

minimization and related techniques for robust statistical inference with erro-

neous data, notably practice in the geosciences since the 1970’s [CM73,SS86] as

well as the work in robust statistics in the 1980’s [Hub81, HRRS86]. In many

cases, they observed intriguing phenomena, which seemed to parallel Logan’s

result: `1 minimization often exactly recovered sparse-enough solutions, and ex-

actly corrected sparse-enough errors. Beginning in the early 2000’s, a sequence of

theoretical breakthroughs led to increasingly sharper and broader characteriza-

tions of the conditions under which `1 minimization succeeds in error correction

(e.g., [CT05,WM10]). These are the conditions which we will develop thoroughly

in this book.
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1.2.3 Classical Statistics: Sparse Regression Analysis

A classical problem in statistical data modeling is to study how a given random

variable, say y ∈ R, depends on a set of predictive random variables (also known

as predictors or features), say a∗ = [a1, a2, . . . , an] ∈ Rn. This is known as

regression analysis [HTF09]. The most popular form is the linear regression in

which we try to represent y as a linear superposition of (some or all of) the

variables:

y = a∗x+ ε = a1x1 + a2x2 + · · ·+ anxn + ε, (1.2.10)

where ε is an error term whose variance is to be minimized:

min E
[
(y − a∗x)2

]
. (1.2.11)

In practice, the problem becomes to find the coefficients x = [x1, x2, . . . , xn]∗ ∈
Rn from multiple, say m, samples y = [y1, y2, . . . , ym]∗:

y = Ax+ ε ∈ Rm, (1.2.12)

where rows of A ∈ Rm×n are corresponding samples of the predictors. The

method of least squares discussed earlier by Legendre and Gauss:

min
x
‖y −Ax‖22 (1.2.13)

is arguably the earliest, and the most popular, form of regression in which all the

variables a1, a2, . . . , an are used to predict y. See Figure 1.9 left for an example.

This is often a reasonable thing to do if the number of variables n is small and

they are already chosen to be somewhat independent of one another. One may

refer to the recent book [BV18,FLZZ20] for a more extensive exposition of this

topic.

Best Subset Selection.
In many settings of data analysis, the number of variables n can be very large.

Many variables can be irrelevant for the prediction or there could be tremendous

redundancy among the relevant ones18. Very often the number of predictors could

even be larger than the number of available samples, i.e., n > m.19 Hence, in

addition to fitting the prediction y with Ax, one often prefers to find a much

smaller subset of the most relevant variables that can best fit y – the so called

variable selection. In other words, the coefficient vector x is desired to be a sparse

18 This is certainly the case with natural vision: to detect or identify an object in an image,

the possible predictors can be in the same magnitude as the number of pixels. Hence
dictionary learning and sparse coding becomes crucial in order to identify the most

informative features that help with the detection.
19 In the over-determined case, the least square problem (1.2.13) no longer has a unique

solution. A classical way to fix this is through introducing an additional Tikhonov-type
regularization term λ‖x‖22, resulting in the so called ridge regression

minx ‖y −Ax‖22 + λ‖x‖22. We leave this as an exercise for the reader, see Exercise 1.8.
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vector with only a few, say k ≤ min{m,n}, of its entries being nonzero. A natural

proposal to select x is to use the least squares metric:

min
x
‖y −Ax‖22 subject to ‖x‖0 ≤ k, (1.2.14)

where ‖x‖0 indicates the `0 norm – the number of nonzero entries of a vector.

This is called the best subset selection problem in regression analysis and had

originally proposed by Hocking and Leslie [HL67] and Beale et. al. [BKM67] in

1967. This notion of choosing minimal subset of relevant variables is related to

the more general principle of minimum description length proposed by Rissanen

in 1978 [Ris78], which argues that in choosing between various models, we should

prefer models which can be encoded most efficiently [HY01].

Although this seems a sensible thing to hope for, directly solving the above

subset selection problem is computationally intractable: when k and m become

very large, the number of possible supports
(
m
k

)
grows exponentially in k and

m. In fact, we will soon see in the next chapter this problem is in general NP-

hard. Hence, through the history, several other approaches have been proposed

to address the variable selection problem via computationally tractable means.

Stepwise Regression.
In 1966, Efroymson [Efr66] proposed a greedy forward (or backward) stepwise

regression scheme for variable selection: starting from an empty index set I0 = ∅,

then at each step add to the index set Ik the index of a variable which gives the

lowest squared error among all the remaining variables. To be more precise, let

PI be the orthogonal projection on the range of the submatrix AI that consists

of columns of A indexed by I. The greedy selection at each step is given by:

ik = arg min
i 6∈Ik
‖y − PIk∪{i}(y)‖22, (1.2.15)

and the index set is updated accordingly:

Ik+1 = Ik ∪ {ik}. (1.2.16)

This forward stepwise selection scheme is very much similar to more recent greedy

algorithms proposed to solve the sparse coding problem, such as the orthogonal

matching pursuit method that we will see in Chapter 8. Tools introduced in

this book will allow us to clarify conditions under which such a greedy scheme

succeeds in finding the optimal subset.

Lasso Regression.
Notice that the main difficulty in solving the subset selection problem (1.2.14) is

the `0 norm constraint: ‖x‖0 ≤ k. It makes the problem combinatorial hence chal-

lenging to optimize via conventional optimization methods.20 In 1996, Tibishirani

20 Recently there has been some exciting progress in improving computation efficiency of the
variable selection problem (1.2.14) via mixed-integer programming [BKM16].
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proposed to relax this constraint with the `1 norm: ‖x‖1 ≤ k. This leads to the

so called lasso regression [Tib96]

min
x
‖y −Ax‖22 subject to ‖x‖1 ≤ k. (1.2.17)

A similar formulation, known as basis pursuit, was proposed in 1998 by [CDS98]

which solves the following program:

min
x
‖x‖1 subject to y = Ax. (1.2.18)

Via convex duality, these problems are equivalent to an unconstrained convex

optimization:

min
x
‖y −Ax‖22 + λ‖x‖1, (1.2.19)

with λ > 0 a tuning parameter.21 Compared to the greedy stepwise regression

(1.2.15), the global nature of lasso and basis pursuit leads to many favorable

properties, and arguably, they have become the most popular regression meth-

ods since the method of least squares. In this book (Chapter 3), we will develop

theoretical tools that allow us to fully understand the role of `1 norm minimiza-

tion. These tools will help characterize the precise conditions when the above

programs, or their variants, succeed in recovering the correct sparse coefficients.

In Chapter 8 we further develop efficient algorithms that can solve these opti-

mization problems in very large scale.

1.2.4 Data Analysis: Principal Component Analysis

In many applications, the observations can be modeled as samples from a mul-

tivariate random vector y = [y1, y2, . . . , ym]∗ ∈ Rm. As the dimension m can be

very high and there is often redundancy among these variables y1, y2, . . . , ym,

a central problem in statistics or data analysis is to identify possible strong

correlation among these variables and remove the redundancy.

Statistical Perspective.
Principal component analysis (PCA) is a classical tool for this purpose. It was

first proposed by Pearson in 1901 [Pea01] and later independently by Hotelling in

1933 [Hot33]. The main idea is to project the high-dimensional random vector y

onto much fewer directions, represented by a sequence of mutually orthonormal

vectors {ui ∈ Rm}di=1, such that the variances are maximized:

ui = arg max
u∈Rm

Var(u∗y) subject to u∗u = 1, u ⊥ uj ∀j < i. (1.2.20)

The vectors ui ∈ Rm, i = 1, . . . , d are called principal directions of y and the

projections wi = u∗iy are called principal components of y. By construction wi

21 In contrast, the classical ridge regression considers an `2 norm regularization on x:

minx ‖y −Ax‖22 + λ‖x‖22, see Exercise 1.8.
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Figure 1.9 Illustration of linear regression on the left versus principal component
analysis on the right. Linear regression minimizes the least squares of ε, error in
predicting the (one) variable y; Principal component analysis (PCA) minimizes the
least squares of ε, distance to the estimated low-dimensional principal component w.

will be uncorrelated and they represent directions in which variables in y are

most correlated.

Or equivalently, for a properly chosen d, the original high-dimensional random

vector is best-approximated by the d < m principal components as:

y = u1w1 + u2w2 + · · ·+ udwd + ε
.
= Uw + ε, (1.2.21)

where U = [u1,u2, . . . ,ud] ∈ Rm×d, w = [w1, w2, . . . , wd]
∗ ∈ Rd, and the vari-

ance of the residual ε ∈ Rm is minimized:

min E
[
‖y −Uw‖22

]
. (1.2.22)

Notice that both linear regression (1.2.10) and PCA minimize least squares of the

fitting errors by a low-dimensional linear model. Nevertheless, in regression, one

dimension of the data y is preferred and all other variables a1, a2, . . . , an are used

to predict it, whereas in PCA, all dimensions y1, y2, . . . , yn are treated equally

and the principal components reveal their joint (low-dimensional) structure.22

Figure 1.9 illustrates the relationship and difference between regression analysis

and principal component analysis.

A classical result in statistics states a solution to PCA:

Fact 1.6 (Principal Component Analysis). For a zero-mean random vector

y ∈ Rm, its first d principal directions {ui ∈ Rm}di=1 are the d orthonormal

eigenvectors of the covariance matrix Σy = E[yy∗] ∈ Rm×m associated with the

largest d eigenvalues {λi}di=1. Moreover, λi = Var(u∗iy), i = 1, 2, . . . , d.

To estimate the principal directions U from samples of y, we may stack the

22 In terms of machine learning language, one may say that (linear) regression analysis is a
supervised learning problem whereas principal component analysis is unsupervised learning.
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samples as columns of a matrix Y
.
= [y1,y2, . . . ,yn] ∈ Rm×n. The covariance of

y can be estimated by the sample covariance Σ̂y
.
= 1

nY Y
∗ ∈ Rm×m. So if

Y = UΣV ∗ (1.2.23)

is the singular value decomposition (SVD) of Y , the estimated principal direc-

tions of y will be precisely the leading d singular vectors – the first d columns of

U . For a more detailed characterization of SVD, one may refer to Appendix A.

Low-rank Approximation Perspective.
Singular value decomposition of a matrix was initially developed in the numer-

ical linear algebra literature by Eckart and Young in 1936 [EY36], independent

of PCA.23 The basic idea of singular value decomposition is to approximate a

matrix with a superposition of a few rank-1 matrices (usually expressed in a

bilinear outer product form):

Y = σ1u1v
∗
1 + σ2u2v

∗
2 + · · ·+ σdudv

∗
d +E, (1.2.24)

where E is a matrix of small errors or residuals. In fact, the origin of matrix

approximation by bilinear forms can be traced back as early as in the work of

Beltrami [Bel73] and Jordan [Jor74] in early 1870’s.

To see the connection between SVD and PCA, let us consider the problem of

approximating a given (sampled data) matrix Y ∈ Rm×n by a matrixX ∈ Rm×n

of rank less than d in the least squares sense:

min
X
‖Y −X‖22 subject to rank (X) ≤ d. (1.2.25)

Fact 1.7 (Low-rank Approximation). Let Y = UΣV ∗ be the SVD of the matrix

Y ∈ Rm×n. The optimal solution to the above low-rank matrix approximation

problem (1.2.25) is given by

X? = UdΣdV
∗
d, (1.2.26)

where Ud ∈ Rm×d, Σd ∈ Rd×d, and V d ∈ Rn×d are submatrices associated to

the top d singular vectors and singular values in U ,Σ, and V , respectively.

While principal components were initially defined exclusively in a statistical

sense [Pea01, Hot33], one can show that the above SVD-based solution gives

asymptotically unbiased estimates of the true parameters in the case of Gaussian

noise, according to the work of Householder and Young in 1938 [HY38] and

then Gabriel in 1978 [Gab78]. A systematic and complete account of statistical

properties of PCA can be found in the classical book by Jolliffe in 1986 [Jol86].

Generalization of PCA to models of multiple low-dimensional subspaces can be

found in a more recent book by Vidal, Ma, and Sastry [VMS16].

Low-rank approximation by least squares fitting (1.2.25) is a special case for

which we have a simple tractable solution as stated in the Fact 1.7. This is in

general not the case as rank minimization is typically NP-hard. In Chapters 4

23 So SVD is also known as the Eckart and Young decomposition [HMH00].
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and 5 we will study a much broader family of rank minimization problems and

characterize conditions under which they can be solved efficiently.

1.3 The Modern Era

As we have seen in previous sections, low-dimensional structures arise ubiqui-

tously in scientific, mathematical, and engineering problems. Many important

instances have been long studied in various fields at different times of the his-

tory. Many good ideas have been proposed and many effective computational

methods have been developed for identifying and exploiting such structures.

1.3.1 From Curses to Blessings of High-Dimensionality

In the classical era, due to limited computing resources, studies24 had typically

focused on formulations which allow closed-form solutions or on methods that

are amenable to “hand computation,” at least when the dimension is moder-

ate (such as PCA, according to Pearson in 1901 [Pea01]). As a result, methods

that rely on heavy numerical methods but conceptually superior formulations

have been severely under studied and often ignored or forgotten. For instance,

as we have seen in the previous section, for both sparse error correction or sparse

regression, `1 minimization is conceptually the preferred formulation. However,

its significant advantages have never been fully brought to light until very re-

cently, thanks to efficient optimization methods and powerful computers. They

have helped reveal striking properties and phenomena of `1 minimization, espe-

cially when the dimension becomes high enough. Such empirical observations have

motivated subsequent theoretical analysis and led to a rather complete and com-

prehensive theory featured in this book. This renewed understanding of many

beneficial geometrical and statistical properties of sparse and many other low-

dimensional models in high-dimensional space was celebrated as the “blessings

of dimensionality” for data science, by Donoho in 2000 [Don00].

Speaking more broadly, in the classical settings, statistical methods and opti-

mization methods were typically applied to data of relatively low dimension or

to problems of relatively small scale. Although many profound (and useful) geo-

metric and statistical properties of low-dimensional structure in high-dimensional

space were long developed and known to mathematicians [Mat02], such proper-

ties had been completely out of reach for computation hence oblivious to the

practice of data analysis till very recently. Around the turn of this century, data

science had entered into a new era, due to the rise of the Internet and social

networks (and many other technological advancements mentioned in the Pref-

ace). There has been an explosively growing demand to solve ever larger scale

problems and compute with ever higher dimensional data. To address such de-

mand, powerful computing platforms and software tools have been developed to

24 especially studies that aim to reach at implementable algorithms or practical schemes.
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solve large-scale optimization problems. Nowadays data scientists and engineers

are fully exposed to both good and bad traits of high-dimensional data. Under-

standing such traits is hence crucial for practitioners and researchers to develop

more efficient and reliable algorithms and systems in the future.

As we are entering the new era of big data computation, many classical results

and methods have become increasingly inadequate for modern data science in

one crucial aspect:

lack of precise account of data complexity and computational complexity.

As our previous survey of the fields and history has shown, many theoretic re-

sults have provided profound understanding and correct guidelines for approach-

ing the problems of interest. However, many of the classical results do not di-

rectly translate to computationally tractable algorithms or solutions. Many of

the statistical and information-theoretic concepts and analyses rely on condi-

tions such as the distributions of interest are generic. These concepts25 often

become ill-defined when the distributions become degenerate (low-dimensional)

or intractable to compute when the ambient space is high. Most theoretical guar-

antees for correctness are asymptotic in nature. Straightforward implementation

of such methods often leads to algorithms whose worst sample complexity or

computational complexity grows exponentially in space or time, hence impracti-

cal for high-dimensional problems. Practitioners often find existing models and

theory ineffective or even irrelevant to their real-world data and problems, hence

resort to brute force, heuristic, and sometimes even ad hoc methods instead.26

Therefore, to provide practitioners in modern data science truly pertinent

engineering principles and methodologies, we need to develop a new theoretical

platform that can rigorously characterize the precise working conditions of a

proposed method for low-dimensional structures in high-dimensional spaces:

• The theory would reveal the fundamental reasons why many seemingly in-

tractable high-dimensional problems can be solved efficiently without suffering

the curses of dimensionality: because the intrinsic dimension of the data hence

solution is very low relative to the dimension of the ambient state space.

• The platform should also lead to tractable and scalable solutions and algo-

rithms that work in the non-asymptotic regime: giving precise characterization

of the required data complexity27 and computational complexity28 for certain

guaranteed accuracy or probability of success.

Only through the lens of computation can we truly bridge the gap between theory

and practice for high-dimensional data analysis and learning, which is the main

purpose of this book. To a large extent, the main task of Part I of the book is

25 including some of the most basic quantities such as likelihood, entropy, and mutual
information [CT91].

26 In recent years, the gap between theory and practice has been significantly enlarged by the

empirical success and popularity of deep learning, as we will try to address and resolve in
Chapter 16.

27 say in the number of samples or measurements, random or designed.
28 say in the number of evaluations of gradients.
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to characterize precisely the data complexity; that of Part II is to characterize

precisely the computational complexity; and that of Part III is to deal with other

non-ideal factors in real data and applications, such as nonlinearity.

1.3.2 Compressive Sensing, Error Correction, and Deep Learning

Compressive Sensing.
In late 1990’s, regression methods such as lasso or basis pursuit:

min
x
‖x‖1 subject to y = Ax, (1.3.1)

have been extensively experimented and practiced in statistics for sparse vari-

able selection. Despite the fact that solving the sparsest solution to an under-

determined linear system y = Ax with A ∈ Rm×n (m < n) is known to be

NP-hard in general, overwhelming empirical evidences show that the correct so-

lution can be recovered effectively and efficiently under fairly broad conditions:

for randomly chosen matrix A, the above `1 minimization is able to recover a

sparse vector x with support up to a constant fraction of n! This was eventually

proven to be the case in 2006 by David Donoho [Don06b], Emmanuel Candès,

Justin Romberg, and Terence Tao [CRT06b].

In a nutshell, these results suggest that for a k sparse signal x in an n di-

mensional space Rn, we only need to take approximately O(k) general linear

measurements in order to have all its information. In addition, the signal can be

correctly and efficiently recovered by minimizing the `1 norm of x (see Chap-

ter 3). One implication of this result is that if x is a signal that has a high

bandwidth but nevertheless sparse in its spectral domain (as shown in Figure

1.3), then one can sample and recover it at a rate much lower than the Nyquist

sampling rate [Tro10,ME10], hence the notion of “compressed sensing” [Don06a]

or “compressive sampling” [Can06]. We will give a real application of this new

revelation to wide-band wireless communication in Chapter 11.

Error Correction.
As we have seen in the previous section, historically `1 minimization:

min
x
‖y −Ax‖1, (1.3.2)

was proposed to correct (sparse) errors e in signal y = Ax+e by Boscovich and

later by Logan. The connection between sparse signal recovery and sparse error

correction reappeared in the seminal paper “Decoding by Linear Programming”

by Candès and Tao in 2005 [CT05], in which more general conditions for the

sparse error correction problem were derived. Their work has inspired many

highly striking applications such as robust face recognition [WYG+09] by the

authors, which we will soon see in the next chapter and Chapter 13.

Ever since, the conditions under which `1 minimization recovers sparse signals

or corrects sparse errors were quickly improved and extended to broader fam-

ily of settings and structures. For instance, both the compressive sensing and



24 Introduction

error correction results for sparse vectors were soon generalized to low-rank ma-

trices [RFP10, CLMW11] (which will be studied in Chapters 4–5) and broader

families of low-dimensional structures (see Chapter 6). Collectively, these results

have started to reshape the foundation of modern data science, especially high-

dimensional data analysis, which we will study systematically in this book.

Deep Learning.

The above models are somewhat idealistic in the sense that the relationships

between the measurements (output) y and the structured data x are linear and

known. In many real-world problems and data, the mapping from x to y can

be nonlinear or unknown and even the low-dimensional structures of the data x

can be nonlinear. In this case, one may choose to compose a sequence of simple

maps to incrementally approximate such a nonlinear and unknown mapping:

{
z`+1 = φ(A`z`), z0 = x, ` = 0, 1, . . . , L− 1,

y = φ(CzL),
(1.3.3)

where A`,C are (unknown) matrices, representing linear mappings, and φ(·)
is some basic, typically sparsity-promoting, nonlinear activation. The RNN in

(1.1.6) is one such example. This type of models are also widely known as

deep networks. Artificial (deep) neural networks have been proposed since 1940-

50s [MP43,Ros58] and extensively studied in the following decades for a variety

of problems in pattern recognition, functional approximation, and statistical in-

ference etc. (see [AB99] for a systematic introduction to this classic topic).

Due to the availability of big data and advancement in high-performance com-

putation in the past decade, it has been shown in the seminal work of Krizhevsky,

Sutskever, and Hinton [KSH12] in 2012 that this class of models can be learned

efficiently and effectively and give useful representations for large-scale real world

(visual) data. This has led to tremendous empirical successes of deep networks

in a wide variety of applications such as computer vision, speech recognition,

and natural languages [LBH15,GBC16]. Despite explosive technological advance-

ments, the practice of deep networks has constantly been haunted by the lack of

interpretability and understanding of the so-learned “black box” models, hence

lack of rigorous performance guarantees.

Towards the end of the book in Chapter 16, we will see that the role of deep

networks, together with their design principles and crucial properties, can be

clearly explained, rigorously justified, and even derived as a “white box” from

the perspective of learning discriminative low-dimensional representations for

high-dimensional data. Therefore, concepts, principles, and methods covered in

this book also serve as the foundation for a rigorous and deeper understanding

of deep learning, or machine learning in general, in the future.
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(Gaussian vertices)

Figure 1.10 Two examples of rather counterintuitive high-dimensional phenomena.
Left: almost all area of a high-dimensional sphere is concentrated in an ε-strip
around its equator, and actually around any great circle! Right: random samples of a
high-dimensional Gaussian span a highly neighborly convex polytope, which is,
however, impossible to illustrate with any 2D polytope.

1.3.3 High-Dimensional Geometry and Non-Asymptotic Statistics

To fully understand the reason why information about low-dimensional struc-

ture can be encoded by a nearly minimal number of (linear or nonlinear) mea-

surements, and why it can be accurately and efficiently recovered by tractable

methods such as convex and nonconvex optimization, we must resort to funda-

mental mathematical concepts and tools from high-dimensional geometry and

non-asymptotic statistics. These are the tools that have enabled people to char-

acterize the precise conditions under which the proposed methods are expected

to work.

High-dimensional geometry and statistics are full of phenomena that are dia-

bolically counterintuitive. Our geometric intuition developed in the familiar low

(two or three) dimensional space is completely useless for understanding what

normally takes place in a high-dimensional space.29 Actually our intuition may

often be exactly opposite to the truth! Although many seemingly paradoxical

properties of high-dimensional spaces have been long known to mathematicians

and theoretical physicists in certain fields, they have stayed mostly alien to engi-

neers and practitioners till not so long ago. This book aims to introduce some of

the properties that are most pertinent to modern data science and engineering.30

Here as a prelude, we give two examples of high-dimensional phenomena that, as

we will see later, have a lot to do with explaining the magic of `1 minimization.

29 While most people are rather presumptuous about their geometric intuition, be reminded
that it took an Einstein to think correctly about the four-dimensional space and time!

30 For mathematically oriented readers, we recommend the excellent recent books by

Wainwright [Wai19] or Vershynin [Ver18] for a systematic exposition of non-asymptotic
high-dimensional statistics and probability.
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Measure Concentration on a Sphere [Mat02].
Figure 1.10 left shows an ε-strip around a great circle of a sphere Sn−1 in Rn.

Here the great circle is the equator with xn = 0. If we want the strip to cover

majority, say 99%, of the area of the sphere:

Area{x ∈ Sn−1 : −ε ≤ xn ≤ ε} = 0.99 ·Area(Sn−1), (1.3.4)

our experience with low-dimensional spheres suggests that ε should be large

(close to 1). However, simple calculation shows that, as dimension n increases, ε

decreases in the order of n−1/2. That is, the width of the strip 2ε can be arbitrar-

ily small as n becomes large. Hence almost all area of the sphere concentrates

around the equator, as shown in Figure 1.10 left. If this is not strange enough,

the area also concentrates on the ε-strip around any great circle! A rigorous

statement will be given in Theorem 3.6 of Chapter 3. There are many bizarre

implications of this fact and we encourage the readers do some brain exercises

of their own. We here point out one such implication which has something to

do with our later study: if we randomly sample a point on the high-dimensional

sphere, say v ∈ Sn−1, then with high probability, this vector will be very close

to any of the equators. That is, the inner product of v with each of the standard

base vectors (the poles) ei ∈ Rn will be:

〈v, ei〉 ≈ 0, i = 1, 2, . . . , n. (1.3.5)

In other words, v will be simultaneously nearly orthogonal to all the base vectors

ei, or highly incoherent to them, in terminology to be used in this book.

Neighborly Polytopes from Gaussian Samples [DT09, DT10].
Consider an m-dimensional Gaussian random vector a ∈ Rm whose entries are

i.i.d. Gaussian N (0, 1/m). Now take say n = 5×m i.i.d. samples of this random

vector and collect them into a matrix: A = [a1,a2, . . . ,an] ∈ Rm×n. This gives

us a set of n random sample points in Rm. When m is large, say m = 1, 000,

then we have n = 5, 000 points. Our experience with low (two or three) dimen-

sional Gaussian distributions suggests that many of the samples would be “close

to the center” as the probability density is the highest there. However, as we

will see later, with high probability, these 5,000 random points span a convex

polytope with every point being one of its vertices, as illustrated in Figure 1.10

right. No points would be inside the interior of the polytope at all! If this is not

strange enough, try connecting every pair of the vertices with a line segment.

Then none of the segments will be in the interior either and each is an edge of

the convex polytope! Actually this is also true for any k vertices for k up to

certain large number. These vertices will span a k-face of the polytope. Such

a polytope is called a k-neighborly polytope [DT09]. Neighborly polytopes are a

rare breed in low-dimensional spaces31 but are rather abundant and common in

high-dimensional spaces. They are also very easy to construct (say by random

31 Only the triangle in R2 and the tetrahedron in R3.
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sampling). As we will see later in Chapter 3 and Chapter 6, it is precisely such

properties of high-dimensional polytopes that allow `1 minimization (1.3.1) to

recover any k-sparse vector x from m random measurements Ax, with m not so

much larger than k.

1.3.4 Scalable Optimization: Convex and Nonconvex

The theoretic developments since early 2000’s mentioned above have offered ex-

citing new prospect for practitioners of modern data science. They have pro-

vided theoretical guarantees that a very important family of problems, previously

deemed as computationally prohibitive (NP-hard) to solve, can become tractable

under fairly broad conditions. The studies also provide the mathematical tools

needed to characterize the precise conditions under which this takes place, hence

provide practitioners very pertinent guidelines when such methods are expected

to work.

There is one last hurdle though: just because a problem has become tractable,

say being reduced to a tractable convex program, it does not mean the existing

solutions or algorithms are already practical – meaning efficient enough for high-

dimensional data and large-scale problems in the real world.

Return of First-order Methods.
Convex optimization is a classic topic and has been well developed in the liter-

ature, e.g., see the textbook by Boyd and Vandenberghe [BV04]. For small to

medium size problems, algorithms such as the interior point methods developed

in late 1980’s [Wri87, Meg89, MA89a, MA89b] have proven to be extremely effi-

cient and very much become the gold standard for convex programs. However,

such algorithms rely on second-order information of the objective function, like

the classic Newton’s method. The computational and memory cost of comput-

ing the second-order derivatives, i.e., the Hessian matrix, can quickly become

impractical when the dimension of the problems becomes very large – say the

number of variables is in the millions or billions.32

This has compelled people to use instead first-order optimization methods

primarily for high-dimensional large-scale problems. The strive for ever growing

scalability has shifted the study of optimization to more careful characteriza-

tion of the computational complexity of the proposed algorithms, even within

the family of first-order methods [Nes03, Nem07]. As a result, the acceleration

techniques developed by Nesterov in 1983 [Nes83] have drawn significantly new

attention. In fact, in recent years, almost all ideas that could have helped improve

the convergence rate and reduce computational cost are carefully reexamined and

32 In addition to solving sparse coding problems, this is also the case for modern optimization

methods for training deep neural networks which normally have millions or billions of
parameters to tune. For an example, the latest GPT-3 model from OpenAI for natural

language processing has a total of 175 billion parameters to optimize [B+20] and the latest

Switch Transformers model from Google has 1.6 trillion parameters [FZS21].
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further refined, leaving almost no stone unturned. Because of this, we feel it is

necessary to give a renewed account of optimization methods within the new

context of supporting scalable computation: Chapter 8 is for the convex case

and Chapter 9 for the nonconvex case.

Return of Nonconvex Formulation and Optimization.
When we face a new class of challenging problems, the most natural approach is

trying to reduce them to problems for which we already know a good solution.

This is the case with the sparse and low-rank recovery problems. We are fortunate

that in many cases they can indeed be reduced to convex programs which admit

efficient solutions.

However, first of all, convexification has its theoretical limitations (as we will

elaborate on in Section 6.3 of Chapter 6), and many problems we encounter in

high-dimensional data analysis do not admit meaningful convex relaxation (as

we will study in Chapter 7).

Secondly, models considered in this book (e.g. sparse or low-rank) are idealis-

tic for developing the fundamental concepts and core principles. They typically

assume the low-dimensional data structures are piecewise linear. As we will see

in the application Chapters 12, 15, and 16, real-world data often have nonlin-

ear low-dimensional structures instead. Part of the data modeling and analysis

process hence entails to learn and undo such nonlinear transforms if we want to

apply principles from this book correctly and successfully.

Finally, very often in practice, we can be forced to adopt a nonconvex for-

mulation due to computational constraints or implementation limitations. Let

us consider the example of recovering a low-rank matrix, say X ∈ Rn×n. When

the dimension n becomes extremely high, it could become impossible to store

the matrix as it is. We may have to represent the matrix as the product of two

unknown low-rank factors:

X = UV ∗, U ∈ Rn×r,V ∈ Rn×r, (1.3.6)

with r � n, in order to push for better scalability of the implementation. In such

cases, we are forced to deal with the nonlinear nature of the representation or

nonconvex nature of the program head on [CLC19].

Interestingly enough, such somewhat forced choices lead to very nice sur-

prises [SQW15]. It has been well known that unlike convex optimization, it is

very difficult to ensure global optimality or algorithm efficiency for general non-

convex problems. Nevertheless, as we will see in Chapter 7, for many families

of problems that we encounter in high-dimensional data analysis, the problems

have natural symmetric structure. For example, to represent the low-rank ma-

trix X by two factors as in (1.3.6), there is an equivalent class of solutions:

UV ∗ = URR∗V ∗ for any orthogonal matrix R ∈ Rr×r in the orthogonal

group O(r). As a result, the associated nonconvex objective functions have ex-

tremely good local and global geometric properties. These properties make them

amenable to extremely simple and efficient algorithms, such as gradient descent
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Figure 1.11 A Perfect Storm for revolutionary knowledge and technology
advancement: confluence of the availability of massive data, powerful computational
platforms, high-dimensional geometry and statistics, scalable optimization algorithms,
and rich applications in science and technology.

and its variants, detailed in Chapter 9. Under very benign conditions, these algo-

rithms actually can converge to the globally optimal solution with high efficiency

and accuracy [SQW15,MWCC18], quite atypical of nonconvex problems!

Although this is still a rather active research area, scalable nonconvex opti-

mization algorithms used to solve such problems have been well developed for

long and their computational complexities have been precisely characterized re-

cently. So in Chapter 9 we give a rather complete and coherent survey of scalable

nonconvex optimization methods as well as guarantees they offer in terms of the

type of critical points converged to and the associated computational complexity.

These algorithms are not only useful in the context of recovering low-dimensional

structures but also essential to many modern large-scale machine learning prob-

lems such as constructing and training deep neural networks, which we will

elaborate on more in the final Chapter 16.

1.3.5 A Perfect Storm

According to Wikipedia, “a perfect storm is an event in which a rare combination

of circumstances drastically aggravates the event.” Then what have taken place

in data science and technology in the last couple of decades can be precisely

characterized as a “perfect storm,” a good one that is. An unexpected combina-

tion of several factors has almost simultaneously advanced and contributed to

a revolution in data science and technology: the massive high-dimensional data,

rich scientific or technological applications, and powerful computational and data

platforms (such as the cloud technology) have set an ideal stage for fundamental
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knowledge in high-dimensional geometry and statistics to be efficiently realized

and exploited through scalable optimization algorithms. The confluence of these

factors, as illustrated in Figure 1.11, has truly brought us into a new era of

scientific discovery and engineering marvel.

1.4 Exercises

1.1 (Nyquist-Shannon Sampling Theorem). Prove the Fact 1.3.

1.2 (Conditional Independence of Gaussian Variables). Prove the Fact 1.4 for

the case of a joint Gaussian vector with three variables x = [x1, x2, x3]∗ in which

x1 and x2 are conditionally independent given x3.

1.3. Given a jointly Gaussian random vector x = (xo,xh), prove that the struc-

ture of the covariance matrix of the observable part xo has the structure given in

(1.1.15).

1.4. Derive a closed-form solution to the method of least squares (1.2.7).

1.5 (Maximum Likelihood Estimate with Laplace or Gaussian Noise). Recall that

the probability density function a Laplace distribution L(µ, b) is

p(x) =
1

2b
exp

(
− |x− µ|

b

)
,

and the Gaussian, or normal, distribution, N (µ, σ) is

p(x) =
1√
2πσ

exp
(
− (x− µ)2

2σ2

)
.

Given a measurement model y = Ax + ε, consider the following two types of

noise:

1 Entries of ε = [ε1, ε2, . . . , εm]∗ are i.i.d. zero-mean Laplace.

2 Entries of ε = [ε1, ε2, . . . , εm]∗ are i.i.d. zero-mean Gaussian.

Derive the log maximum likelihood function for estimating x under these two

noise models. Discuss their relationships to the `1 minimization and `2 mini-

mization, respectively.

1.6. Prove the Fact 1.6 for the case d = 1. That is, the principal direction of a

random vector y is the eigenvector associated with the largest eigenvalue of its

covariance matrix Σy. Furthermore, prove the Theorem A.29 in Appendix A.

1.7. Prove the Fact 1.7.

1.8 (Ridge Regression). To solve a system of linear equations y = Ax, especially

when the system is ill-posed (say under-determined) or with (Gaussian) noise
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y = Ax + ε, one popular way to estimate x is to consider the so-called ridge

regression:

min
x
‖y −Ax‖22 + λ‖x‖22, (1.4.1)

for some λ > 0.33 This is also known as Tikhonov regularization.34

1 Show that the optimal solution x? to the above optimization is given by:

x? = (A∗A+ λI)−1A∗y, (1.4.2)

given that the matrix A∗A+ λI is invertible.

2 Discuss the conditions on the matrix A and λ so that the matrix A∗A + λI

is guaranteed to be invertible.

Ridge regression is arguably the most widely studied and used form of regression

in the classic statistical literature [HTF09]. There are many good properties of

this type of regressions, related to important methods such as the Wiener filter in

signal processing. The reader may refer to the recent book [FLZZ20] for a more

detailed study of ridge regression and many variants.

33 This can be viewed as a Lagrangian formulation of the constrained optimization
considered by Theorem A.25 in Appendix A.

34 Strictly speaking, Tikhonov regularization may consider a more general class of

regularization of the form ‖Λx‖22 for some properly chosen positive definite matrix Λ.
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2 Sparse Signal Models

“It is quite probable that our mathematical insights and understandings are often used
to achieve things that could in principle also be achieved computationally – but where
blind computation without much insight may turn out to be so inefficient that it is un-
workable.”

– Roger Penrose, Shadows of the Mind

This book is about modeling and exploiting simple structure in signals, im-

ages, and data. In this chapter, we take our first steps in this direction. We

study a class of models known as sparse models, in which the signal of interest

is a superposition of a few basic signals (called “atoms”) selected from a large

“dictionary.” This basic model arises in a surprisingly large number of applica-

tions. It also illustrates fundamental tradeoffs in modeling and computation that

will recur throughout the book.

2.1 Applications of Sparse Signal Modeling

Why do we need signal models at all? We give a pragmatic answer. Many prob-

lems arising in modern signal processing and data analysis are intrinsically ill-

posed. Often, the number of unknowns vastly exceeds the number of observations.

In this situation, prior knowledge is absolutely essential to solving the problem

correctly.

To describe this phenomenon mathematically, consider the simple equation

y
observation

= A x.
unknown

(2.1.1)

Here, y ∈ Rm is our observation, while x ∈ Rn is unknown. The matrix A ∈
Rm×n represents the data generation process: the observed data y is a linear

function of the unknown (or hidden) signal x. This is a simple model; however,

we will see that it is rich enough to bear on a vast array of practical applications.

Recovering the unknown x from observation y may appear trivial: we simply

have to solve a linear system of equations! However, many practical applications

raise a substantial challenge: the number of observations, m, can be significantly

smaller than the number of elements n in the signal to be recovered. From linear
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Figure 2.1 Dense vs. Sparse Vectors. Left: a generic dense vector x ∈ Rn, with
entries being independent standard normal random variables. Center: a sparse
vector, with only a few nonzero entries. Right: a compressible vector, with only a few
significant entries.

algebra,1 we know that when m < n, the system of equations y = Ax does not

necessarily have any solution, but if it has any solution at all, then the solution

space has at least dimension n−m. Hence, either there is no solution, or there

are infinitely many solutions. Only one of them is the one we wish to recover!

To make progress, we need to leverage some additional properties of the target

solution.

Sparsity is one such property, which has strong implications on our ability to

solve underdetermined systems. A vector x ∈ Rn is considered sparse if only a

few of its elements are nonzero. Figure 2.1 (center) shows an example of such

a vector. Some form of sparsity arises naturally in almost every type of high-

dimensional signal or data that we encounter in practical applications. Below,

we illustrate with a few representative examples.

2.1.1 An Example from Medical Imaging

Figure 2.2 shows a magnetic resonance (MR) image of the brain. This is a digital

image I ∈ RN×N . Each entry I(v) (here, v ∈ R2) corresponds to the density of

protons at a given spatial location inside the brain. This essentially indicates

where water is in the brain, and can reveal many biological structures that are

important for disease diagnosis and monitoring. To caricature the MRI problem

a bit, our goal is to estimate I, without opening up the brain! This is possible, if

we subject the patient to a large, spatially and temporally varying magnetic field.

The magnetic field causes the protons to oscillate at a frequency that depends on

their locations and energy states. Each proton essentially acts as its own radio

transmitter, and in aggregate they create a signal we can measure.

As we will see from a more detailed derivation of the physical model for MRI

1 Appendix A provides a detailed review of linear algebra and matrix analysis. In particular,
Appendix A.6 reviews the existence and uniqueness of solutions to linear systems, which

we use here to motivate our study of sparse approximation.
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Figure 2.2 A Magnetic Resonance Image. Left: target image of a human brain.
Right: coefficients in the wavelet decomposition I =

∑
iψixi, and their magnitudes,

sorted in descending order. The large wavelet coefficients concentrate around sharp
edges in the image; wavelet coefficients corresponding to smooth regions are much
smaller. The wavelet coefficients are highly compressible: their magnitude decays
rapidly. Image reprinted with permission from Michael Lustig [Lus13].

in Chapter 10, it turns out that the signal we observe is simply a sample of the

two-dimensional Fourier transform of I:

y =

∫

v

I(v) exp(−i 2πu∗v) dv. (2.1.2)

Here, i =
√
−1 is the imaginary unit, and (·)∗ denotes the (complex conjugate)

transpose of a vector. The two-dimensional frequency vector u∗ = [u1, u2] ∈ R2

depends on how the magnetic field we applied varies over space. Here, letting F
denote the 2D Fourier transform, the above expression is

y = F [I](u). (2.1.3)

By changing the applied magnetic field, we can vary u, and collect m samples

of the Fourier transform, corresponding to different applied magnetic fields, pa-

rameterized by U = {u1, . . . ,um}. We can concatenate all of our observations

into a vector y ∈ Cm, given by

y =




y1

...

ym


 =



F [I](u1)

...

F [I](um)


 .

= FU[I]. (2.1.4)

Here, FU is simply the operator that obtains the Fourier samples of I, indexed by

U. If you imagine the Fourier transform as acting by matrix multiplication, FU

is simply the matrix we get if we discard all the rows of F that are not indexed

by U.

One very basic property of the integral (2.1.2), and hence of the operator FU,

is that it is linear in its input I. This means that for any pair of inputs I and J

and complex scalars α, β,

FU[αI + βJ ] = αFU[I] + βFU[J ]. (2.1.5)

Because FU is a linear operator, the problem of finding I from y using the
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observation equation (2.1.4) “just” consists of solving a large linear system of

equations.

There is a substantial catch though. In this system of equations, there are

typically far more unknowns (here n = N2) than observations m. This is nec-

essary: it is generally too time and energy intensive to simply measure all N2

Fourier coefficients. This is even more pressing of a concern in dynamic MRI,

where the object being imaged is changing over time, and so acquisition needs

to be time-efficient. So, in general, we need m to be as small as is just necessary

to guarantee accurate reconstruction – and certainly significantly smaller than

n.

This leaves us with a seemingly impossible situation: we have n unknowns

and m � n equations. Unless we can make some additional assumptions on

the structure of I, the problem is ill-posed. Fortunately, real signals are not

completely unstructured.2 Figure 2.2 (right) shows a wavelet transform of I.

The wavelet transform expresses I as a superposition of a collection of basis

functions Ψ = {ψ1, . . . ,ψN2}:

I
image

=

N2∑

i=1

ψi
i-th basis signal

× xi.
i-th coefficient

(2.1.6)

Here, x1, . . . , xN2 ∈ R are coefficients of the image I with respect to the basis Ψ.

The entries in Figure 2.2 (right) are the magnitudes |xi| for the N2 coefficients

xi. The important point is that many of these coefficients are extremely small.

If let J = {i1, . . . , ik} denote the k largest coefficients, we can approximate I as

I
target image

≈ Ĩk =
∑

i∈J

ψixi.

superposition of k basis functions

(2.1.7)

Figure 2.3 visualizes the reconstruction and reconstruction error I− Ĩk. It seems

that even if we retain only a relatively small fraction of the coefficients, we

still obtain an accurate approximation, and most of what remains is noise. This

suggests that the sequence x is compressible – it is very close to a sparse vector.

In order to recover I, we can first try to reconstruct the sparse vector x, using

2 Indeed, we can construct a “generic” element Igeneric of RN×N , by choosing its entries at
random – say from a standard Gaussian distribution N (0, 1). With very high probability,

Igeneric will simply look like noise. The target magnetic resonance image in Figure 2.2
certainly does not look like noise!
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Figure 2.3 Wavelet Approximation Ĩ to I and Approximation Error. Left:
approximation to the image in Figure 2.2 using the most significant 7% of the wavelet
coefficients. Right: approximation error |I − Ĩ|. The error contains mostly noise,
suggesting that most of the important structure of the image is captured in the
wavelet approximation Ĩ.

the observation equation

y
observed Fourier coefficients

= FU[I],

= FU

[
ψ1x1 + · · · +ψN2xN2

]
,

= FU[ψ1]x1 + · · · + FU[ψN2 ]xN2 ,

=
[
FU[ψ1] | · · · | FU[ψN2 ]

]

matrix A ∈ Rm×N
2
, m� N2.

x,

= Ax. (2.1.8)

After these manipulations, we end up with a system of equations y = Ax. The

vector x contains the coefficients of the target image I in the wavelet basis. The

i-th column of the matrix A contains a subset U of the Fourier coefficients of

the i-th basis signal ψi. To reconstruct I, we can look for a solution x̂ to this

system, and then set

Î =

N2∑

i=1

ψix̂i. (2.1.9)

Because x has N2 entries, but we only have m � N2 observations, the system

y = Ax is underdetermined. Nevertheless, because the wavelet coefficients of I

are (nearly) sparse – say, only its k largest coefficients are significant and others

are negligible, the desired solution x to this system is sparse. To reconstruct I

we need to find a sparse solution to an underdetermined system! In Chapter 10,

we will illustrate how to actually apply such a “compressive sampling” scheme

to real MRI images under more realistic conditions.
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2.1.2 An Example from Image Processing

In the previous example, we used the fact that the image I had a good sparse

approximation in terms of a “dictionary” of basic elements ψ1, . . . ,ψN2 :

I ≈
∑

i∈J

ψixi = Ψ
N2 ×N2 matrix

x,
sparse vector

(2.1.10)

where xi = 0 for i /∈ J, and k = |J| � N2. Expressions of this form play

a central role in lossy data compression. Image compression standards such as

JPEG [Wal91] and JPEG 2000 [TM01] leverage sparse approximations (in the

discrete cosine transform (DCT) [ANR74] and wavelet bases [VK95], respec-

tively). Generally speaking, the sparser the representation is, the more an input

image can be compressed. However, sparse representations of images are not just

useful for compression: they can be used for solving inverse problems, in which

we try to reconstruct I from noisy, corrupted or incomplete observations. We

already saw an example of this in the previous section, in which we used sparsity

in the wavelet domain to reconstruct MR images. To facilitate all of these tasks,

we can seek representations of I that are as sparse as possible, by replacing Ψ

with more general dictionaries A. For example, we might consider overcomplete

dictionaries A ∈ Rm×n, n > m, which consist of several orthonormal bases (e.g.,

DCT and wavelets together). The idea is that each individual representation may

capture a particular type of signal well – say, DCT for smooth variations and

wavelets for signals with sharp edges. Together, they can represent a broader

class of signals.

An even more aggressive idea is to simply learn A from data, rather than

designing it by hand. Conceptually this leads to an even more challenging prob-

lem, known as dictionary learning, which we will study later in Chapter 7. This

approach tends to produce better sparsity-accuracy tradeoffs for representing

images I, and is also useful for a wealth of other problems, including denoising,

inpainting, and super-resolution that involve reconstructing I from incomplete

or corrupted observations. Each of these problems leads to an underdetermined

linear system of equations; the goal is to use the prior knowledge that the target

signal I has a compact representation in some dictionary A to make the problem

well-posed. Figure 2.4 shows an example of this for the problem of color image

denoising, from [MES08]. We observe a noisy image

Inoisy = Iclean
target image

+ z.
noise

(2.1.11)

We assume3 that patches of the clean image have an accurate sparse approxi-

mation in some dictionary A: if we break Iclean into patches y1clean, . . . ,ypclean

yiclean ≈ A
patch dictionary

× xi.
sparse coefficient vector

(2.1.12)

3 Of course, this assumption needs to be justified! See Exercise 2.16 and the notes and
references to this chapter. We will also have ample examples in later chapters when we

introduce methods to learn sparsifying dictionaries for real images.
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Figure 2.4 Image Denoising by Sparse Approximation. Left: A noisy input
image. The image is broken into patches y1, . . . ,yp. A dictionary A = [a1 | · · · | an] is
learned such that each input patch can be approximated as yi ≈ Axi, with xi sparse.
Right: dictionary patches a1, . . . ,an. Center: denoised image, reconstructed from
the approximations ŷi = Axi. Figures from [MES08,WMM+10]. Image reprinted
with permission from Julien Mairal.

In denoising, we do not actually observe yiclean. Rather, we observe noisy patches

yi = yiclean + zi = A× xi + zi, i = 1, . . . , p.

Based on these patches y1, . . . ,yp, we learn a dictionary Â such that

yi
i-th image patch

≈ Â
learned dictionary

× x̂i
sparse coefficient vector

= ŷi.
denoised patch

The dictionary Â and sparse coefficients x̂i can be learned by solving a nonconvex

optimization problem, which attempts to strike an optimal balance between the

sparsity of the coefficients x̂1, . . . , x̂p and the accuracy of the approximation

yi ≈ Âx̂i. More detail will be given in Chapter 7. We take ŷi = Âx̂i as an

estimate of yiclean.

Figure 2.4 (left) shows the noisy input image; Figure 2.4 (center) shows a de-

noised image constructed from ŷ1, . . . , ŷp. Figure 2.4 (right) shows the dictionary

Â learned from the noisy patches. Although the sparse dictionary prior is rela-

tively simple, and does not capture all of the global geometric structure of the im-

age, it leads to surprisingly good performance on many low-level image processing

tasks including image super-resolution [YWHM10] or restoration [MES08]. We

discuss modeling and computational aspects of dictionary learning in detail in

Chapters 7 and 9. For now, the key point is that the problem of reconstructing

the clean image from noisy patches again leads us to an underdetermined linear

system of equations, yi ≈ Axi.

2.1.3 An Example from Face Recognition

Sparsity also arises naturally in problems in which we wish to perform reliable

inference from unreliable measurements. For example, due to sensor errors or
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Figure 2.5 Face Recognition via Sparse Representation. Top: input face image
y is wearing sunglasses; Bottom: input face image y is with 50% pixels arbitrarily
corrupted. Each test image y is approximated as a sparse combination Bx of the
training images, plus a sparse error e due to occlusion. In this example, red
coefficients correspond to images of the correct subject. Results and Figures
from [WYG+09].

malicious tampering, a vector-valued observation y ∈ Rm might be grossly cor-

rupted in a few of its entries:

y
observation

= yo
clean data

+ e.
sparse error

(2.1.13)

We illustrate this more concretely using an example from automatic face recog-

nition. Imagine that we have a database consisting of a number of subjects. For

each subject i, we collect grayscale training images Ii,1, . . . , Ii,ni ∈ RW×H , and

vectorize them to form a base matrix Bi ∈ Rm×ni , with m = W ×H. We can

further concatenate these matrices to form a large training “dictionary”

B = [B1 | B2 | · · · | Bn]
all training images

∈ Rm×n, n =
∑

i

ni. (2.1.14)

Suppose our system is confronted with a new image y ∈ Rm, taken under

some new lighting condition, and possibly occluded – see Figure 2.5. For now,

we can assume that the input y is well-aligned to the training images (i.e., the

faces occur at the same position in the training and test images).4 There is a

beautiful physical argument [BJ03] that shows that in an average case sense,

images of “nice” objects taken under varying lighting conditions lie very close to

low-dimensional linear subspaces of the high-dimensional image space Rm.5 This

suggests that if we have seen enough training examples, we can approximate the

input sample y as a linear combination of the training samples from the same

4 Relaxing this assumption is essential to building systems that work with unconstrained

input images. We will talk about how to relax this assumption in Chapter 13.
5 We will give a more detailed justification for this fact in Chapter 14 based on a simplified

physical model.
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class:

y
observed image

≈ Bi?xi? .
linear combination of training images from i?-th class

(2.1.15)

Unfortunately, in practice, this equation is violated in at least two ways: first, we

don’t know the true identity i? ahead of time. Second, nuisance factors such as

occlusion cause the equation to be badly violated on a portion of the image pixels

(those that are occluded). For the first problem, we note that we can still write

down an expression for y as a linear combination of elements of the database B

as a whole: y ≈ Bx. To deal with occlusion, we need to introduce an additional

term e, giving

y = Bx+ e. (2.1.16)

Because the errors caused by occlusion are large in magnitude, this error e cannot

simply be ignored or treated with techniques designed for small noise. Unfortu-

nately, this means that the system is underdetermined: we have m equations,

but m+n unknowns x̄ = (x, e). Writing A = [B | I], we again have a very large

underdetermined system

y = Ax̄. (2.1.17)

If we did not have prior information about x̄, there would be no hope of

recovering it from this observation. Fortunately, both x and e are very structured.

The nonzero values of x should be concentrated only on those images of the true

subject, i?, and so it should be a sparse vector. The nonzero values of the error

e should be concentrated only on those pixels that are occluded or corrupted,

and so it should also be sparse.6

Figure 2.5 shows two examples of a sparse solution to this system of equations

for a given input image y. Notice that the coefficients in the estimated x̂ are

concentrated on images of the correct subject (red) and that the error indeed

corresponds to the physical occlusion. The setting we have described so far is

somewhat idealized – we will discuss both the modeling and system building

aspects of this problem in the application section of this book, see Chapter 13.

For our purposes here, it is enough to note that if we can somehow obtain a

sparse (x, e), it should suffice to identify the subject, despite nuisances such as

illumination, occlusion, and corruption.

6 Of course, the goal is to correct as many errors as possible. One of the surprises of high
dimensions is it is indeed possible to correct large fractions of errors using simple, efficient
algorithms. Understanding precisely how many errors we can correct (and how dense the

vector x̄ can be before our methods break down) will be a major theoretical thrust of this
book. In Chapter 13, we will give a more precise characterization about how large a

fraction of errors can be corrected for a system of linear equations, similar to those that

arise in the robust face recognition setting.



44 Sparse Signal Models

2.2 Recovering a Sparse Solution

Suppose, as in the above examples, that we know the ground truth signal xo is

sparse. How powerful is this knowledge? Can it render ill-posed problems such as

MR image acquisition or occluded face recognition well-posed? To answer these

questions, we need a formal notion of sparsity. In the next two subsections, we

begin by introducing the concept of a norm of a vector, which generalizes the

concept of length. We then introduce an “`0 norm”, which counts the number of

nonzero entries in a vector, a basic measure of how dense (or sparse) that vector

is.

2.2.1 Norms on Vector Spaces

A vector space V consists of a collection of elements (vectors), field such as the

real numbers R or complex numbers C (scalars) and operations (adding vectors

and multiplying vectors with scalars) that work in ways that conform to our

intuitions from R3. Appendix A reviews the formal definition of a vector space,

and gives examples. In the above application examples, our signals of interest

consisted of collections of real or complex numbers – e.g., in MR imaging, the

target image I was an element of RN×N . We can view RN×N as a vector space,

with scalar field R (written V = (RN×N ,R)). In the other examples as well, the

signals of interest reside in vector spaces.

A norm on a vector space V gives a way of measuring lengths of vectors, that

conforms in important ways to our intuition from lengths in R3. Formally:

Definition 2.1 (Norm). A norm on a vector space V over R is a function

‖ · ‖ : V→ R that is

1 nonnegatively homogeneous: ‖αx‖ = |α|‖x‖ for all vectors x ∈ V, scalars

α ∈ R,

2 positive definite: ‖x‖ ≥ 0, and ‖x‖ = 0 if and only if x = 0,

3 subadditive: ‖·‖ satisfies the triangle inequality ‖x + y‖ ≤ ‖x‖ + ‖y‖ for all

x,y ∈ V.

For our purposes, the most important family of norms are the `p norms (read

“ell p norm”). We will use norms from this family to derive practical algorithms

for finding sparse solutions to linear systems of equations, and for studying their

properties. If we take V = (Rn,R), and p ∈ (0,∞), we can write

‖x‖p .
=

(∑

i

|xi|p
)1/p

. (2.2.1)

The function ‖x‖p is a norm for any p ≥ 1.7 The most familiar example is the

7 We leave as an exercise for the reader to show that for 0 < p < 1, ‖x‖p is not a norm in

the strict sense of Definition 2.1.
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`2 norm or “Euclidean norm”

‖x‖2 =

√∑

i

|xi|2 =
√
x∗x,

which coincides with our usual way of measuring length. Two other cases are of

almost equal importance: p = 1, and p→∞. Setting p = 1 in (2.2.1), we obtain

‖x‖1 =
∑

i

|xi|, (2.2.2)

which will play a very large role in this book.8 Finally, as p becomes larger, the

expression in (2.2.1) accentuates large |xi|. As p → ∞, ‖x‖p → maxi |xi|. We

extend the definition of the `p norm to p =∞ by defining

‖x‖∞ = max
i
|xi|. (2.2.3)

To appreciate the distinction between the various `p norms, we can visualize

their unit balls Bp, which consist of all vectors x whose norm is at most one:9

Bp
.
=
{
x | ‖x‖p ≤ 1

}
. (2.2.4)

The `2 ball is a (solid) sphere, the `∞ ball is a cube, and the `1 ball is a kind of

diamond shape, also known as a cross polytope – see Figure 2.6. 10

Notice that for p ≤ p′, Bp ⊆ Bp′ . This is because when p ≤ p′, ‖x‖p ≥ ‖x‖p′
for all x.

Remark 2.2. This containment becomes even more striking in higher dimen-

sions: in Rn, vol(B∞) = 2n, while vol(B1) = 2n/n! (see e.g., [Mat02]). So, in

n = 2 dimensions vol(B1) = (1/2) × vol(B∞), while in n = 1, 000 dimensions

vol(B1) ≈ 10−2,568 × vol(B∞) – a truly negligible fraction!

Remark 2.3. This may seem to be in contrast to the mathematical fact that

“in finite dimensions, all norms are equivalent” in the sense that they define the

same topology for the space (see, e.g., Appendix A). Formally, this statement

means that in a finite dimensional vector space V, such as Rn, for any pair of

norms ‖·‖♦ and ‖·‖� there exist numbers 0 < α, β < ∞ such that for every

x ∈ V,

α ‖x‖� ≤ ‖x‖♦ ≤ β ‖x‖� . (2.2.5)

So, the norms ‖·‖� and ‖·‖♦ can be compared in size. However, as the example in

8 Anyone who has traveled in Manhattan should have good appreciation for the distinction

between `1 and `2 – in fact, the `1 norm is sometimes called the Manhattan norm! This

example illustrates a simple, but important point – the proper choice of norm depends
quite a bit on the properties of the problem and design goals. Unless you can leap tall
buildings in a single bound, measuring distance using the `2 norm would underestimate

how much travel you need to reach your destination.
9 For a ball of radius ε in terms of `p norm, we denote it as Bp(ε) or ε ·Bp =

{
x | ‖x‖p ≤ ε

}
.

10 To see this in action, you can run Chapter_2_Illustrate_Lp_Balls.m.
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Figure 2.6 The `p Balls Bp =
{
x | ‖x‖p ≤ 1

}
for 0 < p ≤ ∞. For p ≥ 1, Bp is a

convex set, and ‖·‖p is a norm. For p < 1, ‖·‖p is not a norm, in the formal sense.

Remark 2.2 shows, in high dimensions, the unit balls of the various `p norms can

be very different – hence α and β can be very far apart. In applications involving

high-dimensional signals, different choices in norm can lead to radically different

solutions.

2.2.2 The `0 Norm

With the notion of a norm in hand, we are prepared to define a formal notion of

sparsity. For this, we introduce a function, called the “`0 norm” (read “ell zero

norm”), which is simply the number of nonzero entries in a vector x:

‖x‖0 = # {i | x(i) 6= 0} . (2.2.6)

Loosely speaking, x is sparse whenever ‖x‖0 is small.

The `0 norm ‖·‖0 is not a norm, in the formal sense of Definition 2.1: since for

α 6= 0, ‖αx‖0 = ‖x‖0, it does not have the property of nonnegative homogeneity.

It does have the other two properties, however. In particular, ‖·‖0 is subadditive:

∀x, x′, ‖x+ x′‖0 ≤ ‖x‖0 + ‖x′‖0 . (2.2.7)

This is easily checked by noting that the set of nonzero entries for x + x′ is

contained in the union of the set of nonzero entries of x and the set of nonzero

entries of x′.
Although the `0 norm is not a norm in the strict sense of Definition 2.1, it is

related to the `p norm and can be viewed as a “continuation” of p from large to
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small. To understand this, note that for every x ∈ Rn,

lim
p↘0
‖x‖pp =

n∑

i=1

lim
p↘0
|x(i)|p =

n∑

i=1

1x(i)6=0 = ‖x‖0. (2.2.8)

In this sense, the `0 norm can be considered to be generated from the `p norms,

by taking p (infinitesimally) small. In the context of Figure 2.6, this can be

understood as follows: in R2, the sparse vectors correspond to the coordinate axes.

As p drops towards zero, the unit ball of the `p norm becomes more concentrated

around the coordinate axes, i.e., around the sparse vectors.

The geometric relationship between the `0 and `p norms is useful for deriving

algorithms, and for understanding why small p tends to favor sparse solutions.

With this said, the formal notation ‖x‖0 has a very simple meaning: it counts

the number of nonzero entries in x. In all of the applications discussed above,

our goal is to recover a vector xtrue with ‖xtrue‖0 small. In this book, we often

use xo as a shorthand for xtrue.

2.2.3 The Sparsest Solution: Minimizing the `0 Norm

Suppose we observe y ∈ Rm, with y = Axo, and that our goal is to recover

xo. If we know that xo is sparse, it seems reasonable to form an estimate x̂ by

choosing the sparsest vector x that satisfies the equation y = Ax. That is, we

choose the sparsest x that could have generated our observation. We can write

this as an optimization problem

min ‖x‖0
subject to Ax = y.

(2.2.9)

How might we solve this problem numerically? Call

supp (x) = {i | x(i) 6= 0} ⊂ {1, . . . , n} (2.2.10)

the support of the vector x – this set contains the indices of the nonzero entries.

The `0 minimization problem (2.2.9) asks us to find a vector x of smallest support

that agrees with the observation y. One approach to finding such an x is to simply

try every possible subset of indices I ⊆ {1, . . . , n} as a candidate support. For

each such set I, we can form a system of equations

AIxI = y, (2.2.11)

where AI ∈ Rm×|I| is the column submatrix of A formed by keeping only those

columns indexed by I, and similarly for xI ∈ R|I|. We can attempt to solve (2.2.11)

for xI. If such an xI exists, we can obtain a solution x to Ax = y by filling in the

remaining entries of x with zeros. This exhaustive search procedure is spelled

out formally as Algorithm 2.1.
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Algorithm 2.1: `0-Minimization by Exhaustive Search

1: Input: a matrix A ∈ Rm×n and a vector y ∈ Rm.

2: for k = 0, 1, 2, . . . , n,

3: for each I ⊆ {1, . . . , n} of size k,

4: if the system of equations AIz = y has a solution z,

5: set xI = z, xIc = 0.

6: return x.

7: end if

8: end for

9: end for
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Figure 2.7 Transitions in `0 Recovery. Fraction of correct recoveries across 100
trials, as a function of the sparsity of the target solution xo. The system is of size
5× 12. In this experiment, `0 minimization successfully recovers all xo with k ≤ 4
nonzeros.

Example 2.4. Let us examine how the algorithm behaves numerically, using

the code Chapter_2_L0_recovery.m and Chapter_2_L0_transition.m from the

book website. These examples generate random underdetermined linear systems

y = Ax, with y = Axo, and xo sparse. Apply Algorithm 2.1 (minimize_L0.m)

to recover a vector x̂, and ask whether x̂ is equal to xo up to machine precision.

Fixing the system parameters (m,n), varying the sparsity k = 0, 1, . . . , and per-

forming many random trials, we produce Figure 2.7, which shows that as long as

k is not too large, the algorithm almost always succeeds.

Is there any mathematical explanation for this phenomenon? To understand

why `0 minimization succeeds, it is worth first thinking about when it would fail.

Suppose that there is a non-zero k-sparse vector xo ∈ null (A). Then

Axo = 0 = A0. (2.2.12)
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Hence, for this xo 6= 0, when solving y = Axo = 0, the `0 minimizer is simply

x̂ = 0, and the true xo is not recovered. Put simply: if the null space of A

contains sparse vectors (aside from 0), `0 minimization may fail to recover the

desired sparse vector xo.

In fact, the converse statement is also true: when the null space of A does

not contain sparse vectors (aside from 0), `0 minimization does recover any suf-

ficiently sparse vector xo. To state the argument simply, let us suppose that

‖xo‖0 ≤ k, and assume:

(?) the only δ ∈ null (A) with ‖δ‖0 ≤ 2k is δ = 0.

Let x̂ denote the solution to the `0 minimization problem, so ‖x̂‖0 ≤ ‖xo‖0 ≤ k.

If we define the estimation error

δ = x̂− xo, (2.2.13)

then

‖δ‖0 = ‖x̂− xo‖0 ≤ ‖x̂‖0 + ‖xo‖0 ≤ 2k. (2.2.14)

So, δ is a sparse vector. Moreover,

Aδ = A (x̂− xo) = Ax̂−Axo = y − y = 0. (2.2.15)

So, δ is a sparse vector in the null space of A. Property (?) states that the

only sparse vector in null(A) is 0. So, if (?) holds, δ = 0, and so x̂ = xo: `
0

minimization indeed recovers xo.

Property (?) is a property of the matrix A. The above reasoning suggests a

slogan: the “good” A for recovering sparse vectors xo are those A that have no

sparse vectors in their null space. We can restate property (?) more conveniently

in terms of the columns of A: property (?) holds if and only if every set of 2k

columns of A is linearly independent.

Definition 2.5 (Kruskal Rank [Kru77]). The Kruskal rank of a matrix A, writ-

ten as krank(A), is the largest number r such that every subset of r columns of

A is linearly independent.

From the above reasoning, if ‖xo‖0 is at most half of krank(A), `0 minimization

will recover xo:

Theorem 2.6 (`0 Recovery). Suppose that y = Axo, with

‖xo‖0 ≤ 1
2 krank(A). (2.2.16)

Then xo is the unique optimal solution to the `0 minimization problem

min ‖x‖0
subject to Ax = y.

(2.2.17)
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Notice that Theorem 2.6 agrees with the behavior in Figure 2.7.11 Theorem

2.6 predicts that as long as xo is sufficiently sparse, it will be recovered by `0

minimization. The level of allowable sparsity depends on the Kruskal rank of the

matrix A. It is not hard to see that in general,

0 ≤ krank(A) ≤ rank(A). (2.2.18)

For “generic” A, the Kruskal rank is quite large:

Proposition 2.7. Let A ∈ Rm×n, n ≥ m, with Aij independent identically

distributed N (0, 1) random variables. Then, with probability one, krank(A) = m.

Proof Exercise 2.7 guides the interested reader through the proof.

The intuition is that to have krank(A) < m, there must be some subset

of m columns of A which are linearly dependent, i.e., there is some subset

ai1 ,ai2 , . . . ,aim which lies on a linear subspace of dimension m−1. For a Gaus-

sian random matrix A, the probability that this happens is zero. This is true

of many other random matrices.12 We can interpret this as saying that under

generic circumstances, knowing that the target xo is sparse turns an ill-posed

problem into a well-posed one. The `0 minimization problem recovers vectors xo
whose number of nonzeros is as large as m

2 . This level of sparsity is well beyond

what is needed for most applications.

2.2.4 Computational Complexity of `0 Minimization

The theoretical results in the previous section show the power of sparsity: know-

ing that the target solution xo is even moderately sparse can render the problem

of recovering xo well-posed. Unfortunately, Algorithm 2.1 is not very useful in

practice. Its worst-case running time is on the order of nk, where k = ‖xo‖0 is

the number of nonzero entries we wish to recover. For example, at the time of

writing this book, to solve a problem with m = 50, n = 200, and k = 10, on

a standard laptop, Algorithm 2.1 would require ≈ 140 centuries. This is still a

very small problem by the standard of most modern-day applications!

Exhaustively searching all possible supports I may not seem like a particularly

intelligent strategy for solving the `0-minimization problem (2.2.9). However, no

significantly better algorithm is currently known that can solve this class of

problems efficiently. Is this because we are not clever enough and have not found

the correct (efficient) algorithm yet? Or is it the nature of this class of problems

such that an efficient algorithm simply does not exist? To answer this question

11 Actually, the behavior in Figure 2.7 is slightly better than what Theorem 2.6 predicts –
with probability one the Kruskal rank of A is m, and so the theorem shows that `0

minimization succeeds when k ≤ m
2

= 2. However, in the experiment, success always
occurs when k ≤ 4. Exercise 2.8 asks you to explain this discrepancy, by proving a
modified version of Theorem 2.6.

12 For example, krank(A) = m with probability one whenever A is distributed according to

any absolutely continuous measure, i.e., there is a probability density function.
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more rigorously, we need to borrow some formal tools and results from complexity

theory.

Complexity Classes and NP-Hardness.
If you don’t have any background in complexity theory, you can loosely think

of the situation as follows. The problem class P consists of problems that we

can solve in time polynomial in the size of the problem. The problem class NP

consists of those problems for which, if we are given a “certificate” describing

the optimal solution, we can check that it is correct in polynomial time. That

is, P contains problems for which finding the right answer is “easy,” while NP

contains problems for which checking the right answer is easy. Anyone who has

ever struggled with a problem for days, only to have a colleague or teacher easily

demonstrate an obviously correct solution can appreciate the difference between

finding the right answer and checking the right answer!

It turns out that amongst the NP problems, there are certain “NP-complete”

problems to which every problem in NP can be reduced, in polynomial time,

to each other. So, solving one of these problems efficiently would enable you to

solve every problem in NP efficiently! It is remarkable that this class of problems

exists, and that it is quite large. It includes famous examples such as the Traveling

Salesman Problem and the Multiway Cut Problem.

To understand the phrase “NP-hard,” we have to appreciate one technicality

regarding the above definitions of P and NP: they pertain only to decision

problems, in which the goal is to produce a YES/NO answer. For example, the

decision version of the Traveling Salesman Problem asks: “Is it possible to visit

all of the nodes of a given graph (cities) while traveling a distance at most d??”

The decision version of the `0 problem asks: “Does the system y = Ax have a

solution with at most k nonzero entries?”

Often in practice we care much more about optimization problems than deci-

sion problems – we do not just want to know whether a solution exists, we want

to know the way to find it! Strictly speaking, optimization problems cannot be

“NP-complete” – in the formal definition of NP, we only include decision prob-

lems. Nevertheless, we may call an optimization problem NP-hard if an efficient

solution to that problem can be used to efficiently solve NP-complete problems.

For example, the optimization version of the Traveling Salesman Problem asks:

“Find the shortest path that visits all of the nodes in a given graph.” If one

can solve this problem efficiently, one can clearly also solve the decision version

efficiently, just by checking whether the optimal path has length at most d?.

NP-complete problems are considered highly unlikely to be efficiently solvable

(i.e., solvable on standard (model) computers polynomial in time and the size of

the problem).13 This class of problems includes notoriously difficult examples,

such as the Traveling Salesman Problem. Fully appreciating the mathematical

13 This is known as the “P versus NP” problem, one of the most famous open problems in

mathematics and theoretical computing. The Clay Mathematics Institute is offering a

reward of 1 million dollars to anyone who has a formal proof that P=NP or that P 6=NP.
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Figure 2.8 Exact 3-Set Cover as a Sparse Representation Problem. Left: a
universe S = {1, . . . , 6} and four subsets U1, . . . ,U4 ⊆ S. {U1,U3} is an exact 3-set
cover. Right: the same problem as a linear system of equations. The columns of A
are the incidence vectors for the sets U1,U2,U3,U4. The Exact 3-Cover {U1,U3}
corresponds to a solution x to the system Ax = y with only m/3 = 2 nonzero entries.

content of complexity theory requires formal modeling of computation (Turing

machines, complexity theory for different problem classes, etc.) that is beyond

the scope of this book. For interested readers, we refer to the book [GJ90] for a

formal introduction to this important subject.

NP-Hardness of `0-Minimization.
For our purposes here, we are interested whether the `0-minimization problem

(2.2.9) is equivalent (in its complexity) to certain known NP-hard problems.

Indeed, we can show that:

Theorem 2.8 (Hardness of `0 Minimization). The `0-minimization problem

(2.2.9) is NP-hard.

Proof of Theorem 2.8: Hardness results are typically proved by reduction: we

show that if we can solve the problem of interest efficiently, this would allow us

to also efficiently solve some other problem, which is already known to be hard.

For the `0 minimization problem, we do this by showing that `0 minimization

can be used to solve certain (hard) set covering problems.

Consider the following problem:

Exact 3-Set Cover (E3C): Given a set S = {1, . . . ,m} and a collection C = {U1, . . . ,Un}
of subsets Uj ⊆ S each of which has size |Uj | = 3, does there exist a subcollection C′ ⊆ C
that exactly covers S, i.e., ∀i ∈ S there is exactly one U ∈ C′ with i ∈ U?

This problem is known to be NP-complete [Kar72, GJ79]. To reduce it to `0

minimization, suppose that we are given an instance of E3C: Form an m × n
matrix A ∈ {0, 1}m×n by letting Aij = 1 if i ∈ Uj , and Aij = 0 otherwise. Set

y = 1 ∈ Rm (i.e., an m-dimensional vector of ones). Figure 2.8 illustrates this

construction. We show:

Claim: The system Ax = y has a solution xo with ‖xo‖0 ≤ m/3 if and only if there
exists an exact 3-set cover.
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(⇐) Suppose there exists an exact 3-set cover C′. Clearly, |C′| = m/3. Set

xj =

{
1 Uj ∈ C′
0 else

.

Then ‖x‖0 = m/3, and y = Ax.

(⇒) Let xo be a solution to y = Ax with at most m/3 nonzero entries. Set

C′ = {Uj | xo(j) 6= 0}. We claim C′ is the desired cover. Let I = supp (xo).

Since each column of A has exactly 3 nonzero entries, and AI has at most m/3

columns, the matrix AI has at most m nonzero entries. Since AIxoI = y, each

row of AI has at least one nonzero entry. Hence, each row of AI has exactly one

nonzero entry, and the set C′ gives an exact cover.

In fact, the truth is even worse than Theorem 2.8 suggests: The `0 minimiza-

tion problem remains NP-hard even if we only demand that Ax ≈ y, in an

appropriate sense. It is also NP-hard to find an x whose number of nonzero en-

tries is within a constant factor of the smallest possible! See more discussions in

the Notes Section 2.5. Based on our current understanding of complexity theory,

it is extraordinarily unlikely that anyone will ever discover an efficient algorithm

that solves any interesting variant of the `0 minimization problem for all possible

inputs (A,y).

2.3 Relaxing the Sparse Recovery Problem

The rather bleak worst-case picture for `0-minimization has not stopped engi-

neers from searching for efficient heuristics for finding sparse solutions to linear

systems.14 There is always some possibility for optimism:

“Although the worst sparse recovery problem may be impossible to solve efficiently,
perhaps my particular instance (or a subclass of instances) of interest is not so hard.”

This optimism is occasionally rewarded in a rather striking fashion. In the next

few chapters, we will see that many sparse recovery problems that matter for

engineering practice are solvable efficiently. Our first step is to find a proper

surrogate for the `0 norm which still encourages sparsity, but can be optimized

efficiently.

2.3.1 Convex Functions

If our goal is efficient optimization, perhaps the most natural class of objective

functions to consider is the convex functions. Smooth convex functions often

appear “bowl shaped” – as in Figure 2.9 (left). Indeed, a necessary and sufficient

14 as it has never stopped nature from learning and exploiting sparse coding.
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Figure 2.9 Convex and Nonconvex Functions. Left: a convex function. Local
descent methods such as gradient descent produce a sequence of points x0,x1, . . .
which approach the global minimizer x?. Right: A nonconvex function. For this
particular function, depending on the initial point x0, local descent methods may
produce the suboptimal local minimum x̄. Motivated by their good properties for
optimization, in the first part of this book, we will seek convex formulations for
recovering sparse (and otherwise structured) signals.

condition for a smooth function f(x) : R → R to be convex is that it exhibits

nonnegative curvature – its second derivative d2f
dx2 (x) ≥ 0 at every point x.15

Iterative methods for optimization seek a minimizer of an objective function

f(x) : Rn → R, by starting from some initial point x0,16 and then generating a

new point x1 based on the local shape of the objective function in the vicinity of

x0. For a smooth function f(x), the negative gradient −∇f(x) defines the direc-

tion in which the objective function decreases most rapidly. A natural strategy

for choosing x1 is to move in this descending direction

x1 = x0 − t∇f(x0), (2.3.1)

where t is a step size. Continuing in this manner to produce points x0,x1,x2, . . . ,

we obtain the gradient descent method,17 a natural and intuitive algorithm for

minimizing a smooth function f(x). For the function f in Figure 2.9 (left),

assuming we choose the step size t appropriately, the iterates x0,x1, . . . will

converge to the global minimizer x?. For the nonconvex function to the right,

this strategy only guarantees a local minimizer.18

Convex functions such as Figure 2.9 (left) have the property that every local

15 For a multi-variate function f(x) : Rn → R, we need the Hessian of the function to be

positive semi-definite: ∇2f(x) � 0.
16 In this book, we will use x0 to indicate the initial point of an iterative algorithm, which is

not to be confused with xo, the desired ground truth.
17 Gradient descent, also known as steepest descent, was first introduced by Cauchy in

1847 [Cau47]. Appendix C gives a more detailed account of optimization algorithms,

including gradient descent.
18 More precise conditions for convergence and complexity will be given in Chapters 8 and 9

for convex and nonconvex problems, respectively.
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Figure 2.10 Definition of Convexity. A convex function f : Rn → R is one which
satisfies the inequality f(αx+ (1− α)x′) ≤ αf(x) + (1− α)f(x′) for all α ∈ [0, 1] and
x,x′ ∈ Rn. Geometrically, this means that if we take the points (x, f(x)) and
(x′, f(x′)) on the graph of f , and then draw a line joining them, the graph of the
function falls below this line segment.

minimizer is a global minimizer.19 Moreover, many convex functions arising in

practice can be optimized efficiently using variants of gradient descent. Indeed,

in Chapter 8, we will see that the particular convex functions that we encounter

in computing with sparse signals (and their generalizations) can be efficiently

optimized, even on a large scale and in high dimensions.

We review the properties of convex functions more formally in Appendix C.

Here, we briefly remind the reader of the general definition of convex functions:20

Definition 2.9 (Convex Function on Rn). A continuous function f : Rn → R
is convex if for every pair of points x,x′ ∈ Rn and α ∈ [0, 1],

f
(
αx+ (1− α)x′

)
≤ αf(x) + (1− α)f(x′). (2.3.2)

This inequality can be visualized as follows. Consider two points (x, f(x)) and

(x′, f(x′)) on the graph of f . If we form the line segment joining these two points,

this line segment lies above the graph of f . Figure 2.10 visualizes this inequality

with an example.

A convex combination of a collection of points x1, . . . ,xk is an expression of

19 It is worth noting that for many of the problems we will later discuss (e.g., MRI, spectrum

sensing, face recognition), global optimality is very important – there is a true signal that
we are trying to recover, and it is important to build algorithms that can do this reliably.

In our simulated example of `0 minimization, we declared the solution x̂ correct, because

it coincided with the true xo that generated the observation y. This is in contrast to some
applications of optimization (e.g., in finance) where the objective function measures the
goodness of the solution (say the expected rate of return on an investment), and locally

improving the solution is meaningful, or even desirable, if the objective corresponds to
dollars earned/lost!

20 On the surface, this definition appears much more complicated than simply asking the

second derivative to be positive. The reason for this complication is that we will need to



56 Sparse Signal Models

the form
∑k
i=1 λixi, where the weights λi are nonnegative and

∑k
i=1 λi = 1. For

example, for α ∈ [0, 1], the expression z = αx+(1−α)x′ is a convex combination

of the points x and x′. The definition (2.3.2) states that at the point z, the

function f is no larger than the corresponding combination αf(x)+(1−α)f(x′)
of the function values at the points x and x′.

This property of convex functions generalizes and gives the important Jensen’s

inequality, which states that the value of a convex function f at a convex combi-

nation of points is no greater than the corresponding convex combination of the

function values:

Proposition 2.10 (Jensen’s Inequality). Let f : Rn → R be a convex function.

Then for any k, any collection of points x1, . . . ,xk ∈ Rn and any nonnegative

scalars λ1, . . . , λk satisfying
∑k
i=1 λi = 1,

f

(
k∑

i=1

λixi

)
≤

k∑

i=1

λif (xi) . (2.3.3)

2.3.2 A Convex Surrogate for the `0 Norm: the `1 Norm

With the good properties of convex functions in mind, let us try to find a convex

“surrogate” for the `0 norm. In one dimension, x is a scalar, and ‖x‖0 = 1x 6=0 is

simply the indicator function for nonzero x. From Figure 2.11, it is clear that if

we restrict our attention to the interval x ∈ [−1, 1], the largest convex function

which does not exceed ‖·‖0 on this interval is simply the absolute value |x|. In the

language of convex analysis, |x| is the convex envelope of the function ‖x‖0 over

the set [−1, 1]. This means that |x| is the largest convex function f which satisfies

f(x) ≤ ‖x‖0 for every x ∈ [−1, 1], i.e., it is the largest convex underestimator of

‖x‖0 over this set. Thus, in one dimension, we might consider the absolute value

of x as a plausible replacement for ‖x‖0.

For higher-dimensional x (i.e., x ∈ Rn), the `0 norm is21

‖x‖0 =

n∑

i=1

1x(i)6=0. (2.3.4)

Applying the above reasoning to each of the coordinates x(i), we obtain the `1

norm

‖x‖1 =

n∑

i=1

|x(i)|. (2.3.5)

As in the scalar case, this function is the tightest convex underestimator of ‖·‖0,

over an appropriate set of vectors x:

work with convex functions that are not smooth; the general condition given in Definition
2.9 handles this situation as well.

21 In this book, we use x(i) to indicate the i-th entry of a vector x. Also we often use the
shorthand xi = x(i) ∈ R.
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Figure 2.11 A Convex Surrogate for the `0 Norm. In black, we plot the graph of
the `0 norm of a scalar x, over the interval x ∈ [−1, 1]. This function takes on the
value 0 at x = 0, and +1 everywhere else. In purple, green and blue, we plot
various convex function examples f(x) which underestimate ‖x‖0 on [−1, 1], in the
sense that f(x) ≤ ‖x‖0 for all x ∈ [−1, 1]. In red, we plot the function f(x) = |x|.
This is the largest convex function which underestimates ‖x‖0 on [−1, 1]. We call |x|
the convex envelope of ‖x‖0 on [−1, 1].

Theorem 2.11. The function ‖·‖1 is the convex envelope of ‖·‖0, over the set

B∞ = {x | ‖x‖∞ ≤ 1} of vectors whose elements all have magnitude at most

one.

Proof Let f be a convex function satisfying f(·) ≤ ‖·‖0 on B∞. We prove that

f(·) ≤ ‖·‖1 on B∞ as well. Consider the cube C = [0, 1]n. Its vertices are the

vectors σ ∈ {0, 1}n. Any x ∈ C can be written as a convex combination of these

vertices:

x =
∑

i

λiσi. (2.3.6)

Because f(·) ≤ ‖·‖0, f(σi) ≤ ‖σi‖0 = ‖σi‖1. Because f is convex,

f(x) = f
(∑

i
λiσi

)
≤

∑

i

λif(σi) [Jensen’s inequality]

≤
∑

i

λi ‖σi‖0 =
∑

i

λi ‖σi‖1 [σi are binary]

= ‖x‖1 . (2.3.7)

Hence, f(·) ≤ ‖·‖1 on the intersection of B∞ with the nonnegative orthant.

Repeating the argument for each of the orthants, we obtain that f(·) ≤ ‖·‖1 on

B∞, and hence ‖·‖1 is the convex envelope of ‖·‖0 over B∞.

So, at least in the sense of convex envelopes, the `1 norm provides a good

replacement for the `0 norm. Replacing the `0 norm in (2.2.9) with the `1 norm,

we obtain a convex `1 minimization problem,

min ‖x‖1
subject to Ax = y.

(2.3.8)
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In contrast to the `0 problem, this problem can be solved efficiently.

2.3.3 A Simple Test of `1 Minimization

Theorem 2.11 is a strong initial motivation for considering `1 minimization (2.3.8)

for recovering a sparse solution – it says that in a certain sense, the `1 norm is

the canonical convex surrogate for the `0 norm. Some care is in order, though.

Theorem 2.11 does not say anything at all about the correctness of (2.3.8) –

whether the solution to (2.3.8) is actually the desired sparse vector xo.

The easiest way to get some insight into this question is to do an experiment!

For this, we will need to solve the problem (2.3.8) computationally and see how

well it works. How do we solve the optimization problem (2.3.8)? Appendix D

gives a quick introduction to some general optimization techniques that may help

us solve problems of this kind. More specifically, since the objective function is

convex, the geometry of a convex function in Figure 2.12 (left) suggests that we

should do quite well just using local information about the slope of the objective

function. Indeed, if our objective function were differentiable, this would very

naturally suggest the classical gradient descent method for solving problems of

the form

min f(x). (2.3.9)

This algorithm starts at some initial point x0, and then generates a sequence

of points (x0,x1, . . . ,xk, . . . ) by iteratively moving in the direction of greatest

decrease of f(·):
xk+1 = xk − tk∇f(xk). (2.3.10)

Here, tk ≥ 0 is a properly chosen step size.

There are two main difficulties that prevent us from directly applying the

gradient descent iteration (2.3.10) to the `1 minimization problem (2.3.8):

• Nontrivial constraints: Unlike the general unconstrained problem (2.3.9),

in the problem (2.3.8) we are only interested in x that satisfy Ax = y.

• Nondifferentiable objective: The objective function in (2.3.8) is not differ-

entiable, and so at certain points the gradient ∇f(x) does not exist. Figure

2.12 (right) shows this: the function is pointed at zero! Since zero is sparse,

this is precisely one of the points we are most interested in.

Constraints.
One approach to handle the first problem is to replace the gradient descent iter-

ation with projected gradient descent. This algorithm aims at general problems

of the form

min f(x)

subject to x ∈ C,

(2.3.11)
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differentiable

x0

f(x)

f(x0) + 〈∇f(x0),x− x0〉

x0

f(x)

f(x0) + 〈g,x− x0〉 , g ∈ ∂f(x0)

nondifferentiable

Figure 2.12 Subgradients of Convex Functions. Left: for a differentiable convex
function, the best linear approximation at any point x0 is a global lower bound on the
function. Right: for a nondifferentiable function, we say that g is a subgradient of f
at x0 (and write g ∈ ∂f(x0) if g is the slope of a linear function that takes on the
value f(x0) at x0, and globally lower bounds f .

where C is some constraint set. This algorithm is exactly the same as gradient

descent, except that at each iteration it projects the result xk − tk∇f(xk) onto

the set C. The projection of a point z onto the set C is simply the nearest point

to z in C:

PC[z] = arg min
x∈C

1
2 ‖z − x‖

2
2 ≡ h(x). (2.3.12)

For general C, the projection may not exist, or may not be unique (think about

how this could happen). However, for closed, convex sets, the projection is well-

defined, and satisfies a wealth of useful properties. If A has full row rank, the

projection onto the convex set C = {x | Ax = y} has an especially simple form:

P{x|Ax=y}[z] = z −A∗ (AA∗)−1
[Az − y] . (2.3.13)

Figure 2.13 visualizes the projection onto this particular C. This formula can be

derived by noting two properties of the projection x̂ = PC[z]:

1 Feasibility: x̂ ∈ C, i.e., Ax̂ = y.

2 Residual is orthogonal: z − x̂ ⊥ null(A). Since z − x̂ = −∇h (x̂), this

condition can be stated as

−∇h(x̂) is orthogonal to C at x̂.

Exercise 2.11 guides the interested reader through the derivation of this ex-

pression. For the general problem (2.3.11), with differentiable objective f , the

projected gradient algorithm simply repeats the iteration

xk+1 = PC [xk − tk∇f(xk) ] . (2.3.14)
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z

PC [z]

General C

z

x̂ = PC[z]

−∇h(x̂) = z − x̂ ⊥ null(A)

x̂

Affine subspace C = {x0}+ null(A)

Figure 2.13 Projection onto Convex Sets. Left: projection onto a general convex
set. Middle: projection onto an affine subspace. Right: projection onto the affine
subspace can be characterized as the point x̂ at which the gradient ∇h(x̂) is
orthogonal to null(A).

Nondifferentiability.
The problem of nondifferentiability is slightly trickier. To handle it properly, we

need to generalize the notion of derivative to include functions that are not dif-

ferentiable. For this, we draw inspiration from geometry. Consider Figure 2.12

(left). It displays a convex, differentiable function f(x), as well as a linear ap-

proximation f̂(x), taken at a point x0:

f̂(x) = f(x0) + 〈∇f(x0),x− x0〉 . (2.3.15)

The salient point here is that the graph of f lies entirely above the graph of the

approximation f̂ :

f(x) ≥ f(x0) + 〈∇f(x0),x− x0〉 , ∀ x ∈ Rn. (2.3.16)

It is not too difficult to prove that this property holds for every convex differen-

tiable function and every point x0, simply by using calculus and the definition

of convexity.

This geometry opens the door for generalizing the notion of the gradient to

nonsmooth functions. For nonsmooth functions such as f(x) = ‖x‖1, at a point

of nonsmoothness x0, the gradient does not exist, but we can still make a linear

under-estimator

f̂(x) = f(x0) + 〈u,x− x0〉 , (2.3.17)

as in Figure 2.12 (right). Here, u replaces ∇f in the previous expression, and

plays the role of the “slope” of the approximation. We say that u is a subgradient

of f at x0 if the linear approximation defined by u is indeed an under-estimator

of f (i.e., it lower bounds f(x) at all points x):

f(x) ≥ f(x0) + 〈u,x− x0〉 , ∀ x. (2.3.18)

Let us consider our function of interest – the `1 norm. For x ∈ R (one dimen-

sion), ‖x‖1 = |x| is simply the absolute value. For x < 0, the slope of the graph

of |x| is −1, while for |x| > 0, it is +1. Convince yourself that if we take x0 6= 0,

then the only u satisfying the above definition is u = sign(x).
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f(x) = ‖x‖1

Figure 2.14 Subdifferential of the `1 Norm. In black, f(x) = ‖x‖1. In blue,
purple, and red, three linear lower bounds of the form g(x) = f(x0) + 〈u,x− x0〉,
taken at x0 = 0, with slope u = − 1

2
, 1

3
, and 2

3
, respectively. It should be clear that

any slope u ∈ [−1, 1] defines a linear lower bound on f(x) around x0 = 0. So,
∂| · |(0) = [−1, 1]. For x0 > 0, the only linear lower bound has slope u = 1; for x0 < 0,
the only linear lower bound has slope u = −1. So, ∂| · |(x) = {−1} for x < 0 and
∂| · |(x) = {1} for x > 0. Lemma 2.13 proves this formally, and extends to
higher-dimensional x ∈ Rn.

However, at 0 the function |x| is “pointy,” namely, nondifferentiable, and some-

thing different happens: at x0 = 0, every u ∈ [−1, 1] defines a linear approxima-

tion that underestimates f . So, in fact, every u ∈ [−1, 1] is a subgradient. Thus,

at points of nondifferentiability there may exist multiple subgradients. We call

the collection of all subgradients of f at a point x0 the subdifferential of f at x0,

and denote it by ∂f(x0). Formally:

Definition 2.12 (Subgradient and Subdifferential). Let f : Rn → R be a convex

function. A subgradient of f at x0 is any u satisfying

f(x) ≥ f(x0) + 〈u,x− x0〉 , ∀ x. (2.3.19)

The subdifferential of f at x0 is the set of all subgradients of f at x0:

∂f(x0) = {u | ∀x ∈ Rn, f(x) ≥ f(x0) + 〈u,x− x0〉} . (2.3.20)

With these definitions in mind, we might imagine that in the nonsmooth case, a

suitable replacement for the gradient algorithm might be the subgradient method,

which chooses (somehow) gk ∈ ∂f(xk), and then proceeds in the direction of

−gk: xk+1 = xk − tkgk. Incorporating projection onto the feasible set C, we

arrive at the following projected subgradient algorithm22:

xk+1 = PC[xk − tkgk], gk ∈ ∂f(xk). (2.3.21)

22 Projected subgradient methods were first developed by Naum Shor [Sho85] and Boris
Polyak etc. in 1960’s.
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To apply the projected subgradient method, we need an expression for the subdif-

ferential of the `1 norm. Figure 2.14 visualizes this. In one dimension, ‖x‖1 = |x|;
this function is differentiable away from x = 0. For x > 0, ∂| · |(x) = {1}, while

for x < 0, ∂| · |(x) = {−1}. At x = 0, |x| is not differentiable, and there are

multiple possible linear lower bounds. Figure 2.14 visualizes three of these lower

bounds. It is not difficult to see that lower bounds at x = 0 can have any slope

from −1 to 1; hence, the subdifferential is

∂| · |(x) = [−1, 1], at x = 0.

The following lemma extends this observation to higher-dimensional x ∈ Rn:

Lemma 2.13 (Subdifferential of ‖·‖1). Let x ∈ Rn, with I = supp (x),

∂ ‖·‖1 (x) = {v ∈ Rn | P Iv = sign(x), ‖v‖∞ ≤ 1} . (2.3.22)

Here, P I ∈ Rn×n is the orthoprojector onto coordinates I:

[P Iv](j) =

{
v(j) j ∈ I

0 j /∈ I
. (2.3.23)

Proof The subdifferential ∂ ‖·‖1 (x) consists of all vectors v that satisfy

n∑

i=1

|x′(i)| ≥
n∑

i=1

|x(i)|+ v(i) (x′(i)− x(i)) (2.3.24)

for every x and x′. A sufficient condition is that for every index i and every

scalar z,

|z| ≥ |x(i)|+ v(i)(z − x(i)). (2.3.25)

Taking x′ = x + (z − x(i))ei in (2.3.24) shows that (2.3.25) is also necessary.

If x(i) = 0, (2.3.25) becomes |z| ≥ v(i)z, which holds for all z if and only if

|v(i)| ≤ 1. If x(i) 6= 0, the inequality is satisfied if and only if v(i) = sign (x(i)).

Hence, v ∈ ∂ ‖·‖1 if and only if for all i ∈ I, v(i) = sign (x(i)), and for all i,

|v(i)| ≤ 1. This conclusion is summarized as (2.3.22).

The projected subgradient method alternates between subgradient steps, which

move in the direction of −sign(x), and orthogonal projections onto the feasible

set {x | Ax = y} according to equation (2.3.13). We obtain a very simple algo-

rithm that solves (2.3.8), which we spell out in detail as Algorithm 2.2.

Remark 2.14 (Projected Subgradient and Better Alternatives). In many re-

spects, this is a bad method for solving the `1 problem. It is correct, but it con-

verges very slowly compared to methods that exploit a certain piece of problem-

specific structure, which we will describe in later chapters. The main virtue of

Algorithm 2.2 is that it is simple and intuitive, and also serves our exposition
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Algorithm 2.2: `1-Minimization by Projected Subgradient

1: Input: a matrix A ∈ Rm×n and a vector y ∈ Rm.

2: Compute Γ← I −A∗(AA∗)−1A, and x̃← A†y = A∗(AA∗)−1y.

3: x0 ← 0.

4: t← 0.

5: repeat many times

6: t← t+ 1;

7: xt ← x̃+ Γ
(
xt−1 − 1

t sign(xt−1)
)
;

8: end while
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Figure 2.15 Phase Transition in `1 Minimization. We consider the problem of
recovering a sparse vector xo from measurements y = Axo, where A ∈ R100×200 is a
Gaussian matrix. We vary the number of nonzero entries k = ‖xo‖0 across
k = 0, 1, . . . , 200, and plot the fraction of instances where `1 minimization successfully
recovers xo, over 50 independent experiments for each value of k. Notice that this
probability of success exhibits a (rather sharp) transition from 1 (guaranteed success)
to 0 (guaranteed failure) as k increases. Notice moreover, that for sufficiently
well-structured problems (k small), `1 minimization always succeeds.

by introducing or reminding us of subgradients and projection operators.23 The

projected subgradient method for `1 minimization can be implemented in just a

few lines of Matlab code. In Chapter 8, we will systematically develop a number

of more advanced optimization methods that can fully utilize the structures in

this problem for better efficiency and scalability.

To see how well does `1 minimization (as implemented through the projected

subgradient method) perform, run Chapter_2_L1_recovery.m from the book

23 Also, we would like you to have a feel for at least one very simple way for implementing `1

minimization in code and to play with it. Our experience is that this helps to think more

concretely about the optimization problem and its applications, rather than leaving it as a
mathematical abstraction.
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website. You may see an interesting phenomenon! Although the method does

not always succeed, it does succeed whenever the target solution xo is sufficiently

sparse! Figure 2.15 illustrates this in a more systematic way. In the figure, we

generate random matrices A of size 200 × 400 and random vectors xo with k

nonzero entries. We vary k from 1 to 200. For each k, we run 50 experiments

and plot the fraction of trials in which `1 minimization correctly recovers xo, up

to numerical error. Notice that indeed, `1 minimization succeeds whenever xo is

sufficiently sparse.

2.3.4 Sparse Error Correction via Logan’s Phenomenon

In Section 1.2.2 of the introduction chapter, we have discussed the work of Ben-

jamin Logan, who has shown that `1 minimization can be used to remove sparse

errors in band-limited signals. To connect its content more closely to our setting

here, let us consider a discretized analogue of the result, in which we consider a

finite dimensional signal y ∈ Cn. Let F ∈ Cn×n be the Discrete Fourier Trans-

form (DFT) basis for Cn (see equation (A.7.13) of Appendix A). That is, we

have:

Fkl =
1√
n

exp

(
2πi

kl

n

)
, k = 0, . . . , n− 1, l = 0, . . . , (n− 1). (2.3.26)

Let f0, . . . ,f (n−1) denote the columns of the DFT matrix:

F =
[
f0 | · · · | f (n−1)

]
∈ Cn×n. (2.3.27)

Form a submatrix B ∈ Cn×(d+1), corresponding to the d lowest-frequency ele-

ments of this basis and their conjugates24:

B =
[
f− d−1

2
| · · · | f d−1

2

]
∈ Cn×(d+1), (2.3.28)

where we use f−i to indicate the conjugate of f i. Let us imagine that xo =

Bwo ∈ col(B), and

y = xo + eo, (2.3.29)

where ‖eo‖0 ≤ k. Our task is to recover xo (which is equivalent to removing eo).

A discrete analogue of the program suggested in Logan’s theorem would be to

solve25

min ‖y − x‖1
subject to x ∈ col(B).

(2.3.30)

24 We use pairs of conjugate bases to represent real signals. One may view the range of B as

the discretized version of the band-limited functions B1(Ω) introduced earlier in Logan’s

Theorem 1.5.
25 For complex vectors, the `1 norm is simply the sum of absolute values of the real and

imaginary parts. Or equivalently, we identify a complex vector in Cn as a real vector in

R2n.
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Figure 2.16 Logan’s Phenomenon. Left: the superposition y = xo + eo of a
band-limited signal xo and a sparse error eo. Middle: estimate x̂ by `1 minimization.
Right: estimate ê by `1 minimization. Both estimates are accurate to within relative
error 10−6.

This problem is actually very much equivalent to the sparse signal recovery

problem discussed so far. To see this, let A be a matrix whose rows span the left

null space of B – i.e., rank (A) = n− d, and AB = 0. Then Axo = 0, and our

observation equation (2.3.29) is equivalent to

ȳ = Aeo, (2.3.31)

where ȳ = Ay. From this, it is not difficult to argue that the optimization

problem (2.3.30) is equivalent to

min ‖e‖1
subject to Ae = ȳ,

(2.3.32)

in the sense that e? is an optimal solution to (2.3.32) if and only if y−e? ∈ col(B)

is an optimal solution to (2.3.30). Figure 2.16 shows an example of this discrete

analogue of Logan’s phenomenon. You can reproduce this result by running

E6886_Lecture2_Demo_Logan.m from the book webpage.

Given the examples we have seen thus far of how sparsity arises in appli-

cation problems, the phenomenon associated with `1 minimization is certainly

intriguing. In the coming chapters, we will study it first from a mathematical

perspective, to understand why it occurs and what its limitations are; we will

then investigate its implications for practical applications in later chapters.

2.4 Summary

Let us briefly recap what we have learned in this chapter. In many modern

data analysis and signal processing applications, we need to solve very large,

underdetermined systems of linear equations:

y = Ax, A ∈ Rm×n, m < n.
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Such problems are inherently ill-posed: they admit infinitely many solutions.

Uniqueness of the Sparse Solution.
To make such problems well-posed, or to make the solution unique, we need

to leverage additional properties of the solution that we wish to recover. One

important property, which arises in many practical applications, is sparsity (or

compressibility). This is a powerful piece of information: although the signals

themselves reside in a very high-dimensional space, they have only a few intrinsic

degrees of freedom – they can be represented as a linear superposition of just

a few atoms from a properly chosen dictionary. As Theorem 2.6 shows, under

fairly general conditions, imposing sparsity on x can indeed make the problem

of solving

min ‖x‖0 subject to y = Ax

well conditioned: As long as the target solution xo is sufficiently sparse w.r.t. the

Kruskal rank of A, the sparsest solution to y = Ax is unique and is the correct

solution.

Tractability of the Sparse Solution via Convex Relaxation.
Computationally, however, finding the sparsest solution to a linear system is in

general intractable (i.e., NP-hard, Theorem 2.8). To alleviate the computational

difficulty, we relax the `0 minimization problem and replace the `0 norm of x

with its convex envelope, the `1 norm:

min ‖x‖1 subject to y = Ax.

Projected Subgradient Descent.
We have introduced a very basic subgradient descent algorithm (Algorithm 2.2)

that solves the convex `1 minimization problem. From the results of the algo-

rithm, we observe a striking phenomenon that `1 minimization can effectively

recover the sparse solution under fairly broad conditions. We will explain why

this is the case in the next chapter after we carefully characterize exact conditions

under which `1 minimization gives the correct sparse solution.

2.5 Notes

Application Vignettes.
Some of the early applications of sparse representation are in signal processing,

such as medical imaging [LDP07], seismic signals [HH08], and image processing

[YWHM08, MES08]. The three applications described in this chapter illustrate

various aspects of sparse modeling and sparse recovery. The medical imaging

application is described in the work of Lustig et. al. [LDP07, LDSP08]. The

denoising results shown in Section 2.1.2 are due to Mairal et. al. [MES08]. The

face recognition formulation in Section 2.1.3 is described in [WYG+09]. The



2.6 Exercises 67

discussion in this chapter only touches the surface of these problems; we will

revisit medical imaging in Chapter 10 and face recognition in Chapter 13. Please

see these chapters and their references for broader context and related work on

each of these problems. These are just a few of the vast array of applications of

sparse methods; a few of these are highlighted in Part III of the book, such as

Chapters 11–16.

NP Hardness of `0 Minimization and Related Problems.
The hardness result for `0 minimization, Theorem 2.8, is due to Natarajan

[Nat95]; see also Davis, Mallat, and Avellaneda [DMA97]. Results of Amaldi

and Kann [AK95,AK98] and Arora, Babai, Stern, and Sweedyk [ABSS93] show

that `0 minimization problems are also NP-hard to approximate. Delineating

the boundaries between tractable and intractable instances of sparse approxi-

mation remains an active topic of research: see, e.g., Zhang, Wainwright, and

Jordan [ZWJ14] or Foster, Karloff, and Thaler [FKT15] for more recent devel-

opments. There are hardness results for a number of problems that relate closely

to sparse approximation. These results also have implications for sparse error

correction. There are also hardness results around the problem of matrix spar-

sification in numerical analysis, which seeks to replace a given matrix A with

a sparse matrix Â such that range(A) ≈ range(Â): see McCormick [McC83],

Coleman and Pothen [CP86], and Gottlieb and Neylon [GN16] for discussions

of the hardness of this and related problems. Based on reduction techniques

similar to that classical complexity theory, the most recent work of Brennan

and Bresler [BB20] has systematically studied the gaps between statistical and

computational complexity for a broad family of related problems such as sparse

linear regression and sparse PCA, as well as many problems related to matrices

and tensors that we will study in later chapters.

2.6 Exercises

2.1 (Convexity of `p Norms). Show that

‖x‖p =
(∑

i

|xi|p
)1/p

(2.6.1)

is convex for p ≥ 1, and nonconvex for 0 < p < 1.

2.2. Show that for 0 < p < 1, ‖x‖p is not a norm in the sense of Definition 2.1.

2.3 (Relationship between `p Norms). Show that for p < q,

‖x‖p ≥ ‖x‖q (2.6.2)

for every x. For what x is equality obtained (i.e., ‖x‖p = ‖x‖q)?
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2.4 (Computing the Kruskal Rank). Write a Matlab function that takes as an

input a matrix A ∈ Rm×n, and outputs the Kruskal rank krank(A). There is no

known way to efficiently compute the Kruskal rank. It is fine if your code takes

time exponential in n. Corroborate the conclusion of Theorem 2.6, by generating

a 4 × 8 Gaussian matrix A, via A = randn(4,8), and computing its Kruskal

rank.

2.5 (A Structured Matrix with Small Kruskal Rank). Consider a 4 × 8 dimen-

sional complex matrix generated as

A = [ I | F ] , (2.6.3)

where I is the 4×4 identity matrix, and F is a 4×4 Discrete Fourier Transform

(DFT) matrix: in Matlab, A = [ eye(4), dftmtx(4) ]. Either using your code

from Exercise 2.4, or hand calculations, determine the Kruskal rank of A. You

should find that it is smaller than 4! A general version of this phenomenon can

be observed with the Dirac comb, which is sparse in both time and frequency.

2.6 (The Spark). Results on `0 uniqueness are sometimes described in terms of

the spark of a matrix, which is the number of nonzero entries in the sparsest

nonzero element of the null space of A:

spark(A) = min
d6=0, Ad=0

‖d‖0.

What is the relationship between spark(A) and krank(A)?

2.7 (Kruskal Rank of Random Matrices). In this exercise we prove that for a

generic m×n matrix A with entries ∼iid N (0, 1), krank(A) = m with probability

one.

1 Argue that for any m× n matrix A, krank(A) ≤ m.

2 Let A = [a1 | · · · | an] with ai ∈ Rm as column vectors. Let span denote the

linear span of a collection of vectors. Argue that

P [am ∈ span(a1, . . . ,am−1)] = 0. (2.6.4)

3 Argue that krank(A) < m if and only if there exist some indices i1, . . . , im
such that

aim ∈ span(ai1 , . . . ,aim−1) (2.6.5)

4 Conclude that krank(A) = m with probability one, by noting that

P
[
∃i1, . . . , im : aim ∈ span(ai1 , . . . ,aim−1

)
]

≤
∑

i1,...,im

P
[
aim ∈ span(ai1 , . . . ,aim−1)

]

≤ mn × P [am ∈ span(a1, . . . ,am−1)]︸ ︷︷ ︸
= 0

= 0.
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2.8 (`0 Minimization and Typical Examples). We showed that there is a worst

case phase transition in `0 minimization at krank(A)
2 . This means that `0 mini-

mization recovers every xo satisfying ‖xo‖0 <
krank(A)

2 . We also know that for

a Gaussian matrix A ∈ Rm×n, krank(A) = m, with probability one.

Using code for `0 minimization provided (or write your own!), please do the fol-

lowing: generate a 5×12 Gaussian matrix A = randn(5,12). What is rank(A)?

Generate a sparse vector xo, with four nonzero entries, via xo = zeros(12,1);

xo(1:4) = randn(4,1). Now, set y = A xo. Solve the `0 minimization prob-

lem, to find the sparsest vector x satisfying Ax = y. Is it the same as xo? Check

whether norm(x - xo) is small, where x is the solution produced by your code.

Notice that the worst case theory for `0 predicts that we can only recover

vectors with at most 2 nonzero entries. But we have observed `0 succeeding with

4 nonzero entries! This is an example of a typical case performance which is

better than the worst case.

Please explain this! Argue that if xo is a fixed vector supported on some set

I of size < m, then the probability that there exists a subset I′ 6= I of size < m

satisfying Axo ∈ range(AI′) is zero.

Does your argument imply that the worst case theory based on rank can be

improved? Why or why not?

2.9 (Subdifferentials). Compute the subdifferentials for the following functions:

1 The subdifferential for f(x) = ‖x‖∞ with x ∈ Rn.

2 The subdifferential for f(X) =
∑n
j=1 ‖Xej‖2 with X a matrix in Rn×n.

3 The subdifferential for f(x) = ‖X‖∗ with X a matrix in Rn×n.

2.10 (Implicit Bias of Gradient Descent). Consider the problem of solving an

under-determined system of linear equation y = Ax where A ∈ Rm×n with

m < n. Of course the solution is not unique. Nevertheless, let us solve it by

minimizing the least square error

min
x
f(x)

.
= ‖y −Ax‖22,

say using the simplest gradient descent algorithm:

xk+1 = xk − α∇f(xk).

Show that if we initialize x0 as the origin 0, then when the above gradient descent

algorithm converges, it must converge to the solution x? of the minimal 2-norm.

That is, it converges to the optimal solution of the following problem

min
x
‖x‖22 subject to y = Ax.

This is a phenomenon widely exploited in the practice of learning deep neural

networks. Although due to over-parameterized, parameters that minimize the cost

function might not be unique, the choice of optimization algorithms with proper

initialization (here gradient descent starting from the origin) introduces implicit

bias for the optimization path and converges to a desirable solution.
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2.11 (Projection onto an Affine Subspace). In deriving the projected subgradient

method for `1 minimization, we used the fact that for an affine subspace

C = {x | Ax = y} , (2.6.6)

where A is a matrix with full row rank, and y ∈ range(A), the Euclidean pro-

jection on C is given by

PC[z] = arg min
Ax=y

‖x− z‖22 (2.6.7)

= z −A∗ (AA∗)−1
[Az − y] . (2.6.8)

Prove that this formula is correct. You may use the following geometric char-

acterization of PC[z]: x = PC[z] if and only if (i) Ax = y and (ii) for any x̃

satisfying Ax̃ = y, we have

〈z − x, x̃− x〉 ≤ 0. (2.6.9)

2.12. Projected gradient descent aims to:

min f(x) subject to x ∈ C.

Show an example of when the projection onto set C:

1 does not exist;

2 is not unique.

(Tips: This problem does not have a unique solution, you can either answer

this question by drawing pictures or giving mathematical formula, so use your

creativity!)

2.13 (Sparse Error Correction). In coding theory and statistics, we often en-

counter the following situation: we have an observation z, which should be ex-

pressible as Bx, except that some of the entries are corrupted. We can express

our corrupted observation as

z
observation

= Bx
encoded message

+ e
sparse corruption

. (2.6.10)

Here z ∈ Rn is the observation x ∈ Rr is a message of interest; B ∈ Rn×r (n > r)

is a tall matrix with full column rank r, and e ∈ Rn represents any corruption of

the message. In many applications, the observation may be subject to corruption

which is large in magnitude, but affects only a few of the observations, i.e., e is

sparse vector. Let A ∈ R(n−r)×n be a matrix whose rows span the left null space

of B, i.e., rank(A) = n− r, and AB = 0. Prove that for any k, (2.6.10) has a

solution (x, e) with ‖e‖0 = k if and only if the underdetermined system

Ae = Az (2.6.11)

has a solution e with ‖e‖0 = k. Argue that that the optimization problems

min
x
‖Bx− z‖1 (2.6.12)
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and

min
e
‖e‖1 subject to Ae = Az (2.6.13)

are equivalent, in the sense that for every solution x̂ of (2.6.12), ê = Bx̂− z is

a solution to (2.6.13); and for every solution ê of (2.6.13), there is a solution x̂

of (2.6.12) such that ê = Bx̂− z.

It is sometimes observed that “sparse representation and sparse error correc-

tion are equivalent.” In what sense is this true?

2.14 (`1 vs. `∞ minimization). We have studied the `1 minimization problem

min ‖x‖1 subject to Ax = y (2.6.14)

for recovering sparse xo. We can obtain other convex optimization problems by

replace ‖·‖1 with ‖·‖p for p ∈ (1,∞]. For what kind of xo would you expect `∞

minimization to outperform `1 minimization (in the sense of recovering xo more

accurately)?

2.15 (Faces and Linear Subspaces). Download face_intro_demo.zip from the

book website. Run load_eyb_recognition to load a collection of images under

varying illumination into memory. The training images (under different lighting)

will be stored in A_train, the identities of the subjects in label_train. Form a

matrix B by selecting those columns of A_train that correspond to Subject 1. We

will use the singular value decomposition to investigate how well-approximated

the columns of B are by a linear subspace.

Compute the singular values of B using sigma = svd(B). How many singular

values r are needed to capture 95% of the energy of B? That is, to ensure that

r∑

i=1

σ2
i > .95×

n∑

i=1

σ2
i ? (2.6.15)

What about 99% of the energy? Repeat this calculation for several subjects.

2.16 (Sparsity of MR Images). In this exercise, we study the wavelet-domain

sparsity of anatomical MRI data from a real dataset, the BOLD5000 fMRI dataset.

As we saw in the vignette presented in lecture, the signal acquired in MRI settings

is the 2D Fourier transform of the relevant spatial slice of the object being imaged;

the specific mathematical details of a modeling and analysis of this acquisition

process are presented in Chapter 10.

The focus in this exercise is on understanding the data, and in particular the

relationships between its representations in several transform domains (spatial,

2D Fourier frequency, and 2D discrete wavelet). Since, in this setting, the MR

image is sparse in the wavelet domain but acquired in the frequency domain, there

is a question of whether the composite acquisition map will have the properties

necessary for us to perform recovery from underdetermined measurement maps.

We will study such questions in details in later chapters and exercises.

https://bold5000.github.io/


3 Convex Methods for Sparse Signal
Recovery

“Algebra is but written geometry; geometry is but drawn algebra.”
– Sophie Germain

In the previous chapter, we saw many problems for which the goal is to find a

sparse solution to an underdetermined linear system of equations y = Ax. This

problem is NP-hard in general. However, we also observed that certain well-

structured instances can be solved efficiently: in experiments, when y = Axo
and xo was sufficiently sparse, tractable `1 minimization

min ‖x‖1
subject to Ax = y,

(3.0.1)

exactly recovered xo: xo was the unique optimal solution to this optimization

problem.

The experiments in the previous chapter are inspiring, and perhaps surpris-

ing. In this chapter, we will study this phenomenon mathematically, and try

to precisely characterize the behavior of (3.0.1). The engineering motivation is

simple: we would like to know whether the behavior in the previous chapter is

some lucky instances or should be expected in general, and if it is the latter case,

whether we can use it to build reliable systems.

3.1 Why Does `1 Minimization Succeed? Geometric Intuitions

Before diving into a formal proof that the `1 minimization (3.0.1) correctly re-

covers sparse signals, we describe two intuitive, geometric pictures of why this is

the case.

Coefficient Space Picture.
We first visualize the problem in the space Rn of coefficient vectors x. The set

of vectors x that satisfy the constraint Ax = y in (3.0.1) is an affine subspace1

S = {x | Ax = y} = {xo}+ null(A). (3.1.1)

1 In (3.1.1), the set addition {xo}+ null(A) is in the sense of Minkowski, i.e., for sets S and

T, S + T = {s+ t | s ∈ S, t ∈ T}.
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xo

Coefficient
space Rn

Feasible set

S = {xo}+ null(A)

`1 ball

B1 =
{
x | ‖x‖1 ≤ 1

}
Figure 3.1 Coefficient-Space Picture. The set of all solutions x to the equation
Ax = y is an affine subspace S of the coefficient space Rn. The `1 ball B1 consists of
all coefficient vectors x whose objective function is at most one.

x̂ = xoxoxo

. . . . . .

Figure 3.2 `1 Minimization in the Coefficient-Space Picture. `1 minimization
can be visualized geometrically as follows: we squeeze the `1 ball down to zero, and
then slowly expand it until it first touches the feasible set S. The point (or points) at
which it first touches S is the `1 minimizer x̂.

Figure 3.1 visualizes this set. The `1 minimization problem (3.0.1) picks, out of

all of the points in the set S, the one (or ones) with smallest `1 norm. This can

be visualized as follows. Consider the `1 ball of radius one

B1 = {x | ‖x‖1 ≤ 1} ⊂ Rn. (3.1.2)

This contains all the vectors x with objective function at most one. Scaling this

object by t ≥ 0 produces the set of vectors x with objective function at most t:

t · B1 = {x | ‖x‖1 ≤ t} ⊂ Rn. (3.1.3)

If we first scale B1 down to zero, by setting t = 0, and then slowly expand it,

by increasing t, the `1 minimizer is obtained when t · B1 first touches the affine

subspace S. This contact point is the solution to (3.0.1) – see Figure 3.2. From

the geometry of the ball, it seems that these contact points will tend to be the

vertices or edges of B1, which precisely correspond to the sparse vectors!
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xo

Coefficient space Rn
`1 ball B1

Linear embedding A

Observation space Rm

y = Axo
observation

Polytope

P = A(B1)

Figure 3.3 Observation-Space Picture. The `1 ball is a convex polytope B1 in the
coefficient space Rn. The linear map A projects this down to a lower-dimensional set
P = A(B1) in the observation space Rm. The vertices vi of P are subsets of the
projections Aνj of B1.

Observation Space Picture

We can also visualize `1 minimization in the space Rm of observation vectors y.

This picture is slightly more complicated, but turns out to be very useful. The

m × n matrix A maps n-dimensional vectors x to m � n dimensional vectors

y. Let us consider how the matrix A acts on the `1 ball B1 ⊂ Rn. Applying A

to each of the vectors x ∈ B1, we obtain a lower-dimensional object P = A(B1),

which we visualize in Figure 3.3 (right). The lower-dimensional set P is a convex

polytope. Every vertex v of P is the image Aν of some vertex ν = ±ei of B1.

More generally, every k-dimensional face of P is the image of some face of B1.

The polytope P consists of all points y′ of the form Ax′ for some x′ with

objective function ‖x′‖1 ≤ 1. `1 minimization corresponds to squeezing B1 down

to the origin, and then slowly expanding it until it first touches y. The touching

point is the image Ax̂ of the `1 minimizer – see Figure 3.4.

So, `1 will correctly recover xo whenever Axo is on the outside of P = A(B1).

For example, in Figure 3.3, all of the vertices of B1 map to the outside of A(B1),

and so `1 recovers any 1-sparse xo. However, certain edges (one-dimensional

faces) of B1 map to the inside of A(B1). `1 minimization will not recover these

xo.

From this picture, it may be very surprising that `1 works as well as it does.

However, as we will see in the remainder of this chapter, the high-dimensional

picture differs significantly from the low-dimensional picture (and our intuition!)
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xo

y = Axo

B1 tB1

P = A(B1) tP = A(tB1)

A A
...expand

x̂ = xo

y = Ax̂

Figure 3.4 `1 Minimization in the Observation-Space Picture. `1 minimization
corresponds to scaling B1 down to zero, and then slowly expanding it. As B1 expands,
so does P = A(B1). The optimal value for the `1 minimization problem is the first
scalar t such that tP = A(tB1) touches the observation vector y. The first point that
touches y is the image Ax̂ of the `1 minimizer x̂. This means that `1 minimization
recovers point xo if and only if A xo

‖xo‖1
lies on the boundary of P.

in ways that are very useful – a “blessing of dimensionality.” In particular, if we

are in m dimensions and n is proportional to m, not only do all of the vertices

of B1 map to the outside of A(B1), so do all the one-dimensional faces, and all

of the two-dimensional faces, and so on, all the way up to k-dimensional faces

with k proportional to m!

3.2 A First Correctness Result for Incoherent Matrices

With solid empirical evidence and a bit of geometric intuition at hand, our next

task is to develop some rigorous understanding of this phenomenon.

3.2.1 Coherence of a Matrix

What determines whether `1 minimization can recover a target sparse solution

xo? Our discussion on `0 minimization isolated two key factors: how structured

the target xo is (i.e., how many nonzero entries) and how nice the mapA is (mea-
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µ(A) = 0.70711 µ(A) = 0.99488

Figure 3.5 Mutual Coherence for Two Configurations of Columns of A. Left:
well-spread vectors in S2: µ(A) ≈ 0.707. This is the smallest achievable µ for four
vectors in two dimensions. In higher dimensions, the mutual coherence can be much
smaller: for example, a random m× 2m dimensional matrix has coherence on the
order of

√
log(m)/m, which diminishes to zero as m increases. Right: µ(A) ≈ 0.995.

Mutual coherence depends on the closest pair ai,aj , and so in this example it is very
large.

sured there through the Kruskal rank). Moreover, there was a tradeoff between

the two factors: the nicer A is, the denser xo we can recover.

In fact, this qualitative tradeoff carries over to tractable algorithms such as

the `1 relaxation as well. However, we need a slightly stronger notion of the

“niceness” of A to guarantee that the tractable relaxation succeeds. Our first

notion measures how “spread out” the columns of A are in the high dimensional

space Rm:

Definition 3.1 (Mutual Coherence). For a matrix

A =
[
a1 | a2 | · · · | an

]
∈ Rm×n

with nonzero columns, the mutual coherence µ(A) is the largest normalized inner

product between two distinct columns:

µ(A) = max
i6=j

∣∣∣∣
〈

ai
‖ai‖2

,
aj
‖aj‖2

〉∣∣∣∣ . (3.2.1)

As the mutual coherence only depends on the direction of the column vectors,

for simplicity, we typically assume the columns are normalized to be of unit

length.

The mutual coherence takes values in [0, 1]. If the columns ofA are orthogonal,

µ(A) is zero. If n > m, the columns of A cannot be orthogonal. The quantity

µ(A) captures how close they are to orthogonal, in the worst case sense. Matrices

with small µ(A) have columns that are more spread out; we will see that such

matrices tend to be better for sparse recovery, in the sense that `1 succeeds

in recovering denser xo. Figure 3.5 visualizes the columns A and displays the

coherence, for two examples of A ∈ R2×n.

One intuition for why small µ(A) is helpful is the following: suppose that
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y = Axo, with xo sparse, and I the support of xo. Then y =
∑
i∈I aixo(i).

Intuitively speaking, it should be easier to “guess” which columns ai participate

in this linear combination if distinct columns are not too similar to each other.

To connect the mutual coherence more formally to sparse recovery, we will

show that whenever µ(A) is small, the Kruskal rank krank(A) is large. Recall

that krank(A) ≥ k if and only if every subset of k columns of A is linearly

independent, i.e., every k-column submatrix AI has full column rank. In fact, if

the coherence µ(A) is small, then column submatrices of A not only have full

column rank – they are even well-conditioned, in the sense that their smallest

singular value σmin is not far from their largest singular value σmax. To see this,

let I ⊂ [n] with k = |I|. Write diagonal and off diagonal entries as:

A∗I AI = I + ∆. (3.2.2)

Because ‖∆‖ ≤ ‖∆‖F < k ‖∆‖∞ ≤ kµ(A),2 we have

1− kµ(A) < σmin(A∗I AI) ≤ σmax(A∗I AI) < 1 + kµ(A). (3.2.3)

In particular, if kµ(A) ≤ 1, AI has full column rank. Combining this observation

with our previous discussion of the Kruskal rank, we obtain:

Proposition 3.2 (Coherence Controls Kruskal Rank). For any A ∈ Rm×n,

krank(A) ≥ 1

µ(A)
. (3.2.4)

In particular, if y = Axo and

‖xo‖0 ≤
1

2µ(A)
, (3.2.5)

then xo is the unique optimal solution to the `0 minimization problem

min ‖x‖0
subject to Ax = y.

(3.2.6)

Thus, provided µ(A) is small enough, `0 minimization will uniquely recover xo.

3.2.2 Correctness of `1 Minimization

The previous result showed that if µ(A) is small, then `0 minimization recovers

sufficiently sparse xo. The next result shows that under the same hypotheses,

if µ(A) is small, the tractable `1 minimization heuristic also recovers xo. This

implies that sparse solutions can be reliably obtained using efficient algorithms!

The result is as follows:

2 The first inequality comes because the operator norm is always bounded by the Frobenius

norm: ‖∆‖ = maxi σi(∆) and ‖∆‖F =
√∑

i σ
2
i (∆). The second inequality arises because

‖∆‖2F =
∑
ij |∆ij |2. The diagonal entries of ∆ are zero, and so in this case,

‖∆‖2F =
∑
i 6=j |∆ij |2 ≤ k(k − 1) ‖∆‖2∞.
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xo

∂ ‖·‖1 (xo)

A∗λ ∈ ∂ ‖·‖1 (xo) ∩ null(A)⊥

Figure 3.6 Geometry of the Proof of `1 Recovery. We prove that xo is an
optimal solution to the `1 minimization problem, by demonstrating that there exists
λ such that A∗λ is in the subdifferential of ∂ ‖·‖1 (xo). In this picture, there is a
subgradient of the objective which is orthogonal to null(A). This generalizes the
condition for projecting onto an affine subspace (Figure 2.13), in which the gradient
of the approximation error is orthogonal to null(A).

Theorem 3.3 (`1 Succeeds under Incoherence). Let A be a matrix whose columns

have unit `2 norm, and let µ(A) denote its mutual coherence. Suppose that

y = Axo, with

‖xo‖0 ≤
1

2µ(A)
. (3.2.7)

Then xo is the unique optimal solution to the problem

min ‖x‖1
subject to y = Ax.

(3.2.8)

Remark 3.4. It is possible to improve the condition of Theorem 3.3 slightly, to

allow recovery of xo satisfying

‖xo‖0 ≤
1

2

(
1 +

1

µ(A)

)
. (3.2.9)

This is the best possible statement of this form: there exist examples of A and

xo with ‖xo‖0 > 1
2

(
1 + 1

µ(A)

)
for which `1 minimization does not recover xo.

Nevertheless, we will see later in this chapter that for certain classes of A of prac-

tical importance, far better guarantees are possible, and that this has important

implications for sensing, error correction, and a number of related problems.

Proof Ideas for `1 Recovery.
Before embarking on a rigorous proof of Theorem 3.3, we sketch our approach.

Recall from the previous chapter that for any v ∈ ∂ ‖·‖1 (xo) and x′ ∈ Rn, the

subgradient inequality,

‖x′‖1 ≥ ‖xo‖1 + 〈v,x′ − xo〉 (3.2.10)
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lower bounds the `1 norm of x′. Notice that if x′ is feasible for (3.2.8), then

y = Ax′ and so A(x′ − xo) = 0. Hence, for any λ ∈ Rm,

〈A∗λ,x′ − xo〉 = 〈λ,A(x′ − xo)〉 = 0. (3.2.11)

So if we can produce a λ such that A∗λ ∈ ∂ ‖·‖1 (xo), plugging into (3.2.10) we

necessarily have

‖x′‖1 ≥ ‖xo‖1 (3.2.12)

for every x′ ∈ Rn. This implies that xo is an optimal solution. Figure 3.6 visu-

alizes this construction geometrically.

Let I denote the support of xo, and σ = sign(xoI) ∈ {±1}k. Recall that the

subdifferential ∂ ‖·‖1 (xo) consists of those vectors v such that

vI = σ, (3.2.13)

‖vIc‖∞ ≤ 1. (3.2.14)

Hence, the condition A∗λ ∈ ∂ ‖·‖1 (xo) places two conditions on the vector A∗λ:

A∗I λ = σ, (3.2.15)

‖A∗Icλ‖∞ ≤ 1. (3.2.16)

The first condition is a linear system of k equations, in m unknowns λ. The

second is a system of n − k inequality constraints. The system of equations

(3.2.15) is underdetermined. Our approach will be to look at the simplest possible

solution to this underdetermined system,

λ̂`2 = AI(A
∗
I AI)

−1σ. (3.2.17)

This putative solution automatically satisfies the equality constraints (3.2.15).

Moreover, λ̂`2 is a superposition of the columns of AI. Because µ(A) is small,

the columns of AIc are almost orthogonal to the columns of AI, and so ‖A∗Icλ‖∞
is also small.

Below, we make the above discussion rigorous. The details are slightly more

complicated than the above sketch, because we wish to prove that xo is not just

an optimal solution, but actually the unique optimal solution. We will see that

if we can ensure that AI has full column rank and ‖A∗Icλ‖∞ is strictly smaller

than one, this follows.

Proof of Theorem 3.3 Let I = supp(xo) and σ = sign(xoI) ∈ {±1}k. Notice

that σmin(A∗I AI) > 1− kµ(A), and so under our assumption AI has full column

rank. Suppose that there exists λ such that

A∗I λ = σ, (3.2.18)

‖A∗Icλ‖∞ ≤ 1. (3.2.19)

Consider any x′ which is feasible, i.e., satisfies Ax′ = y. Let v ∈ Rn be a vector
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such that vI = σ, and vIc = sign([x′−xo]Ic). Notice that v ∈ ∂ ‖·‖1 (xo), and so

by the subgradient inequality,

‖x′‖1 ≥ ‖xo‖1 + 〈v,x′ − xo〉 . (3.2.20)

Since x′ − xo ∈ null(A), 〈A∗λ,x′ − xo〉 = 0, and the above equation implies

that

‖x′‖1 ≥ ‖xo‖1 + 〈v,x′ − xo〉
= ‖xo‖1 + 〈v −A∗λ,x′ − xo〉
= ‖xo‖1 + 〈vIc −A∗Icλ, [x′ − xo]Ic〉
≥ ‖xo‖1 + ‖[x′ − xo]Ic‖1 − ‖A∗Icλ‖∞ ‖[x′ − xo]Ic‖1
= ‖xo‖1 + (1− ‖A∗Icλ‖∞) ‖[x′ − xo]Ic‖1 . (3.2.21)

Since ‖A∗Icλ‖∞ < 1, either ‖x′‖1 > ‖xo‖1, or ‖[x′ − xo]Ic‖1 = 0. In the latter

case, this means that supp(x′) ⊆ I, and x′I − xoI ∈ null(AI). Since AI has full

column rank, this implies that x′I = xoI, and so x′ = x.

Hence, if we can construct a λ satisfying (3.2.18)-(3.2.19), then any alternative

feasible solution x′ has larger `1-norm than xo. Let us try to produce such

a λ. The first equation (3.2.18) above is an underdetermined linear system of

equations, with k equations and m > k unknowns λ. Let us write down one

particular solution to this system of equations:

λ̂`2 = AI(A
∗
I AI)

−1σ. (3.2.22)

By construction, A∗I λ̂`2 = σ. We are just left to verify (3.2.19), by calculating
∥∥∥A∗Icλ̂`2

∥∥∥
∞

=
∥∥A∗IcAI(A

∗
I AI)

−1σ
∥∥
∞ . (3.2.23)

Consider a single element of this vector, which has the form (for some j ∈ Ic) of

|a∗jAI(A
∗
I AI)

−1σ| ≤ ‖A∗I aj‖2︸ ︷︷ ︸
≤
√
kµ

∥∥(A∗I AI)
−1
∥∥

2,2︸ ︷︷ ︸
<

1
1−kµ(A)

‖σ‖2︸ ︷︷ ︸
=
√
k

(3.2.24)

<
kµ(A)

1− kµ(A)
(3.2.25)

≤ 1
Provided kµ(A) ≤ 1/2.

. (3.2.26)

In (3.2.25), we have used that for any invertible M ,
∥∥M−1

∥∥ = 1/σmin(M) and

our previous calculation that σmin(A∗I AI) ≥ 1−kµ(A) to bound
∥∥(A∗I AI)

−1
∥∥

2,2
.

This calculation shows that under our assumptions, condition (3.2.19) is verified.

3.2.3 Constructing an Incoherent Matrix

In Theorem 3.3, we have shown that if ‖xo‖0 ≤ 1/2µ(A), xo is correctly recov-

ered by `1 minimization. Many extensions and variants of this result are known.

According to this result, matrices with smaller coherence admit better bounds.
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Historically, results of this nature were first proved for special A, which con-

sisted of a concatenation of two orthonormal bases:

A = [Φ | Ψ] , (3.2.27)

with Φ = [φ1 | · · · | φn] ∈ O(n), Ψ = [ψ1 | · · · | ψn] ∈ O(n). For instance, Φ can

be the classic Fourier transform bases and Ψ certain wavelet transform bases. In

this case, it is possible to prove a sharper bound based on the cross-coherence:

max
ij

∣∣〈φi,ψj
〉∣∣ . (3.2.28)

Another case which is of great interest is when the matrix A has the form

A = Φ∗I Ψ, where I ⊂ [n], and ΦI ∈ Rn×|I| is a submatrix of an orthogonal base.

For example, in the MRI problem in the previous chapter, Φ would correspond

to the Fourier transform, while Ψ was the basis of sparsity (e.g., wavelets).

As it turns out, incoherence is a generic property for almost all matrices. So

the easiest way to build a matrix A with small µ(A) is simply to choose the

matrix at random. The following theorem makes this precise:

Theorem 3.5. Let A = [a1 | · · · | an] with columns ai ∼ uni(Sm−1) chosen

independently according to the uniform distribution on the sphere. Then with

probability at least 3/4,

µ(A) ≤ C

√
log n

m
, (3.2.29)

where C > 0 is a numerical constant.

This result is essentially just a calculation. The main tool needed is the follow-

ing result, which observes that a Lipschitz function on the sphere concentrates

sharply about its median:

Theorem 3.6 (Spherical Measure Concentration). Let u ∼ uni(Sm−1) be dis-

tributed according to the uniform distribution on the sphere. Let f : Sm−1 → R
be an 1-Lipschitz function:

∀u, u′, |f(u)− f(u′)| ≤ 1 · ‖u− u′‖2 , (3.2.30)

and let med(f) denote any median of the random variable Z = f(u). Then

P [ f(u) > med(f) + t ] ≤ 2 exp

(
−mt

2

2

)
, (3.2.31)

P [ f(u) < med(f)− t ] ≤ 2 exp

(
−mt

2

2

)
. (3.2.32)

This result is the precise reason behind the counterintuitive example about

the sphere shown in Figure 1.10 of the Introduction chapter. We have laid out

some basic facts in measure concentration and their proofs in the Appendix E.

For a more detailed introduction to measure concentration, the reader may refer

to [Led01, Mat02]. For now, we will take this result for granted and use it to

prove our Theorem 3.5.
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Proof of Theorem 3.5: For any fixed v ∈ Sm−1, we have

||v∗a| − |v∗a′|| ≤ |v∗(a− a′)| ≤ ‖a− a′‖2 . (3.2.33)

So, the function f(a) = |v∗a| is 1-Lipschitz. A quick calculation shows that for

a ∼ uni(Sm−1), we have

E[(v∗a)2] =
1

m
. (3.2.34)

As x2 is convex, E [|v∗a|]2 ≤ E
[
(v∗a)2

]
. So, we have E [|v∗a|] ≤ 1√

m
.

Applying the Markov inequality P [X ≥ a ] ≤ E[X]
a to f with a = med(f),

then any median of f satisfies

med(f) ≤ 2E[f ] ≤ 2√
m
. (3.2.35)

Finally applying the measure concentration fact from Theorem 3.6, we have

P

[
|v∗a| > 2 + t√

m

]
≤ 2 exp

(
− t

2

2

)
. (3.2.36)

Since this holds for every fixed v, it also holds if v is an independent random

vector uniformly distributed on Sm−1. So,

P

[
|a∗iaj | >

2 + t√
m

]
≤ 2 exp

(
− t

2

2

)
. (3.2.37)

Summing the failure probability over all n(n− 1)/2 pairs of distinct (ai,aj), we

have an upper (union) bound on the probability of all failure events:

P

[
∃ (i, j) : |a∗iaj | >

2 + t√
m

]
≤ n(n− 1) exp

(
− t

2

2

)
. (3.2.38)

Setting t = 2
√

log 2n, the above probability is less than 1/4 and we obtain the

result.

There are several points about Theorem 3.5 that are worth remarking on here.

First, there is nothing particularly special about the success probability 3/4. By

a slightly different choice of t (which affects the constant C), one can make the

success probability arbitrarily close to 1. Second, there is nothing particularly

special about the uniform distribution on Sm−1 – many distributions will produce

similar results, although this one is especially convenient to analyze.

Figure 3.7 plots the average mutual coherence of matrices sampled according

to Theorem 3.5, for various values of n and m = n/8. The observations seem to

agree with the predictions of the theorem: the average observed mutual coherence

is very close to 1.75
√

logn
m .
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Figure 3.7 How Does Coherence Decay with Dimension? Left: Average mutual
coherence across 50 trials, for A with columns ai ∼iid uniform(Sm−1), for various

values of n and m = n/8. The black curve, given for reference, is 1.75
√

logn
m

. The blue

curve is the Welch lower bound µmin on the smallest achievable mutual coherence for
an m× n matrix (see Theorem 3.7). Right: Average number of nonzeros k which can
we can guarantee to reconstruct using the observe µ(A) and Theorem 3.3 (red). The
blue curve bounds the best possible number of nonzero entries using Theorem 3.3, for
any matrix A of size m× n, using the Welch bound.

3.2.4 Limitations of Incoherence

Theorem 3.3 gives a quantitative tradeoff between niceness of A and sparsity

of xo, which asserts that when xo is sparse enough: ‖xo‖0 ≤ 1/2µ(A), then

xo is the unique optimal solution to the `1 minimization problem. This gives a

sufficient condition for the `1 minimization to be correct.

But how sharp is this result? According to Theorem 3.5, a random matrix

A ∈ Rm×n with high probability has its coherence bounded from above as

µ(A) ≤ C
√

logn
m . So, for a “generic” A, the above recovery guarantee im-

plies correct recovery of xo with O(
√
m/ log n) nonzeros. If we turn this around,

and think of the matrix multiplication x 7→ Ax as a sampling procedure, then

for appropriately distributed random A, we can recover k-sparse xo from

m ≥ C ′k2 log n (3.2.39)

observations. When k is small, this is substantially better than simply sampling

all n entries of x. On the other hand, the measurement burden m = Ω(k2) seems

a little too high – to specify a k-sparse x, we only need to specify its k nonzero

entries, . . . and yet the theory demands k2 samples!

One might naturally guess that the choice of A as a random matrix was a

poor one – perhaps some delicate deterministic construction can yield a better

performance guarantee, by making µ(A) smaller. How small can the coherence

µ(A) be? We already noted that ifA is a square matrix with orthogonal columns,

µ(A) = 0. However, if we fix m and allow the number of columns, n, to grow,
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we are forced to pack more and more vectors aj into a compact set Sm−1. As

we increase n, the minimum achievable coherence µ increases.

As it turns out in this case, no matter what we do, we cannot construct a

matrix whose coherence is significantly smaller than a randomly chosen one: the

coherence of the random matrix A is within C log n of optimal. The following

theorem makes this precise:

Theorem 3.7 (Welch Bound). For any matrix A = [a1 | · · · | an] ∈ Rm×n,

m ≤ n, and suppose that the columns ai have unit `2 norm. Then

µ(A) = max
i 6=j
|〈ai,aj〉| ≥

√
n−m
m(n− 1)

. (3.2.40)

Proof Let G = A∗A ∈ Rn×n, and let λ1 ≥ · · · ≥ λm ≥ 0 denote its nonzero

eigenvalues.3 Notice that

m∑

i=1

λi(G) = trace (G) =

n∑

i=1

‖ai‖22 = n. (3.2.41)

Using this fact, we obtain that

n2

m
≤ n2

m
+

m∑

i=1

(
λi(G)− n

m

)2

(3.2.42)

=
n2

m
+

m∑

i=1

{
λ2
i (G) +

n2

m2
− 2

n

m
λi(G)

}
(3.2.43)

=

m∑

i=1

λ2
i (G) = ‖G‖2F (3.2.44)

=
∑

i,j

|a∗iaj |2 = n+
∑

i 6=j
|a∗iaj |2 (3.2.45)

≤ n+ n(n− 1)

(
max
i 6=j
|a∗iaj |

)2

. (3.2.46)

Simplifying, we obtain the desired result.

In the above sequence of inequalities, we have used in (3.2.44) the fact that for

any symmetric matrixG, ‖G‖2F =
∑
i λi(G)2, which follows from the eigenvector

decomposition G = V ΛV ∗ and the fact that for any matrix M and orthogonal

matrices P ,Q of appropriate size, ‖M‖F = ‖PMQ‖F .

The important thing to notice here is that if we take n proportional to m, i.e.,

n = βm for some β > 1, then the bound says that for any m× n matrix A,

µ(A) ≥ Ω

(
1√
m

)
. (3.2.47)

Hence, in the best possible case, Theorem 3.3 guarantees we can recover xo with

3 Because rank (G) ≤ m, it has at most m nonzero eigenvalues.
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about
√
m nonzero entries. Or equivalently, no matter how well we choose A, to

guarantee success Theorem 3.3 would demand

m ≥ C ′′k2 (3.2.48)

samples to reconstruct a k-sparse vector, which is only log n factor better than

the previous bound (3.2.39) for a randomly chosen A.

Does this behavior reflect a fundamental limitation of the `1 relaxation? Or is

our analysis loose? It turns out that for generic matrices, the situation is much

better than the bounds (3.2.39)-(3.2.48) seem to suggest. Again, the easiest way

to see this is to do an experiment! We can try solving problems with constant

aspect ratio (say, m = n/2), and n growing. Try to set k = ‖xo‖0 proportional

to m – say, k = m/4 (a much better scaling than k ∼ √m!). Now, try different

aspect ratios m = αn and sparsity ratios k = βm. We leave this as an exercise

to the reader. You may notice something intriguing:

In a proportional growth setting m ∝ n, k ∝ m, `1 minimization succeeds with very high
probability whenever the constants of proportionality n/m and k/m are small enough.

This is a very important observation, since it implies that

• more error correction: we can correct constant fractions of errors, using an

efficient algorithm.

• better compressive sampling: we can sense sparse vectors using a number

of measurements that is proportional to the intrinsic “information content” of

the signal – the number of nonzero entries.

However, to have a theory that can explain such observation, we will need a

more refined measure of the goodness of A than the (rather crude) coherence or

incoherence. In addition, we are going to need to sharpen our theoretical tools

too.

3.3 Towards Stronger Correctness Results

3.3.1 The Restricted Isometry Property (RIP)

In the previous section, we saw that the `1 minimization problem

min ‖x‖1
subject to Ax = y

(3.3.1)

correctly recovers a sparse xo from observation y = Axo, provided two condi-

tions are in force:

• xo is structured: k = ‖xo‖0 � n.

• A is “nice”: its coherence µ(A) is small.
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The intuition provided by incoherence is qualitatively very suggestive, but it

does not provide a quantitative explanation for the good behavior we have seen

in our experiments so far. How can we strengthen the condition? Suppose that

A has unit norm columns. Then it is easy to calculate that for every two-column

submatrix AI = [ai | aj ] ∈ Rm×2,

A∗I AI =

[
1 a∗iaj

a∗jai 1

]
. (3.3.2)

Exercise 3.6 asks you to show that since |a∗iaj | ≤ µ(A), this matrix is well

conditioned:

1− µ(A) ≤ σmin(A∗I AI) ≤ σmax(A∗I AI) ≤ 1 + µ(A). (3.3.3)

This property holds simultaneously for every two-column submatrix AI. So, the

property that the columns of A are well-spread implies that the column subma-

trices of A are well-conditioned.

We can generalize both properties by taking the set I to be larger than 2.

Indeed, we can demand that all k-column submatrices of A are well-conditioned:

For every I ⊂ {1, . . . , n} of size k, we have

1− kµ(A) ≤ σmin(A∗I AI) ≤ σmax(A∗I AI) ≤ 1 + kµ(A), ∀ I of size ≤ k.
(3.3.4)

This controls the Kruskal rank: if 1−kµ(A) > 0, then krank(A) ≥ k. This implies

that an incoherent matrix with small µ tends to have large Kruskal rank. Hence

according to Theorem 2.6, any sufficiently sparse xo is the sparsest solution to

the observation equation Ax = y.

In (3.3.4), we saw that the coherence µ(A) controls the conditioning of the

column submatrices AI – if µ(A) is small, every submatrix spanned by just a

few columns of A is well-conditioned:

1− δ ≤ σmin(A∗I AI) ≤ σmax(A∗I AI) ≤ 1 + δ, (3.3.5)

with δ small. This turned out to be critical in our proof of Theorem 3.3. In

fact, we will see that for certain well-structured matrices A, including random

matrices, the bounds in (3.3.5) hold with δ far smaller than would be predicted

by (3.3.4) using only the coherence.4 They also hold for far larger k = |I| than

might have been predicted from coherence alone. We will see that this leads

(via different and slightly more complicated arguments), to substantially tighter

guarantees for the performance of both `0 and `1 minimization.

The bounds in (3.3.5) hold uniformly over sets I of size k if and only if

∀ x k-sparse, (1− δ) ‖x‖22 ≤ ‖Ax‖
2
2 ≤ (1 + δ) ‖x‖22 . (3.3.6)

4 For example, if AI is a large m× k (k < m) matrix with entries independent N (0, 1/m),

σmin(A∗I AI) ≈ (
√

1−
√
k/m)2 ≥ 1− 2

√
k/m, and

σmax(A∗I AI) ≈ (
√

1 +
√
k/m)2 ≤ 1 + 3

√
k/m. You can check these values numerically; the

aforementioned bounds can be made into rigorous statements using tools for Gaussian
processes.
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That is to say, the mapping x 7→ Ax approximately preserves the norm of sparse

vectors x. Informally, we call such a mapping a restricted isometry: it is (nearly)

an isometry5, if we restrict our attention to the sparse vectors x.

Definition 3.8 (Restricted Isometry Property [CT05]). The matrix A satisfies

the restricted isometry property (RIP) of order k, with constant δ ∈ [0, 1), if

∀ x k-sparse, (1− δ) ‖x‖22 ≤ ‖Ax‖
2
2 ≤ (1 + δ) ‖x‖22 . (3.3.7)

The order-k restricted isometry constant δk(A) is the smallest number δ such

that the above inequality holds.

Whenever δk(A) < 1, every k-column submatrix has full column rank k. This

implies that `0 recovery succeeds under RIP:

Theorem 3.9 (`0 Recovery under RIP [CRT06a, Can08]). Suppose that y =

Axo, with k = ‖xo‖0. If δ2k(A) < 1, then xo is the unique optimal solution to

min ‖x‖0
subject to Ax = y.

(3.3.8)

Proof Suppose on the contrary that there exists x′ 6= xo with ‖x′‖0 ≤ k.

Then xo − x′ ∈ null(A), and ‖xo − x′‖0 ≤ 2k. This implies that δ2k(A) ≥ 1,

contradicting our assumption.

So, provided the RIP constant of order 2k is bounded away from one, `0

minimization successfully recovers xo. If we tighten our demand to δ2k(A) <√
2− 1, `1 minimization succeeds as well:

Theorem 3.10 (`1 Recovery under RIP). Suppose that y = Axo, with k =

‖xo‖0. If δ2k(A) <
√

2− 1, then xo is the unique optimal solution to

min ‖x‖1
subject to Ax = y.

(3.3.9)

The significance of this result comes from the fact that for “generic” matrices,

the condition δ2k(A) <
√

2− 1 holds even when k is nearly proportional to m:

Theorem 3.11 (RIP of Gaussian Matrices [CRT06a, BDDW08]). There exists

a numerical constant C > 0 such that if A ∈ Rm×n is a random matrix with

entries independent N
(
0, 1

m

)
random variables, with high probability, δk(A) < δ,

provided

m ≥ Ck log(n/k)/δ2. (3.3.10)

This implies that recovery of k-sparse x is possible from about m ≥ Ck log(n/k)

random measurements. This is a substantial improvement over our previous

estimate of m ∼ k2. In particular, it allows (k,m, n) to scale proportionally

[Don06b, CT05]. This improvement has stimulated a lot of work on efficient

sensing and sampling schemes in various application domains.

5 An isometry is a mapping that preserves the norm of every vector.
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3.3.2 Restricted Strong Convexity Condition

We have stated the above two theorems without proof. We will prove Theorem

3.10 in several stages. In this section, we introduce two intermediate properties

of the sensing matrix A, which turn out to be very useful in their own right. In

the next section, we prove Theorem 3.10 by proving that when δ2k(A) <
√

2−1,

these intermediate properties are satisfied, and hence `1 minimization succeeds.

As above, suppose that y = Axo, for some ‖xo‖0 ≤ k. We hope that under

certain conditions, xo is the unique optimal solution to the `1 minimization

program

min ‖x‖1
subject to Ax = y.

(3.3.11)

Let x′ be any feasible point, i.e., any point satisfyingAx′ = y. BecauseAxo = y

as well, the difference h = x′ − xo belongs to the null space null(A).

Let I denote the support of xo, and Ic its complement. Then

‖x′‖1 = ‖xo + h‖1 (3.3.12)

≥ ‖xo‖1 − ‖hI‖1 + ‖hIc‖1 . (3.3.13)

Hence, if ‖hIc‖1 > ‖hI‖1, x′ has strictly larger objective function than xo and so

x′ is not optimal. Conversely, if the nulls pace of A contains no vectors h 6= 0 for

which ‖hI‖1 ≥ ‖hIc‖1, then xo must be the unique optimal solution to (3.3.11).

It is helpful to ask what if this were not true? What happens if the optimal

solution to the above program, say x̂`1 , was not xo. Under what conditions could

their difference h
.
= x̂`1 − xo be nonzero? Recall that I is the support of xo and

Ic its complement.

Since x̂`1 is the optimal solution to the above program, we must have

0 ≥ ‖x̂`1‖1 − ‖xo‖1
= ‖xo + h‖1 − ‖xo‖1
≥ ‖xo‖1 − ‖hI‖1 + ‖hIc‖1 − ‖xo‖1
= −‖hI‖1 + ‖hIc‖1. (3.3.14)

That is, we have

‖hIc‖1 ≤ ‖hI‖1. (3.3.15)

Meanwhile, since y = Axo = Ax̂`1 , we also have

Ah = 0. (3.3.16)

In other words, in order for the `1 program to admit a better solution x̂`1 than

the original sparse solution xo, we must have the above two conditions (3.3.15)

and (3.3.16) hold simultaneously. Therefore, in order to show that xo is the

unique optimal solution for the `1 program, we only have to show that these

conditions cannot all be true for any such h.
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null(A) = span
([−1

1
1

])

e3 + null(A)

B1

Figure 3.8 Visualizing the Nullspace Property in three dimensions. Left: the
sensing matrix

[
1 1 0
0 1 −1

]
has nullspace spanned by [−1, 1, 1]∗. This matrix satisfies

the nullspace property of order k = 1. Right: Geometrically this implies that any
translate ±ej + null(A) to a vertex of the `1 ball B1 intersects B1 only at the vertex
±ej .

Null Space Property.
The above discussion suggests that the null space of A is very important for

understanding when we can recover xo. Previous `0 recovery results all come by

showing that the null space does not contain sparse vectors. The condition that

for every nonzero h ∈ null(A), ‖hI‖1 < ‖hIc‖1, can be interpreted as saying that

the null space does not contain any vector that is concentrated on the (small) set

of coordinates I. This is sufficient for `1 minimization to recover xo with support

I. If we want to guarantee recovery of any k-sparse xo, we can ask that for every

set I of k coordinates and every nonzero null vector h, ‖hI‖1 < ‖hIc‖1:

Definition 3.12 (Null Space Property). The matrix A satisfies the null space

property of order k if for every h ∈ null(A) \ {0} and every I of size at most k,

‖hI‖1 < ‖hIc‖1 . (3.3.17)

This can be interpreted as saying that the null space does not contain any

near-sparse vectors, where sparsity is measured via the `1 norm. If A satisfies

the null space property, then `1 succeeds in recovering any k-sparse xo:

Lemma 3.13. Suppose that A satisfies the null space property of order k. Then

for any y = Axo, with ‖xo‖0 ≤ k, xo is the unique optimal solution to the `1

problem

min ‖x‖1
subject to Ax = y.

(3.3.18)

Proof Let y = Axo, with ‖xo‖0 ≤ k, and let I = supp(xo). Let x̂`1 be the

optimal solution, so h = x̂`1−xo ∈ null(A). If h 6= 0, then ‖x̂`1‖1 = ‖xo + h‖1 ≥
‖xo‖1 − ‖hI‖1 + ‖hIc‖1 > ‖xo‖1, contradicting the optimality of x̂`1 .
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In the viewpoint of the coefficient space picture for `1 minimization introduced

in Section 3.2.2, the nullspace condition asserts that when null(A) is translated to

any k-sparse point xo on the boundary of the `1 ball B1, the translate xo+null(A)

does not intersect the interior of B1. Figure 3.8 visualizes this condition for the

special case in which n = 3, and null(A) is one-dimensional. In the literature,

the null space property has been used to establish various sufficient conditions

for the success of `1 minimization for sparse recovery. In fact, Theorem 3.10 can

be proved by showing that the RIP condition on the matrix A implies the null

space property.

Restricted Strong Convexity Condition.
Alternatively and equivalently, we can study the success of `1 minimization by

considering possible perturbations h that could reduce the value of the objective

function. According to condition (3.3.15), they must satisfy

‖hIc‖1 ≤ ‖hI‖1 . (3.3.19)

To ensure the original k-sparse xo is the unique optimal solution, we can require

that for any nonzero perturbation h satisfying (3.3.19), Ah 6= 0:

‖Ah‖22 > 0. (3.3.20)

Since the set S = ∪I{h : ‖hIc‖1 ≤ ‖hI‖1, ‖h‖22 = 1} is compact, ‖Ah‖22 must

attain its minimum µ > 0. The above condition is therefore equivalent to:

‖Ah‖22 ≥ µ‖h‖22, ∀h ‖hIc‖1 ≤ ‖hI‖1 (3.3.21)

for some µ > 0.

If we consider the quadratic loss, L(x) = 1
2 ‖y −Ax‖

2
2, the second derivative

in the h direction is h∗∇2L(x)h = ‖Ah‖22 > 0. The above condition can be

interpreted as saying that the function L(x) is strongly convex when restricted

to directions h satisfying (3.3.19) – see Figure 3.9 for a visualization of this

interpretation. We term this (uniform) restricted strong convexity:

Definition 3.14 (Restricted Strong Convexity). The matrix A satisfies the re-

stricted strong convexity (RSC) condition of order k, with parameters µ > 0,

α ≥ 1, if for every I of size at most k and for all nonzero h satisfying ‖hIc‖1 ≤
α‖hI‖1,

‖Ah‖22 ≥ µ‖h‖22. (3.3.22)

In this definition, we have generalized the condition (3.3.19) to consider instead

‖hIc‖1 ≤ α ‖hI‖1. This generalization will be used in an essential way later when

we study sparse recovery from noisy measurements. For now, we note that for

noiseless measurements y = Axo, restricted strong convexity indeed implies that

`1 minimization succeeds:
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e1 + null(A)

Descent directions h: ‖hIc‖1 ≤ ‖hI‖1.

Value of the loss L(x) = 1
2
‖y −Ax‖22

Figure 3.9 Restricted Strong Convexity implies that the loss L(x) exhibits
positive curvature along the potential descent directions h satisfying
‖hIc‖1 ≤ ‖hI‖1. Here, xo = e1. Red: the feasible set of x that satisfy Ax = y. Under
RSC, the loss is strictly positive at any point x whose `1 norm is smaller than ‖xo‖1.

Lemma 3.15. Suppose that A satisfies the restricted strong convexity condition

of order k with constant α ≥ 1, for some µ > 0. Then for any y = Axo, with

‖xo‖0 ≤ k, xo is the unique optimal solution to the `1 problem

min ‖x‖1
subject to Ax = y.

(3.3.23)

Proof We leave it as an exercise for the reader to prove this result by verifying

that Restricted Strong Convexity implies the nullspace property.

3.3.3 Success of `1 Minimization under RIP

In this section we prove Theorem 3.10. Earlier, in Section 3.2.2, we followed a

fairly simple path to prove Theorem 3.3: write down an optimality condition,

and then construct a dual certificate using a bit of cleverness. This approach can

be used to prove a variant of Theorem 3.10 [CT05]. However, the argument is

more delicate than before.

So here, to prove Theorem 3.10, we will take a slightly different path, which

utilizes properties of “good” sensing matrices A that we have introduced in the

previous section. As we have discussed there, to prove that RIP implies correct

recovery, it suffices to show that RIP implies the restricted strong convexity
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(RSC) condition. Our proof here follows close to that of [CRT06b, Can08].6 In

doing so, we will use the following property of the restricted isometry constants:

Lemma 3.16. If x, z are vectors with disjoint support, and |supp(x)|+|supp(z)| ≤
k, then

|〈Ax,Az〉| ≤ δk(A) ‖x‖2 ‖z‖2 . (3.3.24)

Proof Because the expression is invariant to scaling x and z, we lose no gener-

ality in assuming that ‖x‖2 = ‖z‖2 = 1. Notice that

‖p+ q‖22 = ‖p‖22 + ‖q‖22 + 2 〈p, q〉 , (3.3.25)

‖p− q‖22 = ‖p‖22 + ‖q‖22 − 2 〈p, q〉 . (3.3.26)

Hence,

|〈Ax,Az〉| ≤ 1

4

∣∣∣‖Ax+Az‖22 − ‖Ax−Az‖
2
2

∣∣∣ (3.3.27)

≤ 1

4

∣∣∣(1 + δk) ‖x+ z‖22 − (1− δk) ‖x− z‖22
∣∣∣ . (3.3.28)

Because x and z have disjoint support, ‖x+ z‖22 = ‖x− z‖22 = 2, and the result

follows.

We are now ready to prove the following theorem.

Theorem 3.17 (RIP Implies RSC). If a matrix A satisfies RIP with δ2k(A) <
1

1+α
√

2
, then A satisfies the RSC condition of order k with constant α.

Proof Let I be any set of size k and let h ∈ Rn any vector that satisfies the

restriction

‖hIc‖1 ≤ α · ‖hI‖1. (3.3.29)

Form disjoint subsets J1, J2, J3, · · · ⊆ Ic as follows:

J1 indexes the k largest (in magnitude) elements of hIc ,

J2 indexes the k largest (in magnitude) elements of h(I∪J1)c ,

J3 indexes the k largest (in magnitude) elements of h(I∪J1∪J2)c ,
...

Notice that because every entry of Ji is at least as large as every entry of Ji+1,

the average magnitude of an entry in Ji is at least as large as the largest entry

in Ji+1:

∀ i ≥ 1,
∥∥hJi+1

∥∥
∞ ≤

‖hJi‖1
k

. (3.3.30)

We also note that for any vector z with ‖z‖0 ≤ k, ‖z‖1 ≤
√
k ‖z‖2 and ‖z‖2 ≤√

k ‖z‖∞.

6 We have modified the original proof that shows RIP implies the null space property to

RSC.
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Using the RIP with the 2k-sparse vector hI∪J1 and the fact

AhI +AhJ1 = Ah−AhJ2 −AhJ3 − · · · , (3.3.31)

we have that

(1− δ2k)‖hI∪J1‖22 ≤ ‖AhI∪J1‖22
= 〈AhI +AhJ1 ,−AhJ2 −AhJ3 − · · ·〉+ 〈AhI +AhJ1 ,Ah〉

≤
∞∑

j=2

( ∣∣〈AhI,AhJj

〉∣∣+
∣∣〈AhJ1 ,AhJj

〉∣∣ )+ ‖AhI∪J1‖2‖Ah‖2

≤ δ2k(‖hI‖2 + ‖hJ1‖2)

∞∑

j=2

∥∥hJj

∥∥
2

+ (1 + δ2k)1/2‖hI∪J1‖2‖Ah‖2

≤ δ2k
√

2 ‖hI∪J1‖2
∞∑

j=2

∥∥hJj

∥∥
2

+ (1 + δ2k)1/2‖hI∪J1‖2‖Ah‖2

≤ δ2k
√

2 ‖hI∪J1‖2
∞∑

j=2

∥∥hJj

∥∥
∞
√
k + (1 + δ2k)1/2‖hI∪J1‖2‖Ah‖2

≤ δ2k
√

2 ‖hI∪J1‖2
∞∑

j=1

∥∥hJj

∥∥
1
/
√
k + (1 + δ2k)1/2‖hI∪J1‖2‖Ah‖2

= δ2k
√

2 ‖hI∪J1‖2 ‖hIc‖1 /
√
k + (1 + δ2k)1/2‖hI∪J1‖2‖Ah‖2. (3.3.32)

After dividing through by ‖hI∪J1‖2, we have

(1− δ2k)‖hI∪J1‖2 ≤ δ2k
√

2 ‖hIc‖1 /
√
k + (1 + δ2k)1/2 ‖Ah‖2 . (3.3.33)

Since h satisfies the restricted cone condition, we have

‖hIc‖1 ≤ α‖hI‖1 ≤ α
√
k‖hI‖2 ≤ α

√
k‖hI∪J1‖2. (3.3.34)

Substituting this into the previous inequality, we obtain:

(1− δ2k)‖hI∪J1‖2 ≤ αδ2k
√

2 ‖hI∪J1‖2 + (1 + δ2k)1/2 ‖Ah‖2 . (3.3.35)

This gives

‖Ah‖2 ≥
1− δ2k(1 + α

√
2)

(1 + δ2k)1/2
‖hI∪J1‖2 . (3.3.36)

Since the i-th element of h(I∪J1)c is no larger than the mean of the first i

elements of hIc , we have

|h(I∪J1)c |(i) ≤ ‖hIc‖1/i. (3.3.37)
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Combining with the restriction (3.3.29), we have

‖h(I∪J1)c‖22 ≤ ‖hIc‖21
∞∑

i=k+1

1

i2
(3.3.38)

≤ ‖hIc‖21
k

≤ α2‖hI‖21
k

(3.3.39)

≤ α2‖hI‖22 ≤ α2‖hI∪J1‖22. (3.3.40)

So we have

‖h‖22 ≤ (1 + α2)‖hI∪J1‖22. (3.3.41)

Combining this with the previous condition on ‖Ah‖2, we get

‖Ah‖2 ≥
1− δ2k(1 + α

√
2)

(1 + δ2k)1/2
√

1 + α2
‖h‖2 . (3.3.42)

So as long as δ2k <
1

1+α
√

2
, A satisfies the RSC condition of order k with the

constant

µ =

(
1− δ2k(1 + α

√
2)
)2

(1 + δ2k)(1 + α2)
, (3.3.43)

as claimed.

Theorem 3.10 then becomes a corollary to this theorem for the case α = 1 since

the restriction set we need to consider is ‖hIc‖1 ≤ ‖hI‖1 for the `1 minimization

in Theorem 3.10 and that gives the RIP constant δ2k = 1
1+
√

2
=
√

2− 1.

3.4 Matrices with Restricted Isometry Property

The RIP gives a useful tool for analyzing the performance of sparse recovery with

random matrices A. Below, we will prove the probabilistic result, Theorem 3.11,

which asserts that Gaussian random matrix A has RIP when m > Ck log(n/k).

We will make heavy use of the following simple inequality:

Lemma 3.18. Let g = [g1, . . . , gm]∗ ∈ Rm be an m-dimensional random vector

whose entries are iid N (0, 1/m). Then for any t ∈ [0, 1],

P
[∣∣∣‖g‖22 − 1

∣∣∣ > t
]
≤ 2 exp

(
− t

2m

8

)
. (3.4.1)

This result can be obtained via the Cramer-Chernoff exponential moment

method (in a similar fashion to the Hoeffdings inequality). See Appendix E for

more information.
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RD A

Rm (m� D)

vi

vj

Avj
Avi

Figure 3.10 The Johnson-Lindenstrauss Lemma. Given a fixed collection of
points v1, . . . ,vn in a high-dimensional space RD, with high probability a random
mapping into m ∼ logn dimensions approximately preserves the distances between all
pairs of points.

3.4.1 The Johnson-Lindenstrauss Lemma

Before proving Theorem 3.11, we will first state and prove a simpler result, as an

illustration of the basic approach we will take to this result, and is very useful

in its own right:

Theorem 3.19 (Johnson-Lindenstrauss Lemma). Let v1, . . . ,vn ∈ RD for some

D. Let A ∈ Rm×D be a random matrix whose entries are independent N (0, 1/m)

random variables. Then for any ε ∈ (0, 1), with probability at least 1− 1/n2, the

following holds:

∀ i 6= j, (1− ε) ‖vi − vj‖22 ≤ ‖Avi −Avj‖
2
2 ≤ (1 + ε) ‖vi − vj‖22 , (3.4.2)

provided m > 32 logn
ε2 .

This result can be thought of as follows: we have a large database v1, . . . ,vn
of very high-dimensional vectors. We would like to embed them in a lower-

dimensional space (m � D) such that the pairwise distances between the vec-

tors are preserved. This is useful, for example, if we think of these as points in

a database, and we imagine that we would like to be able to query the database

to find points that are close to a given input q in norm – a good embedding will

reduce both the storage and computation requirements for achieving this. If you

think carefully, it should be clear that we can achieve a perfect (norm-preserving)

embedding into m = n dimensional space – simply project each point onto the

span of the n points vi.

The surprise in the Johnson-Lindenstrauss lemma is that actually, if we al-

low some slack ε, the dimension can be much lower – only logarithmic in the

number of points, and completely independent of the ambient data dimension

D. It should not be too surprising that approaches (loosely) inspired by this
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result have significant applications in search problems. Interestingly, with some

additional clever ideas, it is possible to arrive at algorithms that can find approx-

imate nearest neighbors in a database of points in a search time that depends

sublinearly on the size of the dataset.

Proof Set gij = A
vi−vj
‖vi−vj‖2

. Notice that for any vi 6= vj , gij is distributed as

an iid Gaussian vector, with entries N (0, 1/m). Applying Lemma 3.18, for each

i 6= j, we have

P
[∣∣∣
∥∥gij

∥∥2

2
− 1
∣∣∣ > t

]
≤ 2 exp

(
−t2m/8

)
. (3.4.3)

Summing the probability of failure over all i 6= j, and then plugging in t = ε and

m ≥ 32 log n/ε2, we get

P
[
∃ (i, j) :

∣∣∣
∥∥gij

∥∥2

2
− 1
∣∣∣ > t

]
≤ n(n− 1)

2
× 2 exp

(
−t2m/8

)

≤ n−2. (3.4.4)

Whenever
∣∣∣
∥∥gij

∥∥2

2
− 1
∣∣∣ ≤ ε, we have

(1− ε) ‖vi − vj‖22 ≤ ‖Avi −Avj‖
2
2 ≤ (1 + ε) ‖vi − vj‖22 , (3.4.5)

as desired.

Thus, the fairly powerful embedding result (Theorem 3.19) follows from a fairly

straightforward pattern:

• Discretization: Argue that if A respects the norms of some finite set of

vectors (here {vi − vj | i 6= j}), the desired property holds.

• Tail bound: Develop an upper bound on the probability thatA fails to respect

the norm of a single vector (here, this is Lemma 3.18).

• Union bound: Sum the failure probabilities over all of the finite set. Choose

the embedding dimension m large enough that the total failure probability is

small.

Example 3.20 (p-Stable Distributions [DIIM04]). From the above theorem, we

see that a random Gaussian matrix has the property of preserving `2 distance

between vectors. As it turns out that for p ∈ (0, 2], there exist the so-called p-

stable distributions such that a random matrix drawn from a p-stable distribution

will preserve `p distance between vectors. For instance, the Cauchy distribution

p(x) = 1
π · 1

1+x2 is 1-stable and a random Cauchy matrix preserves `1 distance.

We leave this as an exercise.

Fast Nearest Neighbor Methods.
The property of distance preserving (random) projections are the basis for de-

veloping most efficient codes and schemes for nearest neighbor search. The above

JL Lemma works for a set of points of arbitrary configuration in RD. As it turns

out, in many real applications, such as image search [MYW+10,LM16], the data



3.4 Matrices with Restricted Isometry Property 97

Algorithm 3.1 (Compact Code for Fast Nearest Neighbor)

1: Problem: Generate compact binary code for efficient nearest neighbor

search of high-dimensional data points.

2: Input: x1, . . . ,xn ∈ RD and m = O(log n).

3: Generate a random Gaussian matrix R ∈ Rm×D with entries i.i.d. N (0, 1).

4: for i = 1, . . . , n do

5: Compute Rxi,

6: Set yi = σ(Rxi) where σ(·) is the entry-wise binary thresholding.

7: end for

8: Output: y1, . . . ,yn ∈ {0, 1}m.

points are reasonably spread in space or have certain additional properties. Un-

der such circumstances, approximate nearest neighbor search can be made even

more memory and computation efficient – instead of O(log n) real numbers, one

only needs O(log n) binary bits! We introduce one such property below as an

example since it is related to the property of incoherence studied before.

Definition 3.21 (Weak Separability). We say a set of points X = {x1, . . . ,xn}
in RD is (∆, l)-weakly separable if for any query point q ∈ RD, we have

|{i | ∠(q,xi) ≤ ∆}| = O(nl), (3.4.6)

where typically l ∈ [0, 1) is desired to be a small constant.

Although the above definition is defined in terms of arbitrary q ∈ RD, the

following lemma shows that it is sufficient to check this condition within the

data set X itself.

Lemma 3.22. If for every xj ∈ X ,

|{i | ∠(xj ,xi) ≤ 2∆}| = O(nl), (3.4.7)

then X is (∆, l)-weakly separable.

Proof We leave the proof as an exercise to the reader (see Exercise 3.14).

Notice that weak separability of xi’s is similar to assuming that these data

points (viewed as vectors) are weakly incoherent – majority of the angles between

pairwise points are large.

Example 3.23 (Efficient c-Approximate Nearest Neighbor [MYW+10]). Given

a set of data points X = {x1, . . . ,xn} in RD and a constant c > 1, the c-

Approximate Nearest Neighbor (c-NN) problem is: for any query point q ∈ RD,

find x? such that

‖q − x?‖2 ≤ c · min
x∈X
‖q − x‖2.

As it turns out, for any (∆, l)-weakly separable set X , with the random binary
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code generated by Algorithm 3.1, with probability 1− δ, the c-NN problem can be

solved with the number of binary bits m chosen in the order

m = O(log n) (bits).

For any query point q, we may first compute its binary code with the same

projection as in Algorithm 3.1: yq = σ(Rq) where σ(·) is the binary thresholding

function: σ(x) = 1 for x > 0 and σ(x) = 0 otherwise. Then we find a subset X̃q
of points of size O(nl) which have the shortest Hamming distances to yq in X .

One can show that:

x? = arg min
x∈X̃q

‖q − x‖2

gives the correct solution to the c-NN problem. We leave the proof for the cor-

rectness and efficiency of this simple scheme as an exercise to the reader, see

Exercise 3.15.

3.4.2 RIP of Gaussian Random Matrices

To prove Theorem 3.11, we follow exactly the same pattern as we did for Johnson-

Lindenstrauss. However, we will need to work a little bit harder in the discretiza-

tion stage, since unlike the Johnson-Lindenstrauss Lemma, which was a state-

ment about n (or n(n− 1)/2) vectors, the RIP is a statement about an infinite

family of vectors – all of the sparse vectors.

Discretization.
Let

Σk = {x | ‖x‖0 ≤ k, ‖x‖2 = 1} . (3.4.8)

Notice that δk(A) ≤ δ if and only if

sup
x∈Σk

∣∣∣‖Ax‖22 − 1
∣∣∣ ≤ δ. (3.4.9)

This is equivalent to

sup
x∈Σk

|〈A∗Ax,x〉 − 1| ≤ δ. (3.4.10)

Lemma 3.24 (Discretization). Suppose we have a set N̄ ⊆ Σk with the following

property: for all x ∈ Σk, there exists x̄ ∈ N̄ such that

• |supp (x̄) ∪ supp (x)| ≤ k

• ‖x− x̄‖2 ≤ ε.
set

δN̄ = max
x̄∈N̄

∣∣∣‖Ax̄‖22 − 1
∣∣∣ . (3.4.11)

Then

δk(A) ≤ δN̄ + 2ε

1− 2ε
. (3.4.12)
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Σk

Rn
Net N̄

Figure 3.11 The Set Σk of Unit Norm Sparse Vectors. Left: visualization of the
set Σk =

{
x | ‖x‖0 ≤ k, ‖x‖2 = 1

}
of unit norm sparse vectors. Here, k = 2 and

n = 3. Right: an ε-net N̄ for this set.

So, provided ε is small, not much changes if we restrict our calculation to the

finite set N̄. The proof of this result uses the fact that if x and z are k-sparse

vectors,

〈Ax,Az〉 ≤
√
‖Ax‖22 ‖Az‖

2
2 ≤ (1 + δk(A)) ‖x‖2 ‖z‖2 . (3.4.13)

Proof Take any x ∈ Σk and choose x̄ ∈ N̄ such that ‖x− x̄‖0 ≤ k and

‖x− x̄‖2 ≤ ε. We have
∣∣∣‖Ax‖22 − 1

∣∣∣ = |〈Ax,Ax〉 − 1| (3.4.14)

= |〈Ax,Ax〉 − 〈Ax̄,Ax̄〉+ 〈Ax̄,Ax̄〉 − 1| (3.4.15)

≤ |〈Ax,Ax〉 − 〈Ax̄,Ax̄〉|+ δN̄ (3.4.16)

= |〈Ax,A(x− x̄)〉 − 〈Ax̄,A(x̄− x)〉|+ δN̄ (3.4.17)

≤ 2 (1 + δk(A)) ε+ δN̄. (3.4.18)

Since this inequality holds for all x ∈ Σk, we obtain that

δk(A) ≤ 2 (1 + δk(A)) ε+ δN̄, (3.4.19)

from which the target inequality follows.

The next task is to construct a set N̄ which has the desired good properties.

We call a set N an ε-net for a given set S if

∀x ∈ S, ∃ x̄ ∈ N such that ‖x− x̄‖2 ≤ ε. (3.4.20)

Let

B(x, r) =
{
z ∈ Rd | ‖z − x‖2 ≤ r

}
(3.4.21)

denote the `2 ball of center x and radius r, in Rd. The following clever argument
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d = 1

vol(2S) = 2vol(S)

d = 2

vol(2S) = 4vol(S)

d = 3

vol(2S) = 8vol(S)

S

2S

Figure 3.12 Volumes Scale as αd.

shows that there exists an ε-net for the `2 ball B(0, 1) of size at most (3/ε)d. It

uses the fact that if S ⊂ Rd is a set, and

αS = {αs | s ∈ S} (3.4.22)

denotes its α dilation, then

vol(αS) ≤ αdvol(S). (3.4.23)

See Figure 3.12 for a visualization of this.

Lemma 3.25 (ε-Nets for the Unit Ball). There exists an ε-net for the unit ball

B(0, 1) ⊂ Rd of size at most (3/ε)d.

Proof Call a set ε-separated if every pair of distinct points in M has distance

at least ε. Let N ⊂ B(0, 1) be a maximal ε-separated set. Here, maximal means

that it is not contained in any larger ε-separated set.

We claim that N is an ε-net for B(0, 1). Indeed, if it is not an ε-net, then there

exists some point x ∈ B(0, 1) with distance greater than ε to each element of N.

Adding x to N, we obtain a larger ε-separated set, contradicting maximality of

N.

Since N is ε-separated, the balls B(x, ε/2) and B(x′, ε/2) are disjoint, for any

pair of distinct elements x 6= x′ ∈ N. Moreover, the union of these balls is

contained in B(0, 1 + ε/2). Thus,

|N| vol(B(0, ε/2)) ≤ vol(B(0, 1 + ε/2)). (3.4.24)
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≥ ε

1

1 + ε/2

ε/2

Figure 3.13 Volume Calculation for an ε-Net. An ε-separated set. The interiors of
ε/2 balls around the points do not intersect. The union of the ε/2 balls is contained
in an (1 + ε/2)-ball.

Hence,

|N| ≤ vol(B(0, 1 + ε/2))

vol(B(0, ε/2))
(3.4.25)

=

(
1 + ε/2

ε/2

)d
= (1 + 2/ε)d (3.4.26)

≤ (3/ε)d (3.4.27)

as desired.

To construct our target set N̄, we simply consider each support pattern I of

size |I| = k individually. There are
(
n
k

)
such patterns. For each pattern, we use

the previous lemma to build an ε-net N for the unit ball of vectors of `2 norm at

most one, whose support is contained in I. Each of these nets has size at most

(3/ε)k. So, finally, we obtain

Lemma 3.26. There exists an ε-net N̄ for Σk satisfying the two properties required

in Lemma 3.24, with

∣∣N̄
∣∣ ≤ exp

(
k log(3/ε) + k log(n/k) + k

)
. (3.4.28)

Proof The construction follows the above discussion. Using the Stirling’s for-

mula,7 we can estimate

∣∣N̄
∣∣ ≤ (3/ε)k

(
n

k

)
(3.4.29)

≤ (3/ε)k
(ne
k

)k
(3.4.30)

7 Stirling’s formula gives the bounds for factorials:
√

2πk
(
k
e

)k ≤ k! ≤ e
√
k
(
k
e

)k
.
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as desired.

Union Bound.
Proof For each x ∈ N̄,Ax is a random vector with entries independentN (0, 1/m).

We have

P
[∣∣∣‖Ax‖22 − 1

∣∣∣ > t
]
≤ 2 exp(−mt2/8). (3.4.31)

Hence, summing over all elements of N̄, we have

P [δN̄ > t] ≤ 2
∣∣N̄
∣∣ exp

(
−mt2/8

)
(3.4.32)

≤ 2 exp
(
− mt2

8
+ k log

(n
k

)
+ k(log

(3

ε

)
+ 1)

)
. (3.4.33)

On the complement of the event δN̄ > t, we have

δk(A) <
2ε+ t

1− 2ε
. (3.4.34)

Setting ε = δ/8, t = δ/4, and ensuring that m ≥ Ck log(n/k)/δ2 for sufficiently

large numerical constant C, we obtain the result.

In the above derivation, especially from equation (3.4.33), we see that a slight

more tight bound for m is of the form

m ≥ 128k log(n/k)/δ2 + (log(24/δ) + 1)k/δ2 .
= C1k log(n/k) + C2k.

However, for a small δ, the constants C1 and C2 can be rather large. Although

qualitatively this bound is in the right form, it does not reflect exactly when `1

minimization works. In the work of [RV08], a much tighter bound for m is given

as:

m ≥ 8k log(n/k) + 12k.

This is one of the best known bounds given through the RIP properties of Gaus-

sian matrices. Nevertheless, as we will see later, using more advanced tools, ul-

timately we will be able to derive for Gaussian matrices a precise condition that

characterizes the “phase-transition” behavior for the success of `1 minimization

that we can observe through simulations.

3.4.3 RIP of Non-Gaussian Matrices

In many applications of interest, the matrixA cannot be assumed to be iid Gaus-

sian. Perhaps surprisingly, often the theory developed for the Gaussian model

is predictive of the behavior of `1 minimization in other models. However, it is

still desirable to have a precise understanding (and corresponding mathematical

guarantees) to describe what happens when the model is not so homogeneous.
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Random Submatrices of a Unitary Matrix.
One model that occurs quite often posits that we generate A by randomly sam-

pling some rows of an orthognonal matrix (in the real case) or a unitary matrix

(in the complex case). Actually, we have already seen such a model in our brief

discussion of MRI applications. There, we generated A as a row submatrix of

FΨ, where F was the DFT matrix, and Ψ ∈ Cn×n was a matrix whose columns

formed an orthonormal wavelet basis for Cn×n. Since both F and Ψ were unitary,

their product is unitary. In the work [CRT06a], it has been shown that for a given

k-sparse vector x ∈ Rn, if A randomly takes m = O
(
k log(n)

)
rows of a unitary

matrix, then with high probability the `1 minimization min ‖x‖1 s.t.y = Ax re-

covers the sparse vector. However, this result does not imply that with the same

A, the `1 minimization succeeds for all k-sparse vectors.8

The following theorem, according to [RV08], shows that if we sample a random

row submatrix from a unitary matrix, it also has RIP with high probability,

provided enough rows are chosen. We know that for a matrix satisfying the RIP

condition, it is guaranteed that the associated `1 minimization succeeds for all

k-sparse vectors.

Theorem 3.27. Let U ∈ Cn×n be unitary (U∗U = I) and Ω is a random subset

of m elements from {1, . . . , n}. Suppose that

‖U‖∞ ≤ ζ/
√
n. (3.4.35)

If

m ≥ Cζ2

δ2
k log4(n), (3.4.36)

then with high probability, A =
√

n
mUΩ,• satisfies the RIP of order k, with

constant δk(A) ≤ δ.

For simplicity, here we do not give a proof to this theorem and interested

readers may refer to the work of [RV08].

In our context, there are two very salient points about this result. The first

is the dependence on ‖U‖∞. It is worth noting that for any unitary matrix U ,

‖U‖∞ ≥ 1/
√
n. So, the parameter ζ measures how much we lose with respect

to this optimal bound. The bound is clearly achievable in some cases – the DFT

matrix F has ‖F ‖∞ = 1/
√
n, which follows directly from its definition (A.7.13)

in Appendix A. If we are willing to interpret the result a bit, the idea that U

should have uniformly bounded elements leads to a very nice intuition about

sampling. Namely, if we wish to reconstruct an element that is sparse in some

basis Ψ, and we can take whatever linear samples 〈f i,y〉 we want, we should

8 To see the difference, one can recall in the Johnson-Lindenstrauss Lemma, the task is not
just to show that given any pair of points, with high probability there exists a projection
that approximately preserves the distance. We need to use the union bound to show that

with high probability there exists a projection that approximately preserves the distance

between all pairs simultaneously.
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take samples that are as incoherent with the basis of sparsity as possible, in the

sense that
〈
f i,ψj

〉
(3.4.37)

is uniformly small. This is in contrast to our usual intuition from signal process-

ing, which might suggest that some sort of matched filter would be the best here.

The challenge is that there are actually an exponentially large number of poten-

tial support patterns for x, and hence an exponentially large number of signals

to match. If, instead, we let each (incoherent) measurement collect information

across all of the basis elements, we can then, using efficient computation, decide

which elements of Ψ are active.

The second salient point is that the number of measurements, k log4(n) is

visually similar to the k log(n/k) that we saw for the Gaussian ensemble. It is

currently conjectured that here k log n measurements suffice. It is currently an

open problem to show this; it is considered hard, and known to connect to a

number of interesting questions in probability and functional analysis. In fact, in

[RV08] a more precise expression is given as:m = O
(
k log(n) log2(k) log(k log n)

)
.

This bound, against the conjectured optimal bound, is within a log log(n) factor

for n and within a log3(k) factor for k.

Random Convolutions.
Another model that occurs quite frequently in engineering practice involves sam-

pling the convolution of the input signal x with some filter r. Formally, we can

imagine that

y = PΩ[r ∗ x] = Ax, (3.4.38)

where x ∈ Cn, r ∈ Cn, and Ω ⊆ [n] is our collection of sampling locations. Here,

∗ denotes circular convolution:

(r ∗ x)i =

n−1∑

j=0

xjri+n−jmodn. (3.4.39)

This leads to a highly structured linear operator on x since we can represent the

convolution in a circulant form as

r ∗ x =




r0 rn−1 . . . r2 r1

r1 r0 rn−1 r2

... r1 r0
. . .

...

rn−2
. . .

. . . rn−1

rn−1 rn−2 . . . r1 r0



x

.
= Rx. (3.4.40)

Such a matrix R is called a circulant matrix. One may see Appendix A for more

nice properties of this type of matrices. In particular, any circulant matrix can

be diagonalized by the discrete Fourier transform:R = FDF ∗ for some diagonal

matrix D (see Theorem A.32 of Appendix A). Here, we can view the sampling

matrix A as taking a subset of rows of the circulant matrix R, that is A = RΩ,•.
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The filter r can be rather general as well. For instance, it could as simple as

a random Rademacher vector, i.e., a random vector with independent entries

distributed according to P(ri = ±1) = 0.5, or it could be a random vector with

independent zero-mean, subgaussian random variables of variance one. The exact

randomness of r is not critical.

For this model, the work of [KMR14] has shown that essentially the following

statement is true:

Theorem 3.28. Let Ω ⊆ {1, . . . , n} be any fixed subset of size |Ω| = m. Then if

m ≥ Ck log2(k) log2(n)

δ2
, (3.4.41)

then with high probability, A has RIP of order k with δk(A) ≤ δ.

Notice that the above statement is rather strong in the following sense: Firstly,

it states that even for a highly structured sampling matrix (a circulant matrix

versus a random Gaussian matrix studied in previous section), we only lose a

small factor of log2(k) log(n) in the required number of samples. Secondly, it

claims that any subset of rows of R has the RIP property, not just a random

subset with high probability. Thirdly, the RIP property ensures recoverability of

any k-sparse vectors x uniformly not just for a fixed k-sparse vector. It has been

shown in [Rau09] that, if one relaxes the uniform recoverability requirement,

considering only a fixed k-sparse vector, it can be recovered via `1-minimization

from a partial random circulant matrix with m ≥ Ck log2(n) measurements.

This bound is slightly better than the one given in the theorem, but it is not

uniform for all k-sparse vectors.

3.5 Noisy Observations or Approximate Sparsity

Thus far, we have been very idealistic in our model. We have assumed that the

target xo is perfectly sparse, and that there is no noise in the measurements,

so y = Axo exactly. These assumptions are clearly violated in many practical

applications. In practice, the observation y is usually perturbed by some amount

of noise z, which we assume to be small:

y = Axo + z, ‖z‖2 ≤ ε. (3.5.1)

In other practical scenarios, the ground truth signal xo may not be perfectly

sparse and may be only approximately so.

This motivates two natural questions. First, on the practical side, is it possible

to modify our approaches to be stable under noise or for imperfect sparse signals?

Second, what should we expect of their performance? Do the conditions and

guarantees we introduced in previous sections remain meaningful?

To clearly state our assumptions and goals, we can consider the following three

scenarios (or some combination of them):
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• Deterministic (worst case) noise: z is bounded: ‖z‖2 ≤ ε, and ε is known.

• Stochastic noise: entries of z ∼iid N (0, σ
2

m ). Notice that under this random

model, a typical noise vector z is of norm ‖z‖2 ≈ σ.9 Gaussian noise is a

very natural assumption; the results obtained here also extend to other noise

models.

• Inexact sparsity: xo is not perfectly sparse. Technically speaking, this is

not noise, but rather a violation of our sparse modeling assumption. In this

scenario, it may be meaningful to assume that xo is close to a k-sparse vector.

We can formalize this by letting [xo]k denote a best k-term approximation to

xo:

[xo]k ∈ arg min
‖z‖0≤k

‖xo − z‖22 . (3.5.2)

This just keeps the k largest elements of xo. xo is said to be “approximately

sparse” if ‖xo − [xo]k‖ is small.

In all of these scenarios, we might hope to still “recover” a sparse estimate x̂ of

xo in some sense. There are (perhaps) three natural senses to consider:

• Estimation: Is ‖x̂− xo‖2 small?

• Prediction: Is Ax̂ ≈ Axo?
• Support recovery: Is supp(x̂) = supp(xo)?

For engineering practice, we often care about either estimating the signal xo (for

sensing problems) or recovering its support supp(xo) (for recognition problems).

Nevertheless, statisticians sometimes also care about the prediction error A(x̂−
xo).

In the following subsections, we discuss results on stable estimation under (i)

deterministic noise, (ii) stochastic noise and (iii) deterministic noise and inexact

sparsity. Results on support recovery are discussed briefly in Section 3.6 and in

the Notes section of this chapter.

3.5.1 Stable Recovery of Sparse Signals

In the ideal sensing model, the observation equation y = Axo holds exactly for

a sparse signal xo. In this subsection, we consider a more practical situation in

which the observation y is perturbed by some amount of noise. For simplicity,

we still assume the signal xo is perfectly sparse. We can model the noise as an

additive error z, which we will assume to have a small magnitude:10

y = Axo + z, ‖z‖2 ≤ ε. (3.5.3)

9 We scale the variance of the normal distribution by 1/m on purpose, so that σ is directly

comparable to ε in the deterministic noise case.
10 This is similar to the setting in conventional signal processing problems where we typically

assume the signal to noise ratio (SNR) is large.
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To recover a sparse solution from the above observation, we may extend `1

minimization to this new setting and solve

min ‖x‖1
subject to ‖y −Ax‖2 ≤ ε.

(3.5.4)

In words, this program asks us to (try to) find the sparest x that agrees with

the observation up to the noise level. Almost equally popular is the Lagrangian

relaxation of this problem, which introduces a penalty parameter λ ≥ 0, and

solves the unconstrained optimization problem11

min λ ‖x‖1 + 1
2 ‖y −Ax‖

2
2 . (3.5.5)

The optimization (3.5.4) is almost uniformly referred to as “Basis Pursuit De-

noising” [CDS01], while the problem (3.5.5) is almost uniformly referred to as

the “Lasso (Least absolute shrinkage and selection operator)” [Tib96]. These two

problems are completely equivalent, in the sense that there is a calibration λ↔ ε

such that if x is a solution to the Lasso problem for some choice of λ, then there

exists an ε such that x is also a solution to the BPDN problem with parameter ε,

and conversely, whenever x is a solution to BPDN with parameter ε, there exists

a corresponding λ such that x also solves the Lasso problem with parameter λ.

So, from a theoretical perspective, these two problems are completely equivalent.

On the other hand, from a practical perspective, they may be quite different,

since the calibration λ↔ ε depends on the problem data (y,A), and no explicit

form is known. In some situations, it may be easier to tune λ than ε, or vice

versa. In particular, in situations in which the norm of the noise is known or can

be estimated, the BPDN formulation may be more attractive, since its param-

eter can be set to be the noise level.12 The optimal choice of the regularization

parameter λ (or ε) is a surprisingly tricky issue in practice. In general, we have to

either use generic statistical rules such as cross validation, or resort to theoretical

analysis to get some insight into what scalings make sense.

Despite their conceptual equivalence, these problems may require rather differ-

ent optimization techniques. In Chapter 8, we will discuss in more details about

how to solve both (and many related problems!).

Deterministic Noise.
To account for measurement noise, we can simply solve one of (3.5.4) or (3.5.5).

Both are convex problems. Any global minimizer gives an estimate x̂. Unlike the

previous two sections, under noise we cannot expect x̂ = xo exactly. However,

we can hope that if the noise level ε is small, the estimation error ‖x̂− xo‖2 will

also be small.

11 One may compare this with the ridge regression that regularizes the `2 norm of x, which
we have introduced in Exercise 1.8 of Chapter 1.

12 Historically, the Lasso is preferred by statisticians, and BPDN by engineers, although

confusingly, in the original papers the names Lasso and BPDN are not used to refer to

these problems, but rather different equivalent problems!
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How well do we expect to do? Imagine that we somehow knew the support I

of xo. In this situation, we could form another estimate x̂′, by setting

{
x̂′(I) = (A∗I AI)

−1A∗I y,

x̂′(Ic) = 0.
(3.5.6)

This is just the least squares estimate, restricted to the set I. It is not difficult to

argue that it is optimal, in the sense that it minimizes over all estimators, the

worst error ‖x̂− xo‖2 over all xo supported on I and z of norm at most ε. This

“oracle” estimator produces an estimate x̂′ that satisfies

∥∥x̂′ − xo
∥∥

2
≤ ε

σmin(AI)
, (3.5.7)

and this bound can be tight.

So, the best we can possibly hope for in general is

‖x̂− xo‖2 ∼ cε,

with c = σmin(AI)
−1. As above, if we restrict ourselves to efficient algorithms,

this is too much to hope for in general. However, can we still hope that under

the same hypotheses as above,

‖x̂− xo‖2 ≤ Cε? (3.5.8)

That is to say, the solution is at least stable: the error in estimating x is propor-

tional to the size ε of the perturbation, even though the constant might not be

as small as when we know the oracle of the correct support of xo.

The theorem below, which is similar to that in [CRT06b],13 makes this precise:

Theorem 3.29 (Stable Sparse Recovery via BPDN). Suppose that y = Axo+z,

with ‖z‖2 ≤ ε, and let k = ‖xo‖0. If δ2k(A) <
√

2 − 1, then any solution x̂ to

the optimization problem

min ‖x‖1
subject to ‖y −Ax‖2 ≤ ε

(3.5.9)

satisfies

‖x̂− xo‖2 ≤ Cε. (3.5.10)

Here, C is a constant which depends only on δ2k(A) (and not on the noise level

ε).

Proof Because ‖y −Axo‖2 = ‖z‖2 ≤ ε. Since x̂ is feasible, we have ‖y −Ax̂‖2 ≤
13 The condition on RIP constant in [CRT06b] was δ4k(A) < 1/4, which is more restrictive

than the one shown here.
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Subspace constraint

Cone constraint

{
x | ‖x‖1 ≤ ‖x0‖1

}

{
x | ‖y −Ax‖2 ≤ ε

}

Figure 3.14 Geometry of the proof of Theorem 3.29.

ε as well. Using the triangle inequality,

‖A(x̂− xo)‖2 = ‖(y −Ax̂)− (y −Axo)‖2
≤ ‖y −Ax̂‖2 + ‖y −Axo‖2
≤ 2ε.

Let h = x̂ − xo, we have ‖Ah‖2 ≤ 2ε. Geometrically, this means that the

perturbation h must be close to the null space of A.

Because xo is feasible for the optimization problem, and x̂ is optimal, x̂ must

have a lower objective function value than xo:

‖x̂‖1 ≤ ‖xo‖1 . (3.5.11)

Let I denote the support of xo. We have

‖xo‖1 ≥ ‖xo + h‖1
≥ ‖xo‖1 − ‖hI‖1 + ‖hIc‖1 ,

and so

‖hIc‖1 ≤ ‖hI‖1 . (3.5.12)

Geometrically, this means that x̂ lives in an `1 ball of radius ‖xo‖1, centered

at the origin. Locally, this set looks like a convex cone (the “descent cone”

of the `1 norm), hence the constraint ‖hIc‖1 ≤ ‖hI‖1 is also known as a

“cone constraint”. It describes the set of all possible perturbations of x̂ from xo
that would decrease the value of the objective function. The geometric intuition

behind the two constraints on the perturbation h is shown in Figure 3.14.

Note that the matrix A satisfies RIP. According to Theorem 3.17, we know

that if δ2k <
√

2 − 1, A satisfies the restricted strong convexity property with

constant α = 1 (which is the case for the restriction condition (3.5.12) on h

above). Therefore, we have

‖Ah‖22 ≥ µ‖h‖22 (3.5.13)
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for some µ > 0. Combining this with ‖Ah‖2 ≤ 2ε, we have

‖x̂− xo‖2 = ‖h‖2 ≤
2√
µ
ε. (3.5.14)

Choosing C = 2√
µ completes the proof.

Notice that in the above proof, the constant C can be rather large if µ is very

small. According to the proof of Theorem 3.17, we know

√
µ =

1− δ2k(1 +
√

2)√
2(1 + δ2k)

.

The quantity µ becomes small if δ2k is close to
√

2 − 1. Therefore, if we do not

want the constant C in the above theorem to be too large, we need to ensure

that δ2k is significantly smaller than
√

2− 1. However, no matter how small δ2k
is, we always have

√
µ < 1/

√
2. Hence, based on this proof, the smallest that the

constant C can be in the theorem is 2
√

2.

Random Noise.
Above, we have shown that for any additive noise z in the observation y =

Axo +z, we can estimate xo with an error of size controlled by C ‖z‖2 for some

constant C. Based on our discussion before the theorem, this error bound is

already close to the best possible.

For random noise, we might hope that if m � k, most of the energy of z

would “miss” the k-dimensional subspace range(AI). If so, the accuracy in the

estimated x̂ can improve as m grows. More precisely, the coefficient C in the

error bound C ‖z‖2 decreases as m increases. This turns out to be the case. For

simplicity, we here state a theorem for random A.14 More precisely, we assume

that the measurement model:

y = Axo + z. (3.5.15)

where y ∈ Rm, xo k-sparse, and the matrixA ∼iid N (0, 1
m ) and z ∼iid N (0, σ

2

m ).

Notice that in the study of the deterministic case, we have assumed the mea-

surement matrix A is a matrix that satisfies RIP conditions. Hence the norm of

the columns of A there is typically normalized to one. Here the scaling factor
1
m in the variance is to ensure the columns of A is typically of length one and

the noise vector of length σ so that the model and the results will be directly

comparable to those for the deterministic case.15

As we have discussed earlier, with noisy measurements, we could find an esti-

mate x̂ of xo that strikes a balance between sparsity and minimizing the error.

In particular, we would like to solve the following Lasso program for x̂:

x̂ = arg min
x

1
2 ‖y −Ax‖

2
2 + λm ‖x‖1 . (3.5.16)

14 An analogous result holds for A satisfying the RIP.
15 The variance σ replaces the role of ε in Theorem 3.29.
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As usual, for convenience, we let I = supp(xo), let Ic denote its complement, and

h = x̂− xo ∈ Rn the difference between the estimate and the ground truth. We

also define L(x) = 1
2 ‖y −Ax‖

2
2. Notice that ∇L(x) = −A∗(y − Ax) and in

particular ∇L(xo) = −A∗(y −Axo) = −A∗z according to (3.5.15).

We want to know how small the difference ‖h‖ = ‖x̂− xo‖ is for a given λm.

First we show that for a properly chosen λm, the difference vector h is highly

restricted in the way that ‖hIc‖1 ≤ α‖hI‖1 for some constant α, i.e., the error

off the support I of xo is controlled by that on I.16 More precisely, we have the

following lemma.

Lemma 3.30. For the optimization problem (3.5.16), if we choose the regulariza-

tion parameter λm ≥ c ·2σ
√

logn
m , then with high probability, h = x̂−xo satisfies

the cone condition:

‖hIc‖1 ≤
c+ 1

c− 1
· ‖hI‖1, (3.5.17)

where I is the support of the sparse xo.

Proof Note that the difference between x̂ and xo is related to the difference

between the values of the objective function in (3.5.16). Since x̂ minimizes the

objective function, we have:

0 ≥ L(x̂) + λm‖x̂‖1 − L(xo)− λm‖xo‖1
≥ 〈∇L(xo), x̂− xo〉+ λm(‖x̂‖1 − ‖xo‖1)

≥ − | 〈A∗z,h〉 | +λm(‖x̂‖1 − ‖xo‖1)

≥ −‖A∗z‖∞‖h‖1 + λm(‖x̂‖1 − ‖xo‖1), (3.5.18)

where the second inequality we used the fact that L(x) is a convex function. It

remains to be seen how the two terms in the last inequality interact. Obviously

we need to have a good idea about the value of ‖A∗z‖∞. This is where we need

to resort to results about measure concentration of high-dimensional statistics.

Notice that the column ai of A is typically of norm ‖ai‖2 ≈ 1. Hence here

we may assume the columns of A are all normalized to one. Therefore a∗i z is a

Gaussian random variable of variance σ2/m. We have

P [|a∗i z| ≥ t] ≤ 2 exp

(
−mt

2

2σ2

)
. (3.5.19)

By union bound on the n columns, we have

P [‖A∗z‖∞ ≥ t] ≤ 2 exp

(
−mt

2

2σ2
+ log n

)
. (3.5.20)

As we may see, as long as we choose t2 to be in the order of C σ2 logn
m for a large

enough constant C, the exponent will be negative and the event ‖A∗z‖∞ ≥ t

16 Notice that a similar restriction on h was derived in (3.5.12). There the constant is α = 1

and as we will soon see, here the constant needs to be 3.
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will be of low probability. In particular we may choose t2 = 4σ
2 logn
m , and we

know that with high probability at least 1− cn−1, we have

‖A∗z‖∞ ≤ 2σ

√
log n

m
.

So to make the two terms in (3.5.18) comparable in scale, it is natural to

choose λm of the scale σ
√

logn
m . In particular, we choose λm ≥ c · 2σ

√
logn
m for

some c > 0. Then from the last inequality of (3.5.18), we have

0 ≥ −‖A∗z‖∞‖h‖1 + λm(‖x̂‖1 − ‖xo‖1)

≥ −λm
c
‖h‖1 + λm(‖x̂‖1 − ‖xo‖1)

≥ −λm
c
‖hI‖1 −

λm
c
‖hIc‖1 + λm‖hIc‖1 − λm‖hI‖1

= λm

((
1− 1

c

)
‖hIc‖1 −

(
1 +

1

c

)
‖hI‖1

)
, (3.5.21)

where in the second to last inequality we used the fact that xo is zero on Ic and

‖x̂I‖1 − ‖xoI‖1 ≥ −‖hI‖1. Therefore we have

‖hIc‖1 ≤
c+ 1

c− 1
· ‖hI‖1. (3.5.22)

Notice that if we choose c to be large, c+1
c−1 can be arbitrarily close to 1.

As we have discussed in the deterministic case, since ‖A(x̂ − xo)‖2 ≤ ‖y −
Ax̂‖2 + ‖y −Axo‖2, it suggests that ‖Ah‖2 is typically very small and of the

scale Cσ. If the norm ‖Ah‖2 upper bounds the norm ‖h‖2, then the estimate

is stable. Of course, this cannot be true for any h ∈ Rn since the matrix A is

typically severely under-determined and for any h in the null space of A, the

norm ‖Ah‖ is zero but the norm ‖h‖ can be arbitrarily large.

Nevertheless, due to the above lemma, we could hope that for h that satisfies

the cone restriction ‖hIc‖1 ≤ α‖hI‖1 for α = c+1
c−1 , ‖Ah‖2 controls ‖h‖2. Due

to Theorem 3.11, we know that with high probability, A as a random Gaussian

matrix satisfies RIP. Then Theorem 3.17 ensures that when h is restricted in such

a cone, ‖Ah‖2 controls the norm ‖h‖2. This leads to the following theorem.17

Theorem 3.31 (Stable Sparse Recovery via Lasso). Suppose that A ∼iid N (0, 1
m ),

and y = Axo + z, with xo k-sparse and z ∼iid N (0, σ
2

m ). Solve the Lasso

min 1
2 ‖y −Ax‖

2
2 + λm ‖x‖1 , (3.5.23)

with regularization parameter λm = c · 2σ
√

logn
m for a large enough c. Then with

high probability,

‖x̂− xo‖2 ≤ C ′σ

√
k log n

m
. (3.5.24)

17 This result and its proof essentially follows that of [CT07] and [BRT09].
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Generally, we are interested in the regime m ≥ k log n, because this is when

the measurement matrix A satisfies RIP (due to Theorem 3.11). The above

theorem indicates that in this case, we actually do much better under random

noise than the deterministic noise: the estimation error in the random case can

be the noise norm σ scaled by a diminishing factor18 whereas in the deterministic

case the error is the noise norm ε scaled by a constant factor (see Theorem 3.29

for comparison).

Proof With L(x) = 1
2 ‖y −Ax‖

2
2, we have

L(x̂) = L(xo) + 〈∇L(xo), x̂− xo〉+
1

2
‖A(x̂− xo)‖22.

We now use this equality to better estimate the difference between the values of

the objective function at x̂ and at xo than that done in (3.5.18):

0 ≥ L(x̂) + λm‖x̂‖1 − L(xo)− λm‖xo‖1
≥ 1

2
‖A(x̂− xo)‖22 + 〈∇L(xo), x̂− xo〉+ λm(‖x̂‖1 − ‖xo‖1)

≥ 1

2
‖Ah‖22 + λm

((
1− 1

c

)
‖hIc‖1 −

(
1 +

1

c

)
‖hI‖1

)
, (3.5.25)

where the last inequality follows exactly the same derivation that we have done in

(3.5.18) and (3.5.21) for other terms without the term 1
2‖A(x̂−xo)‖22 = 1

2‖Ah‖22.

From the last inequality we have

1

2
‖Ah‖22 ≤ λm

(
1 +

1

c

)
‖hI‖1.

According to Theorem 3.11 and Theorem 3.17, with high probability, the random

Gaussian matrix A satisfies the restricted strong convexity property, we have

‖Ah‖22 ≥ µ‖h‖22 for some constant µ.19 Also from the relationship between 1-

norm and 2-norm, we have ‖hI‖1 ≤
√
k‖hI‖2 ≤

√
k‖h‖2. Finally, with the choice

λm = c · 2σ
√

logn
m , the above inequality leads to:

µ

2
‖h‖22 ≤ 2(c+ 1)σ

√
k log n

m
‖h‖2 ⇒ ‖h‖2 ≤ C ′σ

√
k log n

m

for some constant C ′ = 4(c+1)
µ ∈ R+.

The error bound given in the above theorem is actually nearly optimal as it is

close to the best error that one can achieve by considering all possible estimators:

Theorem 3.32 ( [CD13]). Suppose that we will observe y = Ax+ z. Set

M?(A) = inf
x̂

sup
‖x‖0≤k

E ‖x̂(y)− x‖22 . (3.5.26)

18 As
√
k logn
m

can be chosen to be arbitrarily small
19 Notice that µ depends on the RIP constant δ2k(A) and the constant C = c+1

c−1
of the cone

restriction.
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Then for any A with ‖e∗iA‖2 ≤
√
n for each i, we have

M?(A) ≥ Cσ2 k log(n/k)

m
. (3.5.27)

Proof of this theorem is beyond the scope of this book; we refer interested

readers to the original paper for a proof. According to Theorem 3.31, the er-

ror bound ‖x̂− xo‖22 ∼ O(σ2 k logn
m ) achieved by Lasso is within a difference

of O(σ2 k log k
m ) from the best achievable bound above. When m � k, such a

difference is negligible.

3.5.2 Recovery of Inexact Sparse Signals

In all the above analysis, we have assumed that in the observation model y =

Axo + z, the signal xo is perfectly k-sparse. In many cases, xo might not be so

sparse and even all entries could be nonzero. Then a question naturally arises: for

xo that is close to a k-sparse signal, can we still expect good recovery performance

in some sense?

Let [xo]k be the best k-sparse signal that approximates xo. Then we can

rewrite the observation model as:

y = A[xo]k +A(xo − [xo]k) + z.

Strictly speaking the termw = A(xo−[xo]k) is not noise. It is more of a deviation

from our idealistic sparse signal assumption. But we may view it as introducing

a deterministic error to the observation. Hence, if the norm of w is small, we

should expect to obtain an estimate x̂ whose error from xo is proportional to

this norm.

The following is a typical result on estimation with inexact sparsity, which

also allows deterministic noise.20

Theorem 3.33 ( [CRT06b]). Let y = Axo + z, with ‖z‖2 ≤ ε. Let x̂ solve the

basis pursuit denoising problem

min ‖x‖1
subject to ‖y −Ax‖2 ≤ ε.

(3.5.28)

Then for any k such that δ2k(A) <
√

2− 1,

‖x̂− xo‖2 ≤ C
‖xo − [xo]k‖1√

k
+ C ′ε (3.5.29)

for some constants C and C ′ which only depend on δ2k(A).

How should we interpret this result? One way of reading it is to say that if we

are working in a regime where noise-free sparse recovery would have succeeded

(δ2k(A) <
√

2− 1), then even if our modeling assumptions are violated (due to

20 In fact, similar statements hold for random noise. The proof requires slight modification to

that of Theorem 3.31. We leave the details to the reader as an exercise.
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the introduction of noise and inexact sparsity), we can still stably estimate xo.

Moreover, the error in our estimate is proportional to the degree to which our

assumptions are violated and proportional to the noise level. When the original

signal xo is indeed k-sparse, we have xo− [xo]k = 0 and the above result reduces

to the deterministic noise case, i.e. Theorem 3.29.

Proof As usual, we denote h = x̂ − xo. We also denote the support of [xo]k
as I so that we have [xo]k = xoI. Because ‖y −Axo‖2 = ‖z‖2 ≤ ε. Since x̂ is

feasible, we have ‖y −Ax̂‖2 ≤ ε as well. Using the triangle inequality,

‖Ah‖2 = ‖A(x̂− xo)‖2 ≤ 2ε.

Therefore, in the inexact sparse case, the prediction error ‖Ah‖2 is again bounded

by the noise level.

Since x̂ minimizes the objective function, we have

0 ≤ ‖xo‖1 − ‖x̂‖1
= ‖xo‖1 − ‖xoI + hI‖1 − ‖xoIc + hIc‖1
≤ ‖xo‖1 − ‖xoI‖1 + ‖hI‖1 + ‖xoIc‖1 − ‖hIc‖1 .

Thus we have

‖hIc‖1 ≤ ‖hI‖1 + 2 ‖xoIc‖1 , (3.5.30)

where xoIc = xo − xoI. So in the inexact sparse case, the feasible perturbation

h no longer satisfies the cone condition as that in the exact sparse case (see

Theorem 3.29). Therefore, to establish the result of this theorem, we need to

modify the proof of Theorem 3.17 to accommodate the extra term 2 ‖xoIc‖1 in

estimating the bounds for ‖Ah‖2 and ‖h‖2.

The proof essentially follows the same steps as in the proof for Theorem 3.17.

The only difference is that in places where we used to apply the cone condition

‖hIc‖1 ≤ α ‖hI‖1, we now need to replace it with the new condition (3.5.30).

Therefore, instead of (3.3.34), the new condition (3.5.30) implies

‖hIc‖1 ≤
√
k ‖hI‖2 + 2 ‖xoIc‖1 ≤

√
k ‖hI∪J1‖2 + 2 ‖xoIc‖1 . (3.5.31)

Substituting this into (3.3.33) to establish a bound for ‖Ah‖2, we obtain

(1− δ2k)‖hI∪J1‖2 ≤
√

2δ2k ‖hI∪J1‖2 + 2
√

2δ2k
‖xoIc‖1√

k
+ (1 + δ2k)1/2 ‖Ah‖2 .

(3.5.32)

This gives

‖Ah‖2 ≥
1− (1 +

√
2)δ2k

(1 + δ2k)1/2
‖hI∪J1‖2 −

2
√

2δ2k
(1 + δ2k)1/2

‖xoIc‖1√
k

. (3.5.33)

Now, to establish a bound for ‖h‖2, in (3.3.40) where we have applied the cone

condition in the second inequality, we also need to replace the cone condition
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with the new condition (3.5.30) and that gives:

‖h(I∪J1)c‖2 ≤
‖hIc‖1√

k
≤ ‖hI‖1 + 2 ‖xoIc‖1√

k
(3.5.34)

≤ ‖hI‖2 + 2
‖xoIc‖1√

k
(3.5.35)

≤ ‖hI∪J1‖2 + 2
‖xoIc‖1√

k
. (3.5.36)

This gives

‖h‖2 ≤ ‖hI∪J1‖2 + ‖h(I∪J1)c‖2 ≤ 2‖hI∪J1‖2 + 2
‖xoIc‖1√

k
. (3.5.37)

Combining this with (3.5.33) and the fact that ‖Ah‖2 ≤ 2ε, we get

‖h‖2 ≤
(

2 + 2(
√

2− 1)δ2k

1− (1 +
√

2)δ2k

)
‖xoIc‖1√

k
+

(
4(1 + δ2k)1/2

1− (1 +
√

2)δ2k

)
ε, (3.5.38)

where we note xoIc = xo − [xo]k. Therefore, as long as 1 − (1 +
√

2)δ2k > 0 or

equivalently δ2k <
√

2− 1, the conclusion of the theorem holds.

Note that from the above proof, we know that the two constants in the The-

orem can be chosen to be:

C =
2− 2(

√
2− 1)δ2k

1− (1 +
√

2)δ2k
and C ′ =

4(1 + δ2k)

1− (1 +
√

2)δ2k
. (3.5.39)

If δ2k is very small, say approaching to zero, then C approaches to 2 and C ′ to 4.

Those constants give the smallest possible bound for the error ‖x̂− xo‖2 based

on this proof.

3.6 Phase Transitions in Sparse Recovery

Above, we showed that sparse vectors xo can be accurately estimated from lin-

ear observations y = Axo + z. One of the surprises was that in the noise-free

case (z = 0), k-sparse vectors could be exactly recovered from just slightly more

than k measurements – to be precise, m ≥ Ck log(n/k) measurements, where C

is a constant. The key technical tool for doing this was the restricted isometry

property (RIP). The RIP and related properties enable simple proofs, with cor-

rect orders of growth (i.e., m ∼ k log(n/k)), but are not intended to give precise

estimates of the constant C.

For some applications, it can be important to know C. In sampling and re-

construction, this tells us precisely how many samples we need to acquire to

accurately estimate a sparse signal; in error correction, this tells us precisely

how many errors the system can tolerate.

Put another way, we would like to obtain precise relationships between the

dimensionality n, the number of measurements m, and the number of nonzero
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Figure 3.15 Phase Transition in Sparse Recovery with Gaussian Matrices.
Each display plots the fraction of correct recoveries using `1 minimization, over a
suite of randomly generated problems. The vertical axis represents the fraction of
nonzero entries η = k/n in the target vector xo – the bottom corresponds to very
sparse vectors, while the top corresponds to fully dense vectors. The horizontal axis
represents the sampling ratio δ = m/n – the left corresponds to drastically under
sampled problems (m� n), while the right corresponds to almost fully observed
problems. For each (η, δ) pair, we generate 200 random problems, which we solve
using CVX. We declare success if the recovered vector is accurate up to a relative
error ≤ 10−6. Several salient features emerge: first, there is an easy regime (lower
right corner) in which `1 minimization always succeeds. Second, there is a hard
regime (upper left corner) in which `1 minimization always fails. Finally, as n
increases, this transition between success and failure becomes increasingly sharp.

entries k that we can recover. We would like these relationships to be as sharp

and explicit as possible. To get some intuition for what to expect, we again resort

to numerical simulation. We fix n, and consider different levels of sparsity k, and

numbers of measurements m. For each pair (k,m), we generate a number of

random `1 minimization problems, with noiseless Gaussian measurements y =

Axo, and ask “For what fraction of these problems does `1 minimization correctly

recover xo?”

Figure 3.15 displays the result as a two dimensional image. Here, the horizontal

axis is the sampling ratio δ = m/n. This ranges from zero on the left (a very

short, wide A) to one on the right (a nearly square A). The vertical axis is

the fraction of nonzeros η = k/n. Again, this ranges from zero at the bottom

(very sparse problems) to one at the top (denser problems). For each pair (η, δ),

we generate 200 random problems. The intensity is the fraction of problems for

which `1 minimization succeeds. The four graphs, from left to right, show the

result for n = 50, 100, 200, 400.

This figure conveys several important pieces of information. First, as expected,

when m is large and k is small (the lower right corner of each graph), `1 mini-

mization always succeeds. Conversely, when m is small and k is large (the upper

left corner of each graph), `1 minimization always fails. Moreover, as n grows, the

transition between success and failure becomes increasingly abrupt. Put another

way, for high-dimensional problems, the behavior of `1 minimization is surpris-

ingly predictable: it either almost always succeeds, or almost always fails. The

line demarcating the sharp boundary between success and failure is known as a

phase transition.
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3.6.1 Phase Transitions: Main Conclusions

In this section, we state a result that precisely specifies the location of the phase

transition. Namely, we will show that a sharp transition from failure to success

occurs when the sampling ratio δ = m/n exceeds a certain function ψ(η) of the

sparsity ratio η = k/n. This result will be sharper than the ones we stated above

using incoherence and RIP, in the sense that it identifies the precise number of

measurements m? = ψ(k/n)n required for success. To obtain such sharp results,

we need to make two changes to our setting. First, we will make stronger as-

sumptions on the matrix A. Second, we will weaken the goal of our performance

guarantee.

Random vs. Deterministic A.
Thus far, we have focused on deterministic properties of the matrix A, such

as (in)-coherence and the RIP. These properties do not depend on any random

model for the matrix A, although they are easiest to verify for random A. Ob-

taining sharp estimates on the location of the phase transition requires more

sophisticated probabilistic tools, which intrinsically require A to be a random

matrix. We will sketch this theory under the assumption that Aij ∼iid N (0, 1
m ),

i.e., A is a standard Gaussian random matrix. We will also briefly describe ex-

periments and theoretical results which show that the results we will obtain for

Gaussian A are “universal”, in the sense that they precisely describe the be-

havior of `1 minimization for a fairly broad family of matrices A. Nevertheless,

all currently known theory which is sharp enough to precisely characterize the

phase transition requires A to be a random matrix.

Recovering a Particular Sparse xo vs. Recovering All Sparse xo.
Incoherence and RIP allow one to prove “for all” results, which say that for

a given matrix A, `1 minimization recovers every sparse xo from y = Axo.

The strongest and most general known results for phase transitions pertain to

a slightly weaker statement: for a given, fixed xo, with high probability in the

random matrix A, `1 minimization recovers that particular xo from the mea-

surements y = Axo.

A variety of mathematical tools have been brought to bear on the analysis of

phase transitions in `1 minimization.21 Historically, the phenomenon has been

characterized using several different approaches, by different sets of authors. In

the following two sections, we describe briefly two representative approaches,

which correspond roughly to the two geometric pictures in Section 3.1, which

describe the behavior of `1 minimization in terms of the space Rn of coefficient

vectors x and the space Rm of observation vectors y. We leave a more general

and rigorous theory of the phase transition for a broad family of low-dimensional

models to in Chapter 6.

21 as well as phase transition phenomena for recovering broader family of low-dimensional

structures, as we will see in Chapter 6.
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Descent cone D

null(A)
xo + null(A)

‖xo‖1 · B1

xo 0

Figure 3.16 Cones and the Coefficient Space Geometry. `1 minimization
uniquely recovers xo if and only if the intersection of the descent cone D with null(A)
is {0}.

3.6.2 Phase Transitions via Coefficient-Space Geometry

Suppose that y = Axo. Recall the geometric picture in Figure 3.16 (left), which

we introduced in Section 3.1. There, we argued that xo is the unique optimal

solution to the `1 minimization problem if and only if the affine subspace

xo + null(A) (3.6.1)

of feasible solutions x intersects the scaled `1 ball

‖xo‖1 · B1 = {x | ‖x‖1 ≤ ‖xo‖1} (3.6.2)

only at xo.

We can express the same geometry more cleanly in terms of the descent cone:

D = {v | ‖xo + tv‖1 ≤ ‖xo‖1 for some t > 0} . (3.6.3)

This is the set of directions v for which a small (but nonzero) perturbation of

xo in the v direction does not increase the objective function ‖·‖1. The descent

cone D is visualized in Figure 3.16 (right).

Notice that the perturbation xo + tv is feasible for t 6= 0 if and only if v ∈
null(A). The feasible perturbations which do not increase the objective function

reside in the intersection D ∩ null(A). Because D is a convex cone and null(A)

is a subspace, D and null(A) always intersect at 0. It is not difficult to see that

xo is the unique optimal solution to the `1 problem if and only if 0 is the only

point of intersection between null(A) and D:

Lemma 3.34. Suppose that y = Axo. Then xo is the unique optimal solution to

the `1 minimization problem

min ‖x‖1
subject to Ax = y

(3.6.4)
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if and only if D ∩ null(A) = {0}.

Proof First, suppose that D∩null(A) = {0}. Consider any alternative solution

x′. Then x′ − xo ∈ null(A) \ {0}. Since D ∩ null(A) = {0}, x′ − xo /∈ D, and

so ‖x′‖1 > ‖xo‖1, and x′ is not an optimal solution. Since this holds for any

feasible x′, xo is the unique optimal solution.

Conversely, suppose xo is not the unique optimal solution. Then there exists

x′ 6= xo with ‖x′‖1 ≤ ‖xo‖1. Thus x′−xo ∈ D. By feasibility, x′−xo ∈ null(A),

and so D ∩ null(A) 6= {0}.

Hence, to study whether `1 minimization succeeds, we may equivalently study

whether the subspace null(A) has nontrivial intersection with the cone D. Be-

cause A is a random matrix, null(A) is a random subspace, of dimension n−m.

If A is Gaussian, then null(A) follows the uniform distribution on the set of

subspaces S ⊂ Rn of dimension n −m.22 Clearly, the probability that the ran-

dom subspace null(A) intersects the descent cone D depends on properties of D.

Intuitively, we would expect intersections to be more likely if D is “big” in some

sense.

In Chapter 6, we will generalize the notion of “dimension” to all closed convex

cones and show that this dimension precisely characterizes the probability of a

convex cone intersecting with a subspace (or another convex cone). The same

techniques actually apply to a broad family of norms that promote sparsity or

low-dimensionality. In particular, we will show that the probability of correct

recovery for `1 minimization undergoes a sharp transition at

m? = ψ

(
k

n

)
n. (3.6.5)

Here, ψ : [0, 1] → [0, 1] a function which takes as input the fraction η = k/n

of nonzeros, and describes the ratio m?/n of number of measurements to the

ambient dimension. The precise location ψ of the transition is given by the

expression:

ψ(η) = min
t≥0

{
η(1 + t2) + (1− η)

√
2

π

∫ ∞

t

(s− t)2 exp

(
−s

2

2

)
ds

}
. (3.6.6)

The function ψ is somewhat complicated; in Chapter 6, we will demonstrate

how it arises naturally from the geometry of `1 minimization. While there is

no closed form solution for the minimization over t in this formula, it can be

calculated numerically. Figure 3.17 displays this curve (red) superimposed over

the empirical fraction of successes (grayscale) in our experiment. Clearly, there

is a very good agreement between this theoretical prediction and our previous
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Figure 3.17 Phase Transitions: Agreement between Theory and Experiment.
Theoretical phase transition predicted by (3.6.5) and (3.6.6), overlaid on fraction of
successes in 200 experiments, for varying sparsities ρ = k/m and aspect ratios
δ = n/m.

experiment: the empirical fraction of successes transitions rapidly from 0 to 1 as

m/n exceeds ψ(k/n).23

In fact, one can do slightly more: in addition to showing that ψ(t) determines

a point of transition between likely success and likely failure, we can give lower

bounds on the probability of success (below the phase transition) and failure

(above the phase transition) which quantify how sharp the transition is, for

finite n. The following theorem makes all of this precise:

Theorem 3.35. Let xo ∈ Rn be k-sparse, and suppose that y = Axo ∈ Rm×n,

with A ∼iid N (0, 1
m ). Let m? = ψ(k/n)n, with ψ as in (3.6.6). Then

P
[
`1 recovers xo

]
≥ 1− C exp

(
−c (m−m?)2

n

)
, m > m?,

P
[
`1 does not recover xo

]
≥ 1− c′ exp

(
−C ′ (m

? −m)2

n

)
, m < m?,

where C, c, c′, C ′ are positive numerical constants.

Again, we leave the proof to Chapter 6 where we study phase transition in a

more general setting. This result implies that a sharp transition indeed occurs

at m? measurements: when m/n > m?/n+ C ′′/
√
n, the probability of failure is

bounded by a small constant (which can be made arbitrarily small by choosing

C ′′ large). Conversely, when m/n < m?/n − C ′′/√n, the probability of success

is bounded by a small constant. Hence, the transition region observed in Figure

3.15 has width O(1/
√
n) – in particular, it vanishes as n→∞.

22 To be more precise, null(A) is distributed according to the Haar (uniform) measure on the
Grassmannian manifold Gn,n−m, the set of (n−m)-dimensional subspaces in Rn.

23 Figure 3.17 displays the same phase transition as in Figure 3.15 in a different

parameterization, in which the vertical axis is ρ = k/m and the horizontal axis is δ = m/n.
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Figure 3.18 Internal Angles of Convex Polytopes. The internal angle β(F,G) of a
face F ⊆ G with respect to another face G containing it is the fraction of the linear
span of G− x occupied by G− x, where x is any point in the relative interior of F.

3.6.3 Phase Transitions via Observation-Space Geometry

Historically, the first sharp estimates of the location of the phase transition

were derived using the “observation space” geometric picture of `1 minimization,

which we reproduce in Figure 3.4. In this picture, `1 minimization is visualized

through the relationship between two convex polytopes, the unit `1 ball

B1
.
= {x | ‖x‖1 ≤ 1} (3.6.7)

and its projection into Rm,

P
.
= A(B1) = {Ax | ‖x‖1 ≤ 1} . (3.6.8)

Namely, `1 minimization uniquely recovers any x with support I and signs σ if

and only if

F
.
= conv({σiai | i ∈ I}) (3.6.9)

forms a face of the polytope P. Conversely, if F intersects the interior of P, then

`1 minimization does not recover xo with support I and signs σ.

The first results bounding the phase transition derived from remarkable results

in stochastic geometry, which give exact formulas for the expected number of k-

dimensional faces of a randomly projected polytope P = A(Q). This expectation

depends two notions of the “size” of the polytope Q: the internal angle and

external angle.

Definition 3.36 (Internal Angle). The internal angle β(F,G) of a face F of a

polytope G is the fraction of span(G−x) occupied by G−x, where span(·) denotes

the linear span, and x is any point in relint(F).

The internal angle is visualized for several examples in Figure 3.18. Informally

speaking, the internal angle measures the fraction of the space cut out by G, when

viewed from F. There is a complementary notion of angle, called the external

angle, which captures the fraction of the space cut out by the normal cone to G

at a point in the relative interior of F:
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F

N(F,G)

G

γ(F,G)

Figure 3.19 External Angles of Convex Polytopes. The external angle γ(F,G) of
a face F ⊆ G with respect to another face G containing it is the fraction of the linear
span of G− x occupied by the normal cone N(F,G).

Definition 3.37 (External Angle). The external angle γ(F,G) of a face F ⊆ G

is the fraction of span(G− x) occupied by the normal cone

N(F,G) = {v ∈ span(G− x) | 〈v − x,x′ − x〉 ≤ 0 ∀ x′ ∈ G} ,

where x is any point in relint(F).

Figure 3.19 visualizes the external angle. There is an exquisite characterization

of the expected number of k-dimensional faces of a random projection of a convex

polytope P, in terms of its internal and external angles. Let fk(P) denote the

number of k-dimensional faces of a polytope P, and let Fk denote the collection

of such faces. Then for an m× n Gaussian matrix A,

EA[fk(AP)] = fk(P)− 2
∑

`=m+1,m+3,...

∑

F∈Fk(P)

∑

G∈F`(P)

β(F,G)γ(G,P)

︸ ︷︷ ︸
∆=Expected number of faces lost

.

This formula arises out of a line of work in discrete geometry, which aims at

understanding the behavior of “typical” point clouds, and studying the simplex

method for linear programming for “typical” inputs. One remarkable aspect is

that it gives the exact value of the expected face count. The connection to `1 min-

imization is that `1 successfully recovers every k+ 1-sparse vector xo from mea-

surements Axo if and only if fk(A(P)) = fk(P). This can be observed from the

observation-space geometry described above. This event can be studied through

the quantity ∆ – the expected number of faces lost. Whenever ∆ < 1, there

exists an A such that fk(A(P)) = fk(P); when ∆ is substantially smaller than

one, we can use the Markov inequality to argue that the probability that any

face is lost in the projection is small.

3.6.4 Phase Transitions in Support Recovery

Thus far, we have focused on the problem of estimating a sparse vector xo. We

showed that from noisy observations y = Axo+z, convex optimization produces
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a vector x̂ such that ‖x̂− xo‖2 is small. For many engineering applications,

where xo is represents a signal to be sensed or an error to be corrected, this is

exactly what we need. However, in some applications, the goal is not so much

to estimate xo as to determine which of the entries of xo are nonzero. A good

example, which we will revisit in later chapters, is in spectrum sensing for wireless

communications. Here, the entries of xo represent frequency bands which might

be available for transmission, or which might be occupied. The goal is to know

which frequency bands are available, so that we can avoid interfering with other

users. In this setting, it is much more important to know which entries of xo are

nonzero than to estimate the particular values.

Support Recovery: Desiderata.
In this section, we consider the problem of estimating the signed support

σo = sign(xo), (3.6.10)

from noisy observations

y = Axo + z. (3.6.11)

We will derive theory under the assumptions that the noise z is iid N (0, σ
2

m ).

Let x̂ solve the Lasso problem

min
x∈Rn

1
2 ‖y −Ax‖

2
2 + λ ‖x‖1 . (3.6.12)

We can distinguish between two conclusions:

• Partial support recovery: supp(x̂) ⊆ supp(xo). Our estimator exhibits no

“false positives”: every element of the estimated support is an element of the

true support.

• Signed support recovery: sign(x̂) = σo. Our estimator correctly determines

the nonzero entries of xo and their signs.

Signed support recovery is clearly more desirable than partial support recovery.

Signed support recovery requires stronger assumptions of the signal xo than

partial support recovery – if the nonzero entries of xo are too small relative to

the noise level σ, no method of any kind will be able to reliably determine the

support.

In contrast, partial support recovery can be studied without additional as-

sumptions on the signal xo. We will assume that A ∼iid N (0, 1
m ). We will first

derive a sharp phase transition for partial support recovery, at

m? = 2k log(n− k) (3.6.13)

measurements. The main result of this section will show that when m signifi-

cantly exceeds this threshold, partial support recovery obtains with high prob-

ability. Moreover, through further analysis, we will show that when m signifi-

cantly exceeds m?, and all of the nonzero entries of xo are significantly larger

than λ, signed support recovery also obtains with high probability. Conversely,
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if m is significantly smaller than m?, the probability of signed support recovery

is vanishingly small. Thus, m? indeed gives a sharp threshold for support recov-

ery. Notice that (3.6.13) grows roughly as k log n, rather than k log(n/k). So, if

m,n, k, grow in fixed ratios, support recovery is unlikely. In this sense, support

recovery is a more challenging problem than estimation.

The following theorem makes the above discussion precise:

Theorem 3.38 (Phase Transition in Partial Support Recovery). Suppose that

A ∈ Rm×n with entries iid N (0, 1
m ) random variables, and let y = Axo + z,

with xo a k-sparse vector and z ∼iid N
(

0, σ
2

m

)
. If

m ≥
(

1 +
σ2

λ2k
+ ε

)
2k log(n− k), (3.6.14)

then with probability at least 1− Cn−ε, any solution x̂ to the Lasso problem

min
x∈Rn

1
2 ‖y −Ax‖

2
2 + λ ‖x‖1 (3.6.15)

satisfies supp(x̂) ⊆ supp(xo). Conversely, if

m <

(
1 +

σ2

λ2k
− ε
)

2k log(n− k), (3.6.16)

then the probability that there exists a solution x̂ of the Lasso which satisfies

sign(x̂) = sign(xo) is at most Cn−ε. Above, C > 0 is a positive numerical

constant.

Partial vs. (Exact) Signed Support Recovery.
The notion of support recovery in Theorem 3.38 is somewhat weak: it only de-

mands that

supp(x̂) ⊆ supp(xo). (3.6.17)

Put another way, the support contains no false positives. In many applications,

we would like to exactly recover the support – i.e., we would like

supp(x̂) = supp(xo). (3.6.18)

For this, we need that the nonzero entries of xo are not too small, so that they

do not become “lost” in the noise. Under (3.6.14), it is possible to show that

exact support recovery occurs, as long as the smallest nonzero entry of xo is

larger than λ: if

min
i∈I
|xoi| > Cλ, (3.6.19)

then sign(x̂) = σo with high probability. In the remainder of this section, we

will prove Theorem 3.38. Exercise 3.18 guides the reader through an extension

of this argument, which shows that under the same assumptions,

‖x̂− xo‖∞ < Cλ. (3.6.20)
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When the nonzero entries of xo have magnitude at least Cλ, this implies that

sign (x̂) = σo, as desired.

Main Ideas of the Proof of Theorem 3.38.
The phase transition in Theorem 3.38 has a strikingly simple formula: m? =

2k log(n− k). The proof of this result is similar in spirit to our first proof of the

correctness of `1-minimization, Theorem 3.3, which directly manipulated the

optimality conditions for the recovery program.

By differentiating the objective function (3.6.15), we can show that a given

vector x̂ is optimal if and only if

A∗ (y −Ax̂) ∈ λ∂ ‖·‖1 (x̂). (3.6.21)

Let J = supp(x̂). Recall that the subdifferential ∂ ‖·‖1 (x̂) consists of those vec-

tors v ∈ Rn such that vJ = sign(x̂J) and ‖vJc‖∞ ≤ 1. Hence, the condition

(3.6.21) decomposes into two conditions:

A∗J (y −Ax̂) = λ sign(x̂J), (3.6.22)

‖A∗Jc (y −Ax̂)‖∞ ≤ λ. (3.6.23)

Much like the proof of Theorem 3.3, we will proceed as follows: we will con-

struct a guess at a solution vector x? such that the equality constraints in (3.6.22)

are automatically satisfied. We will then be left to check the inequality con-

straints (3.6.23). In particular, we will construct our guess x? at the solution by

solving a restricted Lasso problem

x? ∈ arg minsupp(x)⊆I

{
1
2 ‖Ax− y‖

2
2 + λ ‖x‖1

}
, (3.6.24)

where I = supp(xo).

Recall that that y = Axo + z. We can write

r
.
= y −Ax? = AI(xoI − x?I) + z. (3.6.25)

Notice that r depends only on AI and z; it is probabilistically independent of

AIc . The key work that we will do in proving Theorem 3.38 is to determine

whether the `∞ norm constraint is satisfied on Ic. That is to say, we need to

study

‖A∗Ic (y −Ax?)‖∞ = ‖A∗Icr‖∞ . (3.6.26)

The matrix AIc is a Gaussian matrix; moreover, it is probabilistically indepen-

dent of r. Conditioned on r, A∗Icr is distributed as an (n − k)-dimensional iid

N
(

0,
‖r‖22
m

)
random vector. We will see that the `∞ norm of such a vector is

sharply concentrated about ‖r‖2
√

2 log(n−k)
m . The following lemma provides the

control that we need:

Lemma 3.39. Suppose that q = [q1, . . . , qd]
∗ ∈ Rd is a d ≥ 2-dimensional random
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vector, whose elements are independent N (0, ξ2) random variables. Then, for any

ε ∈ [0, 1),

P
[
‖q‖∞ < ξ

√
(2− ε) log d

]
≤ exp

(
− dε/2

4
√

2 log d

)
, (3.6.27)

P
[
‖q‖∞ > ξ

√
(2 + ε) log d

]
≤ 2d−ε/2. (3.6.28)

This lemma can be proved using relatively elementary ideas (the union bound

for the upper bound, a direct calculation for the lower bound). Using this lemma,

we conclude that, conditioned on r (i.e., with high probability in AIc), ‖A∗Icr‖∞
is very close to ‖r‖2

√
2 log(n−k)

m . To understand whether this quantity is smaller

than λ (and hence recovery succeeds) or larger than λ (and hence recovery fails),

we will need to study the norm of r.

Notice that r = AI(xoI − x?I) + z. To study the size of r it will be important

to understand the properties of the random matrix AI and the random vector z.

Because AI ∈ Rm×k is a “tall”, random matrix, it is well-conditioned, in a sense

that the following lemma makes precise:

Lemma 3.40. Let G ∈ Rm×k be a random matrix whose entries are iid N (0, 1
m )

random variables. Then, with high probability

‖G∗G− I‖`2→`2 ≤ C
√

k
m . (3.6.29)

The proof of this lemma follows similar lines to our proof of the RIP prop-

erty of Gaussian matrices (discretization, tail bound, union bound). Using this

lemma, we can control ‖r‖2; combining with the above calculations, we obtain

control on ‖A∗Icr‖∞. The prescription for the required number of measurements

m follows by demanding that this quantity be smaller than λ. To formally prove

Theorem 3.38, we need to do a bit more. First, we need to formally control ‖r‖2
and ‖A∗Icr‖∞. This is sufficient to show that our putative solution x? is indeed

optimal. Second, we need to argue that under the same conditions, every solution

x̂ indeed satisfies supp(x̂) ⊆ supp(xo). This will follow from some auxiliary rea-

soning about the subdifferential of the `1 norm. Finally, we obtain the converse

portion of Theorem 3.38 by showing that when the number of measurements

m � m?, with high probability ‖A∗Icr‖∞ > λ, and hence no putative solution

x? with sign(x?) = σo can be optimal. We carry through all of this reasoning

rigorously below.

Proof of Theorem 3.38: We proceed as follows.

i. Sufficient condition for partial support recovery.
Let I = supp(xo). We wish to show that every solution x̂ to the Lasso problem

min
x∈Rn

ϕ(x)
.
= 1

2 ‖y −Ax‖
2
2 + λ ‖x‖1 , (3.6.30)
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satisfies supp(x) ⊆ I. To do this, we will generate a vector x? with supp(x?) ⊆ I,

such that the residual

r = y −Ax? (3.6.31)

satisfies

A∗r ∈ λ∂ ‖·‖1 (x?), (3.6.32)

and ‖A∗Icr‖∞ < λ. (3.6.33)

The first property implies that x? is optimal for the Lasso problem, since it

implies that

0 ∈ ∂ϕ(x?) = A∗(Ax? − y) + λ∂ ‖·‖1 (x?)

= −r + λ∂ ‖·‖1 (x?). (3.6.34)

The property ‖A∗Icr‖∞ < λ implies that any other optimal solution also has

support contained in I. The reason is as follows: let λ′ = λ−‖A∗Icr‖∞ > 0. Then

for any vector v supported on Ic, with ‖v‖∞ < λ′, we have that

v ∈ ∂ϕLasso(x?). (3.6.35)

For any x′ with x′Ic 6= 0, set v = λ′sign(x′Ic)/2 and note that by the subgradient

inequality,

ϕ(x′) ≥ ϕ(x?) + 〈x′ − x?,v〉
= ϕ(x?) + λ′

2 ‖x′Ic‖1
> ϕ(x?), (3.6.36)

and hence, x′ is not optimal. Thus, if there exists an x? satisfying (3.6.32)–

(3.6.33), then every solution x̂ to the Lasso problem satisfies supp(x̂) ⊆ supp(xo).

ii. Constructing the putative solution x?.
Let

x? ∈ argminsupp(x)⊆I
1
2 ‖y −Ax‖

2
2 + λ ‖x‖1 . (3.6.37)

Let J = supp(x?) ⊆ I. The KKT optimality conditions for this problem give that

A∗J(y −AIx?I) = λ sign(x?J), (3.6.38)∥∥∥A∗I\J(y −AIx?I)
∥∥∥
∞
≤ λ. (3.6.39)

An equivalent way of expressing these conditions is to say that

A∗I (y −AIx?I) = λν, (3.6.40)

for some ν ∈ ∂ ‖·‖1 (x?I).

Because y = AIxoI + z, we can use (3.6.40) to express the difference xoI−x?I

in terms of the subgradient ν and the noise z:

xoI − x?I = (A∗I AI)
−1 (λν −A∗I z) . (3.6.41)
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Notice that since m > k, with probability one, A∗I AI is invertible, and so this

expression indeed makes sense.

iii. Verifying the KKT conditions.
We will prove that the restricted solution x? is indeed optimal for the full problem

(3.6.30). The KKT conditions for this problem give that x? is optimal if and only

if

A∗ (y −Ax?) ∈ λ∂ ‖·‖1 (x?). (3.6.42)

Let J = supp(x?). The above expression can be broken into two parts as

A∗J (y −Ax?) = λsign(x?J), (3.6.43)

‖A∗I∩Jc (y −Ax?)‖∞ ≤ λ, (3.6.44)

‖A∗Ic (y −Ax?)‖∞ ≤ λ. (3.6.45)

Because x?I satisfies the restricted KKT conditions, the first two conditions are

automatically satisfied; to complete the proof, we establish the stronger version

‖A∗Ic (y −Ax?)‖∞ < λ (3.6.46)

of the third – this is the condition (3.6.33) that ‖r‖∞ < λ. Using (3.6.41), we

can express the residual y −Ax? as

r
.
= y −Ax?
=
[
I −AI(A

∗
I AI)

−1A∗I
]
z +AI(A

∗
I AI)

−1λν. (3.6.47)

The two components of r are orthogonal, and so

‖r‖2 =

√
‖[I −AI(A

∗
I AI)−1A∗I ] z‖22 + ‖AI(A

∗
I AI)−1λν‖22

≤
√
‖z‖22 + λ2

‖ν‖22
σmin(A∗I AI)

≤
√
σ2 +

λ2k

1− Ck/m with high probability

≤
√
σ2 + λ2k + C ′λ2k2/m. (3.6.48)

Applying the above lemma, with high probability in AIc ,

‖A∗Icr‖∞ <

√
(2 + ε) log(n− k)

m
‖r‖2

≤ λ




(2k log(n− k)
(

1 + σ2

λ2k + ε
)

m




1/2

. (3.6.49)

Under our hypothesis on m, this is strictly smaller than λ, and so indeed (3.6.33)

is verified.
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iv. No signed support recovery when m� m?.
We next prove that when m is significantly smaller than 2k log(n−k), no vector

x satisfying

sign(x) = sign(xo) (3.6.50)

can be a solution to the Lasso problem. Without loss of generality, we can assume

that m ≥ k.24 Suppose on the contrary that x was the solution to the Lasso

problem. Then x is also the solution to the restricted Lasso problem. Moreover,

since sign(xI) = σI has no zero entries, we have

r =
[
I −AI(A

∗
I AI)

−1A∗I
]
z + λAI(A

∗
I AI)

−1σI. (3.6.52)

With high probability,

∥∥[I −AI(A
∗
I AI)

−1A∗I
]
z
∥∥2

2
> (1− ε)(n− k)σ2 (3.6.53)

and

∥∥AI(A
∗
I AI)

−1λσI

∥∥2

2
>

λ2k

1 + Ck/m
, (3.6.54)

whence, with high probability,

‖A∗Icr‖∞ >

√
(2− ε) log(n− k)

m
‖r‖2 (3.6.55)

and

‖r‖2 ≥
√
σ2(1− ck/m) + λ2k(1− c′k/m). (3.6.56)

Combining, we obtain

‖A∗Icr‖∞ > λ

√
(2− ε)k log(n− k)

(
1 + σ2

λ2k + ε
)

m

≥ λ. (3.6.57)

Hence, the putative solution x is not optimal for the full Lasso problem, with high

probability in the matrix A and the noise z. The above argument depends on x

only through its sign and support pattern, and so on the same (large probability)

bad event, every x having this sign and support pattern is suboptimal for the

full Lasso problem.

24 If on the contrary, m < k, then the KKT conditions for the restricted problem become

A∗I AI︸ ︷︷ ︸
Rank deficient

xI = A∗I y − λσI. (3.6.51)

This equation admits a solution if and only if σI ∈ range(A∗I ). Because A∗I is a tall
Gaussian matrix, the probability that its range contains the fixed vector σI is zero. So,

when m < k, the probability that the Lasso problem admits a solution x̂ with

sign(x̂) = σo is zero.



3.7 Summary 131

3.7 Summary

In this chapter, we have provided a rather extensive and thorough study of

conditions under which we can expect the `1 minimization:

min ‖x‖1 subject to y = Ax

to recover a k-sparse vector xo ∈ Rn from the observation y = Axo ∈ Rm.

Such conditions are developed through three different perspectives that give

increasingly sharper characterization about the conditions.

Mutual Coherence.
The first approach is based on the notion of mutual coherence µ(A) of the mea-

surement matrix A, given in Definition 3.1. Theorem 3.3 shows that the `1 min-

imization finds the correct solution xo if k ≤ 1
2µ(A) . Based on an upper bound

of µ(A) for a random matrix, Theorem 3.5, and a lower bound for an arbitrary

matrix, Theorem 3.7, mutual coherence in general ensures that `1 minimization

succeeds when

m = O(k2).

Restricted Isometry Property.
The restricted isometric measure δk(A) of a matrix A, given in Definition 3.8,

provides a more refined characterization of the incoherence property of the mea-

surementA, by restricting the notion of isometry to the k-dimensional structures

of interest. Theorem 3.10 and Theorem 3.11 show that with high-probability the

`1 minimization can succeed in recovering a k-sparse vector from a generic m×n
matrix A with

m = O
(
k log(n/k)

)
.

In the proportional growth model when k ∝ n, this means the number of random

measurements needed is m = O(k).

Sharp Phase Transition.
While the above two approaches give qualitative bounds on the number of ran-

dom measurements needed for `1 to succeed, Section 3.6 gives a precise char-

acterization of the sharp phase transition behavior for success or failure of `1

minimization around a critical number of measures

m? = ψ
(k
n

)
n.

An explicit expression (3.6.6) for the function ψ can be derived from the statis-

tical relationships between high-dimensional convex cones and subspaces, as we

will study systematically in Chapter 6.



132 Convex Methods for Sparse Signal Recovery

Sensitivity Analysis.
Results given in Section 3.5 show that under similar conditions, `1 minimiza-

tion, with slight modification, can recover sufficiently accurate estimate x̂ of xo
when there is noise in the measurement y = Axo + z or the signal xo is only

approximately sparse. These results ensure that `1 minimization is not sensitive

to the modeling assumption that the ground truth vector xo needs to be per-

fectly sparse. Theorem 3.38 shows that when the measurements are noisy, phase

transition also occurs when we only care about recovering the correct sign and

support of xo.

3.8 Notes

As we have mentioned before, historically `1 minimization was suggested to be

beneficial as early as in the work of Boscovitch [Bos50] and later Laplace [Lap74].

To our knowledge, the first result that offers a guarantee for exact recovery

of sparse signals via `1 minimization was obtained by B. Logan [Log65]. The

advancement in computational power in recent years has made it possible to

harness the tremendous benefits of `1 minimization in high-dimensional spaces,

which has led to the revived interests in analyzing its sample and computational

complexity more precisely.

Analyses of sparse recovery based on mutual coherence/incoherence are due

to [GN03, DE03]. The proof approach described here is due to [Fuc04]. The

stronger guarantee of `1 minimization via the notion of restricted isometry prop-

erty (RIP) is due to the seminal work [CT05]. Our proof here follows closely

to that of [CRT06b, Can08]. The analysis of phase transitions via observation

space geometry was developed in a series of work [Don05, DT09, DT10]. The

approach to phase transitions via coefficient space geometry follows mainly the

work of [ALMT14]. We will give a more detailed account of this approach in

Chapter 6 where we justify why phase transitions occur for the recovery of a

broad family of low-dimensional models. The analysis of phase transitions in

support recovery is due to [Wai09b].

3.9 Exercises

3.1 (Projection of Polytopes). Notice that in R3, when we project an `1 ball B1

to R2, in general all the vertices (1-faces) will be preserved. Does this generalize

to higher-dimensional spaces? That is if we project an `1 ball in Rn to Rn−1, can

we expect all (n − 2)-faces be preserved by a generic projection? You may run

some simulations and argue if your hypothesis is true or false.

3.2 (Mutual Coherence). Compute by hand the mutual coherence of the matrix

in Exercise 2.5. Then, program an algorithm that calculates the mutual coherence
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of a matrix. Generate an n×n Discrete Fourier Transform matrix F for a very

large n. Randomly select 1/2 of its rows and compute its mutual coherence.

3.3 (Comparisons between Norms). Show that for all x ∈ Rn, we have the fol-

lowing relationships among the three norms ‖ · ‖1, ‖ · ‖2, and ‖ · ‖∞:

1 ‖x‖2 ≤ ‖x‖1 ≤
√
n ‖x‖2.

2 ‖x‖∞ ≤ ‖x‖2 ≤
√
n ‖x‖∞.

3 ‖x‖∞ ≤ ‖x‖1 ≤ n ‖x‖∞.

3.4 (Singular Values of Matrices). Show that given a positive definite matrix

S ∈ Rn×n:

1 σmax(S−1) = σmin(S)−1.

2 trace(S) =
∑n
i=1 σi(S).

3 ‖S‖F =
√∑n

i=1 σ
2
i (S).

3.5. Given a matrix A ∈ Rm×n,

1 What is the relationship between singular values of a matrix A and A∗A?

2 What is the comparison between the spectral norm ‖A‖ and the Frobenius norm

of ‖A‖F ?

3.6. Prove the inequalities in (3.2.3).

3.7 (Constrained Optimization). Consider the program:

min
x
f(x) subject to h(x) = 0,

where f(·) ∈ R and h(·) ∈ Rm are all C1-differentiable. Show that if x? is an

optimal solution, we must have

∇f(x?) =
∂h(x?)

∂x
λ

for λ ∈ Rm, where ∂h(x?)
∂x is the Jacobian of h(·) at x?. Notice that in our

context:

1 The constraints h(x) = Ax − y. What is its Jacobian, and what the above

conditions have become?

2 The function f(·) is not necessarily differentiable at x?. Discuss how the above

condition needs to be changed?

A less relevant but otherwise useful question for bonus points: What if the con-

straints are replaced with inequalities h(x) ≥ 0?

3.8. Prove equation (3.2.34).

3.9. In this exercise, use the sphere measure concentration Theorem 3.6 to prove

a fact mentioned in the Introduction chapter, equation (1.3.5): in Rm when the
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dimension m is high, a randomly chosen unit vector v ∈ Sm−1 is with high prob-

ability highly incoherent (nearly orthogonal) to any of the standard base vectors

ei, i = 1, . . . ,m. More precisely, given any small ε > 0, we have

|〈ei,v〉| ≤ ε, ∀i = 1, . . . ,m,

with high probability as m is large enough. (Hint: the proof should be very similar

to, actually simpler than, the proof for Theorem 3.5. You only need to apply the

measure concentration result to the functions |〈ei,v〉| and characterize the union

bound for the failure probability of all m functions.)

3.10 (`1 Minimization Experiments). Program an algorithm to solve the `1 min-

imization problem.

1 Set m = n/2 and set k = ‖xo‖0 proportional to m – say, k = m/4. Then, try

different aspect ratios m = αn and sparsity ratios k = βm.

2 Validate the Phase Transition in Figure 3.15.

3.11. Let A be a large m × n matrix with m = n/4. If you are told that any

submatrix AI with |I| = k < m columns of A satisfies:

∀x ∈ Rk (1− δ) ‖x‖22 ≤ ‖AIx‖22 ≤ (1 + δ) ‖x‖22
with δ ≤ 3

√
k/m. Use this fact and Theorem 3.10 to give your best estimate of

k as a fraction of n such that `1 minimization succeeds for all k-sparse vectors?

3.12. Prove Lemma 3.15.

3.13 (Johnson-Lindenstrauss). Program an algorithm to validate the Johnson-

Lindenstrauss Lemma.

3.14. Prove Lemma 3.22.

3.15 (Compact Projection). In this exercise, we use the properties of random

projection to develop simple but efficient algorithm for computing approximate

nearest neighbors for a high-dimensional dataset. In particular, prove that the

scheme described in Example 3.23 is correct and most efficient. Show that:

1 With the random binary code generated by Algorithm 3.1, with probability 1−δ,
the c-NN problem can be solved on any (∆, l)-weakly separable set X with the

number of binary bits m chosen to be in the order:

m = O

(
log(2/δ) + log n

(1− 1/c)2∆

)
.

2 The correct solution to the c-NN problem is given by

x? = arg min
x∈X̃
‖x− q‖2

where X̃ is the subset of points of size O(nl) in X which have the shortest

Hamming distances to yq = σ(Rq).
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3 With the above results, show that the c-NN problem can be solved with the

following complexity25:

• Code construction: O(Dn log n);

• Computation per query: O(n+Dnl);

• Index space: O(n).

3.16. Given a matrix A of full column rank, show that

‖(A∗A)−1A∗z‖2 ≤
1

σmin(A)
‖z‖2.

3.17 (Restricted Isometry Property∗). Program an algorithm that calculates the

order-k RIP constant of a matrix:

delta = rip(A, k).

Generate an n × n Discrete Fourier Transform matrix F . Randomly select 1/2

of its rows and compute its RIP constant. How large n can your algorithm go?

Compare that with the case with mutual coherence.

3.18. Under the same assumption of Theorem 3.38, sketch a proof of signed

support recovery in the sense of equation (3.6.20).

25 Note that, here, one can adopt the standard (logn)-RAM computational model, in which
arithmetic operations with logn bits can be performed in O(1) time.



4 Convex Methods for Low-Rank
Matrix Recovery

“Mathematics is the art of giving the same name to different things.”
– Henri Poincaré, L’avenir des mathématiques, 1905

In this chapter, we will branch out from sparse signals to a broader class of

models: the low-rank matrices. Similar to the problem of recovering sparse sig-

nals, we consider how to recover a matrix X ∈ Rn1×n2 from linear measurements

y = A[X] ∈ Rm. This problem can be phrased as searching for a solution X to

a linear system of equations

A
[

X
unknown

]
= y.

observation
(4.0.1)

Here, A : Rn1×n2 → Rm is a linear map.

We will see that much of the mathematical structure in the sparse vector

recovery problem carries over in a very natural way to this more general setting.

In particular, in many interesting instances, we need to recover X from far fewer

measurements than the number of entries in the matrix, i.e., m � n1 × n2.

Unless we can leverage some additional prior information about X, the problem

of recovering X from the linear measurements y is ill-posed.

We will consider applications in which we can leverage the following powerful

piece of structural information: the target matrixX is low-rank or approximately

so. Recall that the rank of a matrix X is the dimension of the linear subspace

col(X) spanned by the columns of X. If X = [x1 | · · · | xn2
] ∈ Rn1×n2 is a

data matrix whose columns are n1-dimensional vectors, then rank(X) = r � n1

if and only if the columns of X lie on an r-dimensional linear subspace of the

data space Rn1 – see Figure 4.1 for an illustration. Low-rank matrix recovery

problems arise in a broad range of application areas. We sketch a few of these

below.
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xi

Data space Rn1

range(X)

dimension = rank(X)

Figure 4.1 Low-rank Data Matrices. If matrix X with columns x1, . . . ,xn2 has
rank r, its columns lie on an r-dimensional subspace range(X). Many naturally
occurring data matrices approximately satisfy this property. Right: low-dimensional
approximations to images of faces under different lighting conditions.

4.1 Motivating Examples of Low-Rank Modeling

4.1.1 3D Shape from Photometric Measurements

As mentioned in the introduction, there are many situations in which low-rank

data models arise due to the physical processes that generate the data. If the

generative process has limited degrees of freedom, the data we observe would in-

trinsically be low dimensional, regardless of the dimension of the ambient space in

which such data are observed or measured. For example, in computer vision, low

rank models arise in a number of problems in reconstructing three-dimensional

shape of a scene from two-dimensional images.1 In photometric stereo [Woo80],

we obtain images y1, . . . ,yn2
∈ Rn1 of an object, say a face, illuminated by

different distant point light sources. Write Y = [y1 | · · · | yn2
] ∈ Rn1×n2 . Let

l1, . . . , ln2
∈ S2 denote the directions of these light sources. The Lambertian

model for reflectance models the reflected light intensity as

Yij = αi[〈νi, lj〉]+,

where νi ∈ S2 is the surface normal at the i-th pixel, αi is a nonnegative scalar

known as the albedo, and [·]+ takes the positive part of its argument. This model

is appropriate for matte objects. See Figure 4.2 for a visualization of this model.

1 Do not confuse the dimension of the measurements, in this case, the number of pixels with

the physical dimension of the image array, which is two.
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Images yj under

different lighting lj

Object shape and albedo

light

lj

Pixel i

Normal vector νi

yj(i) = [αi 〈νi, lj〉]+.

Intensity at pixel i

Figure 4.2 Photometric Stereo as Low-rank Matrix Recovery. Photometric
stereo (left) seeks to recover object shape from images taken under different
illuminations. Under a diffuse reflective (Lambertian) model (right), this leads
directly to a low-rank recovery problem.

Under this model, if we let

N =




α1ν
∗
1

...

αmν
∗
m


 ∈ Rn1×3, and L =

[
l1 | · · · | ln2

]
∈ R3×n2 ,

then we have

Y = PΩ[NL],

where

Ω
.
= {(i, j) | 〈νi, lj〉 ≥ 0}.

If we can recover the low-rank matrix X = NL (of maximum rank 3), we can

then recover information about the shape and reflectance of the object. Again,

a useful heuristic is to look for a solution of minimum rank consistent with the

observations [WGS+10]:

min rank(X),

subject to PΩ[X] = Y .

(4.1.1)

The reader can obtain an open-source implementation of this example from:

https://github.com/yasumat/RobustPhotometricStereo. More detailed dis-

cussion will be covered in Chapter 14.

4.1.2 Recommendation Systems

In this example, imagine that we have n2 products of interest, and n1 users. Users

consume products and rate them based on the quality of their experience. Our

https://github.com/yasumat/RobustPhotometricStereo
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

Observed (Incomplete) Ratings Y

Figure 4.3 Collaborative Filtering as Low-rank Matrix Completion. Consider
a universe of n1 users and n2 items. Users experience items, and then rate their
experience. Our observation Y consists of those ratings that user have provided: Yij is
user i’s rating of item j. We wish to predict users ratings of items that they have not
yet rated. This can be viewed as attempting to recover a large matrix X from a
subset Y = PΩ[X] of its entries.

goal is to use the information of all the users’ ratings to predict which products

will appeal to a given user. Formally, our object of interest is a large, unknown

matrix

X ∈ Rn1×n2 ,

whose (i, j) entry contains user i’s degree of preference for item j. If we let

Ω
.
=
{

(i, j) | user i has rated product j
}
,

then we observe

Y
Observed ratings

= PΩ

[
X

Complete ratings

]
.

Here, PΩ is the projection operator onto the subset Ω:

PΩ[X](i, j) =

{
Xij (i, j) ∈ Ω,

0 else.

See Figure 4.3 for a schematic representation of this scenario.

Our goal is to fill in the missing entries of X. This problem is encountered

in online recommendation systems – the most famous recent instance being the

“Netflix Prize” competition conducted between 2006 and 2009. See the Wikipedia

page: https://en.wikipedia.org/wiki/Netflix_Prize for details. Obviously,

with no additional assumptions, the problem of filling in the missing entries of

X is ill-posed. One popular assumption is that the ratings of distinct users (or

distinct products) are correlated, and hence the target matrix X is low-rank,

or approximately so. The relevant mathematical problem then becomes filling in

https://en.wikipedia.org/wiki/Netflix_Prize
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the missing entries of a low-rank matrix, or, somewhat equivalently, looking for

the matrix X of minimum rank that is consistent with our given observations:

min rank(X),

subject to PΩ[X] = Y .

(4.1.2)

This problem is often referred to as matrix completion [CR09].

4.1.3 Euclidean Distance Matrix Embedding

This useful problem can be stated as follows: assume that we have n points

X = [x1 | · · · | xn] living in Rd. We can define a matrix D via

Dij = d2(xi,xj) = ‖xi − xj‖22.

Here D is known as a Euclidean distance matrix. Now imagine the following

scenario: rather than observing the xi themselves, we instead see their pairwise

distances d(xi,xj). How can we tell if these distances were generated by some

configuration of points living in Rd? A necessary and sufficient condition is given

by the following classical result:

Theorem 4.1 (Schoenberg Theorem). D ∈ Rn×n is a Euclidean distance matrix

for some set of n points in Rd if and only if the following conditions hold:

• D is symmetric.

• Dii = 0 for all i ∈ {1, . . . , n}.
• ΦDΦ∗ � 0, where Φ = I − 1

n11∗ is the centering matrix (here 1 ∈ Rn is the

vector whose entries are all ones).

• rank (ΦDΦ∗) ≤ d.

We leave the proof of this theorem as an exercise to the reader. See Exercise

4.1.

Now imagine we only know Dij for some subset Ω ⊂ {1, . . . , n} × {1, . . . , n},
i.e., we observe Y = PΩ[D]. We can cast the problem of looking for a Euclidean

distance matrix that agrees with our observations as a rank minimization prob-

lem:

min rank (ΦDΦ∗) ,
subject to ΦDΦ∗ � 0, D = D∗, PΩ[D] = Y , ∀iDii = 0.

(4.1.3)

4.1.4 Latent Semantic Analysis

Low-dimensional models are very popular in document analysis. Consider an

idealized problem in search or document retrieval. The system has access to n2

documents (say, news articles), each of which is viewed as a collection of words in

a dictionary of size n1. For the j-th document, we compute a histogram of word
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occurrences, giving an n1-dimensional vector yj whose i-th entry is the fraction

of occurrences of word i in document j. Set

Y
Word occurrences

=

W
o
rd

s [
y1 | · · · | yn2

]

Documents

.

We model these observations as follows. We imagine that there exists a set of

“topics” t1, . . . , tr. Each topic is a probability distribution on {1, 2, . . . , n1}. We

may imagine that the tl corresponds loosely to our informal notion of what a

topic is – say, architecture or New York city. An article on architecture in New

York would involve multiple topics. We model this as a mixture distribution,

writing

pj
Word distribution for document j

=

r∑

l=1

tlj
topic

αl,j ,
abundance

where α1,j + α2,j + · · ·+ αr,j = 1. We imagine that yj is generated by sampling

words independently at random from the mixture distribution pj and computing

a histogram.2 If the number of words sampled is large, we can imagine yj ≈ pj .
So, if we write T = [t1, . . . , tr] and A = [α1, . . . ,αn], then we have

Y
Word occurrences

≈ T
Topics

A.
Abundances

(4.1.4)

Notice that rank(TA) ≤ r: the rank is bounded by the number of topics. Latent

semantic analysis computes a best low-rank approximation to Y and then uses

it for search and indexing [DFL+88, DDF+90]. There are several advanced ex-

tensions to the basic latent semantic indexing (LSI) model, such as probabilistic

LSI (pLSI) [Hof99, Hof04], Latent Dirichlet Allocation (LDA) [BNJ03], and a

joint topic-document model (via low-rank and sparse matrix) [MZWM10].

Many additional examples arise, for example in solving positioning problems,

problems in system identification, quantum state tomography, image and video

alignment, etc. We will survey more of these in the coming application chapters.

4.2 Representing Low-Rank Matrix via SVD

In all of the applications described above, our goal is to recover an unknown X

whose columns live on an r-dimensional linear subspace of the data space Rn1 .

This subspace can be characterized via the singular value decomposition (SVD)

of X (see Appendix A.8 for a more detailed review):

Theorem 4.2 (Compact SVD). Let X ∈ Rn1×n2 be a matrix, and r = rank(X).

Then there exist Σ = diag(σ1, . . . , σr) with numbers σ1 ≥ σ2 ≥ · · · ≥ σr > 0 and

2 In practice, researchers have observed that more complicated methods of constructing Y
(say, using the TF-IDF weighting) improves performance compared to just using the
histogram.
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matrices U ∈ Rn1×r, V ∈ Rn2×r, such that U∗U = I, V ∗V = I and

X = UΣV ∗ =

r∑

i=1

σiuiv
∗
i . (4.2.1)

Exercise 4.2 gives a guided proof of this result. This construction turns out

to be a very versatile tool both for theory and for numerical computation. The

full singular value decomposition extends the matrices U and V to complete

orthonormal bases for Rn1 and Rn2 , respectively, by adding bases for the left and

right null spaces of X:

Theorem 4.3 (SVD). Let X ∈ Rn1×n2 be a matrix. Then there exist orthogonal

matrices U ∈ O(n1) and V ∈ O(n2), and numbers

σ1 ≥ σ2 ≥ · · · ≥ σmin{n1,n2}

such that if we let Σ ∈ Rn1×n2 with Σii = σi and Σij = 0 for i 6= j,

X = UΣV ∗. (4.2.2)

Fact 4.4 (Properties of the SVD). We note the following properties of the con-

struction in Theorem 4.2:

• The left singular vectors ui are the eigenvectors of XX∗ (check this!).

• The right singular vectors vi are the eigenvectors of X∗X.

• The nonzero singular values σi are the positive square roots of the positive

eigenvalues λi of X∗X.

• The nonzero singular values σi are also the positive square roots of the positive

eigenvalues λi of XX∗.

Notice that since U and V are nonsingular, the rank(X) = rank(Σ). Since

Σ is diagonal, this quantity is especially simple – it is simply the number of

nonzero entries σi! Here, and below, we will let σ(X) = (σ1, . . . , σmin{n1,n2}) ∈
Rmin{n1,n2} denote the vector of singular values of X. Then, in the language that

we’ve been developing thus far,

rank(X) = ‖σ(X)‖0 . (4.2.3)

Hence any problem that minimizes the rank of an unknown matrix X is essen-

tially minimizing the number of nonzero singular values of X – the “sparsity”

of singular values, subject to data constraints.

4.2.1 Singular Vectors via Nonconvex Optimization

The SVD can be computed in time O(max {n1, n2}min {n1, n2}2). The first r

singular value/vector triples can be computed in time O(n1n2r). Hence, the

problem of finding a linear subspace that best fits a given set of data can be solved

in polynomial time. On the surface this is quite remarkable – the problem of
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computing singular vectors is nonconvex. We briefly describe why this nonconvex

problem can be solved globally in an efficient manner.

We give a brief indication of why it is possible to efficiently compute singular

vectors of a matrix X. Consider the matrix Γ
.
= XX∗. Let Γ = UΛU∗ be the

eigenvalue decomposition of Γ and Λ = diag(λ1, . . . , λn1) be the eigenvalues.

It is obvious that the left singular vectors ui of X are the eigenvectors of Γ.

Because our goal in this paragraph is merely to convey intuition, we make the

simplifying assumption that Γ has no repeated eigenvalues and λ1 is the largest.

We show how to use nonconvex optimization to compute the leading eigenvector

u1 – see Exercise 4.5 for extensions to repeated leading eigenvectors.

Consider the optimization problem

min ϕ(q) ≡ −1
2q
∗Γq,

subject to ‖q‖22 = 1.

(4.2.4)

The gradient and Hessian of the function ϕ(q) are

∇ϕ(q) = −Γq and ∇2ϕ(q) = −Γ, (4.2.5)

respectively. A point q is a critical point of the function ϕ over the sphere:

Sn−1 =
{
q | ‖q‖22 = 1

}

if there is no direction v ⊥ q (i.e., no direction that is tangent to the sphere

at q) along which the function decreases. Equivalently, q is a critical point of ϕ

over the sphere if and only if the gradient is proportional to q:

∇ϕ(q) ∝ q. (4.2.6)

Using our expression for ∇ϕ, this is true if and only if Γq = λq for some λ: The

critical points of ϕ over Sn−1 are precisely the eigenvectors ±ui of Γ.

Which critical points ±ui are actual local or global minimizers (instead of

saddle points)? To answer this question, we need to study the curvature of the

function ϕ(q) around a critical point q̄. In Euclidean space, the correct tool

for studying curvature is the Hessian, as is justified by the second order Taylor

expansion of the function along the curve x(t) = x+ tv:

f(x+ tv) = f(x) + t 〈∇f(x),v〉
= 0 at any critical point

+ 1
2 t

2v∗∇2f(x)v + o(t2).

In Euclidean space, a critical point x̄ is a local minimizer if ∇2f(x̄) � 0. Con-

versely, if ∇2f(x̄) has a negative eigenvalue, the point is not a local minimizer.

Over the sphere, we can perform a similar Taylor expansion, but we need to

replace the straight line x(t) = x+ tv with a great circle3

q(t) = q cos(t) + v sin(t), (4.2.7)

3 Curves of this form are geodesics on Sn−1.
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Objective:

ϕ(q) = − 1
2
q∗Γq

Critical point:

∇ϕ(q) = λq

q

∇ϕ(q)

q̈(0) = −q

q

q(t)

q̇(0) = v

Curvature:

d2

dt2
ϕ(q(t))

∣∣
t=0

= v∗∇2ϕ(q)v

+ 〈∇ϕ(q),−q〉 ‖v‖22.

Figure 4.4 Eigenvector Computation as Nonconvex Optimization over the
Sphere. We plot ϕ(q) = − 1

2
q∗Γq over the sphere, for one particular Γ. Red dots

represent the eigenvectors of Γ. Critical points (middle) are points q for which ∇ϕ(q)
is proportional to q. Every critical point is an eigenvector of Γ; the only local
minimizers are eigenvectors that correspond to the largest eigenvalue λ1(Γ). Right:
curvature of the ϕ over the sphere comes from both curvature ∇2ϕ of ϕ and the
curvature of the sphere.

where v ⊥ q and ‖v‖2 = 1. Calculus shows that the second directional derivative

of ϕ(q(t)) is given by

d2

dt2
ϕ(q(t))

∣∣∣
t=0

= v∗∇2ϕ(q)v
Curvature of ϕ

− 〈∇ϕ(q), q〉v∗v.
Curvature of the sphere

(4.2.8)

This formula contains two terms, which combine the usual Hessian of ϕ (account-

ing for the curvature of ϕ) and a second correction term involving −〈∇ϕ(q), q〉
which accounts for the fact that the curve q(t) curves in the −q direction in

order to stay on the sphere.

Noting that ∇2ϕ(q) = −Γ. So we have 〈∇ϕ(ui),ui〉 = −u∗iΓui = −λi, we

observe that at a critical point q̄ = ±ui, the second derivative in the v direction

is

d2

dt2
ϕ(q(t))

∣∣∣
t=0

= v∗
(
−Γ + λiI

)
v. (4.2.9)

The eigenvalues of the operator −Γ+λi take the form −λj+λi; there is a strictly

negative eigenvalue if ui is an eigenvector that does not correspond to the largest

eigenvalue λ1. So ±u1 are the only local minimizers of ϕ. All other critical points

have a direction of strict negative curvature. This benign geometry implies that

a simple projected gradient method converges to a global optimizer from almost

any initialization. This phenomenon turns out to be rather representative of

optimization problems associated with learning low-dimensional models for high-

dimensional data, as we will return more formally to study them in Chapter 7.

For computing leading eigenvalue and eigenvector, we can do more than em-

ploying the generic gradient descent. Exercise 4.6 gives a more specific algorithm,
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the power iteration method, which is much faster and more commonly used. In

Section 9.3.2 of Chapter 9, we will give a precise characterization of the com-

putational complexity of this method as well as its more efficient variant.4 For

now, we take these observations as an intuitive indication of why the SVD is

amenable to efficient computation.

Implications and History.
Whichever rationale we adopt, the fact that the SVD can be both optimal (in

a precisely defined and often quite relevant sense) and efficient (at least for

moderate problems) makes it a very useful element in the numerical comput-

ing toolbox. The canonical example application of the SVD is Principal Com-

ponent Analysis (PCA). Outlined in 1901 and 1933 papers by Pearson and

Hotelling [Pea01, Hot33], respectively, PCA finds a best-fitting low-dimensional

subspace, which can be computed via the SVD, as suggested by Theorem 4.5

below. Remarkably, Pearson’s 1901 paper asserts that PCA is “well-suited to

numerical computation” – meaning hand calculations!

4.2.2 Best Low-Rank Matrix Approximation

We are interested in recovering a low-rank matrix that is consistent with certain

linear observations. Because the rank has a similar characteristics to the `0 norm,

one should expect that these problems would be computationally intractable in

general, as in the case with recovering a sparse solution (see Theorem 2.8).

Remarkably, there are however a few special instances of rank minimization

that we can solve efficiently, with virtually no assumptions on the input. The

most important is the best rank-r approximation problem, in which we try to

approximate an arbitrary input matrix Y with a matrix X of rank at most r

such that the approximation error ‖X − Y ‖F is as small as possible. The optimal

solution to this problem can be obtained by simply retaining the first r leading

singular values/vectors of Y :

Theorem 4.5 (Best Low-rank Approximation). Let Y ∈ Rn1×n2 , and consider

the following optimization problem

min ‖X − Y ‖F ,
subject to rank(X) ≤ r.

(4.2.10)

Every optimal solution X̂ to the above problem has the form X̂ =
∑r
i=1 σiuiv

∗
i ,

where Y =
∑min(n1,n2)
i=1 σiuiv

∗
i is a (full) singular value decomposition of Y .

In fact, the same solution (truncating the SVD) also solves the low-rank ap-

proximation problem when the error is measured in the operator norm, or any

other orthogonal-invariant matrix norm (see Appendix A). Please see Exercise

4.3 for guidance on how to prove Theorem 4.5.

4 The Lanczos method for computing the leading eigenvalue and eigenvector.
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The problem (4.2.10) can be turned around and cast as one of minimizing the

rank of the unknown matrix, subject to a data fidelity constraint:

min rank(X),

subject to ‖X − Y ‖F ≤ ε.
(4.2.11)

This is an example of a matrix rank minimization problem – we seek a matrix

of minimum rank that is consistent with some given observations. Because of its

very special nature, this particular rank minimization can be solved optimally

via the SVD. We leave the solution to this problem as an exercise to the reader

(see Exercise 4.4).5

4.3 Recovering a Low-Rank Matrix

4.3.1 General Rank Minimization Problems

In the previous section, we saw that for certain very specific rank minimization

problems, globally optimal solutions could be obtained using efficient algorithms

based on the singular value decomposition. However, all of the applications dis-

cussed above (and many others!) force us to attempt to minimize the rank of X

over much more complicated sets. One model example problem is the affine rank

minimization problem [FHB04]:

min rank(X),

subject to A[X] = y.

(4.3.1)

Here y ∈ Rm is an observation, and A : Rn1×n2 → Rm is a linear map. When

m � n1n2, the linear system of equations A[X] = y is underdetermined. The

notion of a linear map A from n1 × n2 matrices to m-dimensional vectors may

seem somewhat abstract. Any linear map of this form can be represented using

the matrix inner product6:

A[X] = (〈A1,X〉, . . . , 〈Am,X〉). (4.3.2)

Here, the set of matrices A1, . . . ,Am ∈ Rn1×n2 define our “measurements” y,

through their inner products with the unknown matrix X.7

A mathematically simple and natural assumption on these “measurement”

matrices is that they are i.i.d. Gaussian matrices. Such an assumption will al-

low us to understand the conditions under which one could expect to recover a

low-rank matrix with generic measurements. Hence, our first attempt to under-

stand the low-rank recovery problem will rely on such a simplifying assumption.

However, in many practical problems of interest, the operator A has particular

5 Hint: you may first try to guess what the optimal solution is and then show its optimality.
6 Recall that the standard inner product between matrices P ,Q ∈ Rn1×n2 is defined by

〈P ,Q〉 =
∑
ij PijQij = trace[Q∗P ].

7 You can think of the measurements Ai as analogous to the rows a∗i of the matrix A in the

equation y = Ax studied in Chapters 2-3.
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structures that make it behave differently. As a concrete example, in the matrix

completion problems discussed above, we would have m = |Ω|, and Al = eile
∗
jl

,

with Ω = {(i1, j1), . . . , (im, jm)}. We will also thoroughly analyze this important

special case and provide conditions under which the recovery can be successful.

Connection to `0, NP-hardness.
To make the connection to sparse recovery explicit, using the observation that

rank(X) = ‖σ(X)‖0, we can rewrite the affine rank minimization problem as

min ‖σ(X)‖0
subject to A[X] = y.

(4.3.3)

Moreover, if X is a diagonal matrix, then rank(X) = ‖X‖0. So, every `0 min-

imization problem can be converted into a rank minimization problem with a

diagonal constraint. This means that in the worst case, the rank minimization

problem is at least as hard as the `0 minimization problem: it is NP-hard (as

shown in Theorem 2.8).

As was the case for `0 minimization, we could simply give up here in searching

for tractable algorithms. However, given the close analogy between rank mini-

mization and `0 minimization, we might hope that there could be some fairly

broad subclass of “nice enough” instances that we can solve efficiently.

4.3.2 Convex Relaxation of Rank Minimization

The close analogy to `0 minimization suggests a natural strategy: replace the

rank, which is the `0 norm σ(X) with the `1 norm of σ(X):

‖σ(X)‖1 =
∑

i

σi(X). (4.3.4)

We call this function the nuclear norm of X, and reserve the special notation

‖X‖∗ =
∑

i

σi(X). (4.3.5)

When X is a symmetric positive semidefinite matrix, X has real nonnegative

eigenvalues, and σi(X) = λi(X). Since
∑
i λi(X) = trace(X), in the special case

when X is semidefinite, ‖X‖∗ = trace[X]. For this reason, the nuclear norm is

sometimes also referred to as the trace norm. Other names in various literatures

include the Schatten 1-norm and Ky-Fan k-norm.8

When X is not a semidefinite matrix, the function ‖X‖∗ depends on the

entries in a very complicated way. The results below give a couple of equivalent

characterizations of the nuclear norm, which will be useful later in this book when

we deal with certain nonconvex formulation of rank minimization (in Chapter

7).

8 For p ∈ [1,∞], the Schatten p-norm of a matrix is ‖X‖Sp = ‖σ(X)‖p. The Ky-Fan

k-norm is ‖X‖KFk =
∑k
i=1 σi(X). Both of these functions are examples of orthogonal

invariant matrix norms, see Appendix A.9 for more details.
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Proposition 4.6 (Variational Forms of Nuclear Norm). The nuclear norm of a

matrix ‖X‖∗ is equivalent to the following variational forms:

1 ‖X‖∗ = minU ,V
1
2 (‖U‖2F + ‖V ‖2F ), s.t. X = UV ∗.

2 ‖X‖∗ = minU ,V ‖U‖F ‖V ‖F , s.t. X = UV ∗.
3 ‖X‖∗ = minU ,V

∑
k ‖uk‖2‖vk‖2, s.t. X = UV ∗

.
=
∑
k ukv

∗
k.

This proposition can be proved by showing that the global minimum of each

of these problems is reached when U? = Uo

√
Σo and V ? = V o

√
Σo, where

X = UoΣoV
∗
o is any singular value decomposition of X. This can be readily

shown, by noting that each of the objective functions is invariant to orthogonal

transformations, and reducing to the case when X is a diagonal matrix, and

carefully examining this special case. We leave the details as an exercise for the

reader.

Notice that in the above variational forms, there is no restriction on the di-

mensions of the two factors U ,V as long as the equality X = UV ∗ holds. Hence

choosing U ,V to be matrices of larger sizes does not affect the minimization.

These forms will become very useful when we consider alternative ways to mini-

mize the nuclear norm for promoting low-rank property, as we will examine later

in Chapter 7.

Despite the above characterization, it remains not obvious at all that the sum

of singular values is a norm, or even is indeed a convex function of the matrix.

To allay any suspicion, we give a quick proof that ‖·‖∗ is indeed a norm:

Theorem 4.7. For M ∈ Rn1×n2 , let ‖M‖∗ =
∑min{n1,n2}
i=1 σi(M). Then ‖·‖∗ is

a norm. Moreover, the nuclear norm and the `2 operator norm (or the spectral

norm) are dual norms:

‖M‖∗ = sup
‖N‖≤1

〈M ,N〉 , and ‖M‖ = sup
‖N‖∗≤1

〈M ,N〉 . (4.3.6)

Proof We begin by proving the first equality in (4.3.6). Let

M = UΣV ∗ (4.3.7)

be a full singular value decomposition of M , with U ∈ O(n1), V ∈ O(n2), and

Σ ∈ Rn1×n2 , and note that

sup
‖N‖≤1

〈N ,M〉 = sup
‖N‖≤1

〈N ,UΣV ∗〉

= sup
‖N‖≤1

〈
U∗NV ,




σ1

. . .

σn2

0 0 0
...




〉

≥
n2∑

i=1

σi, (4.3.8)
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where the last line follows by making a particular choice

N = U




1
. . .

1

0 0 0
...



V ∗. (4.3.9)

So, supN 〈N ,M〉 ≥ ‖M‖∗.
For the opposite direction, notice if matrix N ∈ Rn1×n2 satisfies ‖N‖ ≤ 1,

then N̄
.
= U∗NV has columns of `2 norm at most one. Thus, for each i, N̄ii ≤ 1,

and

〈N ,M〉 =
〈
N̄ ,Σ

〉
=

n2∑

i=1

N̄iiσi ≤
∑

i

σi = ‖M‖∗ . (4.3.10)

This establishes the result.

For the second equality in (4.3.6), notice that for any nonzero M ,

〈M ,N〉 = ‖M‖
〈
M

‖M‖ ,N
〉

≤ ‖M‖ ‖N‖∗ . (4.3.11)

Hence, sup‖N‖∗≤1 〈M ,N〉 ≤ ‖M‖. To show that this inequality is actually

an equality, let’s take N = u1v
∗
1, and notice that ‖N‖∗ = 1 and 〈M ,N〉 =

u∗1Mv1 = σ1(M) = ‖M‖. This completes the proof of (4.3.6).

To see that ‖·‖∗ is indeed a norm, we just use (4.3.6) to verify that the three

axioms of a norm are satisfied. Since the singular values are nonnegative, and

σ1(M) = 0 if and only if M = 0, it is immediate that ‖M‖∗ ≥ 0 with equality

iff M = 0. For nonnegative homogeneity, notice that for t ∈ R+,

‖tM‖∗ = sup
‖N‖≤1

〈tM ,N〉 = t sup
‖N‖≤1

〈M ,N〉 = t ‖M‖∗ . (4.3.12)

Finally, for the triangle inequality, consider two matrices M and M ′, and notice

that

∥∥M +M ′∥∥
∗ = sup
‖Ñ‖≤1

〈
M +M ′, Ñ

〉

≤ sup
‖N‖≤1

〈M ,N〉 + sup
‖N ′‖≤1

〈
M ′,N ′

〉

= ‖M‖∗ +
∥∥M ′∥∥

∗ , (4.3.13)

verifying the triangle inequality. This shows that ‖·‖∗ is indeed a norm.

The above proof highlights a useful fact about ‖·‖∗: it is the dual norm of the

operator norm ‖X‖ = σ1(X). The fact that ‖·‖∗ is the dual norm of ‖·‖ explains

the ∗ notation – this symbol is often used for duality.



150 Convex Methods for Low-Rank Matrix Recovery

xo
Xo

(a) `1 ball B1 (b) Nuclear norm ball B∗

Figure 4.5 Visualization of the `1 ball B1 for sparse vectors x and the nuclear norm
ball B∗ for symmetry 2× 2 matrices. The red affine subspace represents the solution
space to the equation Ax = Axo for vectors (left) and the equation A[X] = A[Xo]
for matrices (right). The target low-rank matrix Xo is the unique minimum nuclear
norm solution to this equation if and only the only intersects B∗ at Xo.

Because ‖·‖∗ is a norm, it is convex. Hence, a natural convex replacement for

the rank minimization problem is the nuclear norm minimization problem

min ‖X‖∗ ,
subject to A[X] = y.

(4.3.14)

This problem is convex, and moreover is efficiently solvable. In Chapter 8, we

will see how to use the special structure of this problem to give practical, efficient

algorithms which work well at moderate scales.

Example 4.8 (Nuclear Norm Ball). To visualize the nuclear norm, let us con-

sider the set of 2× 2 symmetric matrices, parameterized as

M =

[
x y

y z

]
∈ R2×2. (4.3.15)

We leave as an exercise for the reader to find out the conditions on the three

coordinates (x, y, z) ∈ R3 such that ‖M‖∗ = 1. Let B∗ = {M | ‖M‖∗ ≤ 1}
be the unit ball defined by the nuclear norm. If we visualize such points in R3,

the nuclear norm ball looks like a cylinder shown in Figure 4.5. The two circles

at both ends of the cylinder correspond to matrices of rank 1, which has a high

chance to meet the affine subspace containing all solutions satisfying A[X] = y.

4.3.3 Nuclear Norm as a Convex Envelope of Rank

From the analogy to `0/`1 minimization, we might guess that the nuclear norm

is a good convex surrogate for the rank, over some appropriate set. Recall that
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we have proved in Theorem 2.11 that the `1 norm was the convex envelope of

the `0 norm over the `∞ ball. Since for a matrix X, ‖σ(X)‖∞ = σ1(X) = ‖X‖,
you might guess the following relationship:

Theorem 4.9. ‖M‖∗ is the convex envelope of rank(M) over

Bop
.
= {M | ‖M‖ ≤ 1} . (4.3.16)

Proof We prove that any convex function f(·) which satisfies

f(M) ≤ rank(M) (4.3.17)

for all M ∈ Bop, is dominated by the nuclear norm: f(M) ≤ ‖M‖∗.
Write the SVD M = UΣV ∗. Notice that

Σ ∈ conv
{

diag (w) | w ∈ {0, 1}min{n1,n2}
}
, (4.3.18)

and for any w ∈ {0, 1}min{n1,n2},

‖Udiag(w)V ∗‖∗ =
∑

i

wi = rank(Udiag(w)V ∗). (4.3.19)

Writing

Σ =
∑

i

λidiag(wi) (4.3.20)

with wi ∈ {0, 1}min{n1,n2} with λi ≥ 0 and
∑
i λi = 1, and applying Jensen’s

inequality, we obtain

f(M) = f

(
U
∑

i

λidiag(wi)V
∗
)

(4.3.21)

≤
∑

i

λif (Udiag(wi)V
∗) (4.3.22)

≤
∑

i

λirank (Udiag(wi)V
∗) (4.3.23)

=
∑

i

λi ‖wi‖1 (4.3.24)

=
∥∥∥U

∑

i

λidiag(wi)V
∗
∥∥∥
∗

(4.3.25)

= ‖M‖∗ (4.3.26)

as desired.

Note that this proof essentially mirrored our argument for `1 and `∞. This is

not a coincidence!
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4.3.4 Success of Nuclear Norm under Rank-RIP

For now, assuming that we can solve nuclear norm minimization problems ef-

ficiently (say with algorithms given in Chapter 8), we turn our attention to

whether nuclear norm minimization actually gives the correct answers. Namely,

if we know that y = A[Xo], with r = rank(Xo) � n, is it true that Xo is

the unique optimal solution to the nuclear norm minimization problem (4.3.14)?

What we can say depends strongly on what we know about the operator A.

By analogy to the sparse recovery problem, we can ask if it is enough for

A to preserve the geometry of a small set of structured objects – here, the low-

rank matrices. Formally, we can define a rank-restricted isometry property, under

which for every rank-r X, ‖A[X]‖2 ≈ ‖X‖F .

Definition 4.10 (Rank-Restricted Isometry Property [RFP10] ). The operator

A has the rank-restricted isometry property of rank r with constant δ, if ∀X’s

that satisfy rank(X) ≤ r, we have

(1− δ)‖X‖2F ≤ ‖A[X]‖22 ≤ (1 + δ)‖X‖2F . (4.3.27)

The rank-r restricted isometry constant δr(A) is the smallest δ such that the

above property holds.

As with the RIP for sparse vectors, the rank-RIP implies uniqueness of struc-

tured (low-rank) solutions:

Theorem 4.11. If y = A[Xo], with r = rank(Xo) and δ2r(A) < 1, then Xo is

the unique optimal solution to the rank minimization problem

min rank(X)

subject to A[X] = y.

(4.3.28)

We leave the proof of this claim as an exercise to the reader (see Exercise 4.14).

The key property is the subadditivity of the matrix rank, namely,

rank(X +X ′) ≤ rank(X) + rank(X ′). (4.3.29)

Moreover, like the RIP for sparse vectors, when the rank-RIP holds with suffi-

ciently small constant δ, we can conclude that nuclear norm minimization will

recover the desired low-rank solution:

Theorem 4.12 (Nuclear Norm Minimization [RFP10]). Suppose that y = A[Xo]

with rank(Xo) ≤ r, and that δ4r(A) ≤
√

2 − 1. Then Xo is the unique optimal

solution to the nuclear norm minimization problem

min ‖X‖∗
subject to A[X] = y.

(4.3.30)

There is nothing special here about the numbers 4r and
√

2−1. The interesting

part is the qualitative statement: if A respects the geometry of low-rank matrices

in a sufficiently strong sense, then nuclear norm minimization succeeds. The
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Xo

T

Mr = {X | rank(X) = r}

Figure 4.6 “Support” of a Low-rank Matrix Xo. Consider a rank-r matrix Xo

with compact singular value decomposition Xo = UΣV ∗. The subspace
T = {UR∗ +QV ∗} can be interpreted as the tangent space to the collection Mr of
rank-r matrices at Xo.

proof is analogous to the proof we gave in the previous chapter for the success

of `1 minimization for recovering sparse signals. However, to extend the proof

techniques from `1 to nuclear norm, we need to generalize a few concepts from

vectors to matrices.

“Support” and “Signs” of a Low-rank Matrix.
Let Xo = UΣV ∗ denote the compact SVD of the true solution Xo. Let

T
.
=
{
UR∗ +QV ∗ | R ∈ Rn2×r, Q ∈ Rn1×r} ⊆ Rn1×n2 . (4.3.31)

Notice that T is a linear subspace. In the analogy between `1 minimization and

nuclear norm minimization, the subspace T plays the role of the “support” of

Xo. Geometrically, T represents the tangent space to the set of rank-r matrices at

Xo – see Figure 4.6 and Exercise 4.11. The subspace T is generated by matrices

UR∗ whose column space is contained in col(Xo) and matrices QV ∗ whose row

space is contained in row(Xo). Notice that elements in T have rank no more

than 2r. Meanwhile the matrix UV ∗ plays the role of the “signs” of Xo since

UV ∗ ∈ T and

〈Xo,UV
∗〉 = ‖Xo‖∗ . (4.3.32)

The orthogonal complement of T is

T⊥
.
= {M | col(M) ⊥ col(X), row(M) ⊥ row(X)} . (4.3.33)

Let PU = UU∗ and P V = V V ∗ be the orthogonal projections onto the column

space and row space of Xo, respectively. Then the orthogonal projections onto

these subspaces are given by9

PT[M ] = PUM +MP V − PUMP V , (4.3.34)

and

PT⊥ [M ] = (I − PU )M(I − P V ). (4.3.35)

9 Equations (4.3.34) and (4.3.35) can be derived from the condition that at PT[M ], the

error M − PT[M ] is orthogonal to T.
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Notice that because the orthogonal projections PU⊥ = I − PU and P V ⊥ =

I − P V have norm at most one, PT⊥ does not increase the operator norm:

‖PT⊥ [M ]‖ ≤ ‖M‖ . (4.3.36)

Feasible Cone Restriction.
Note that any matrix M ∈ T⊥ has columns that are orthogonal to the columns

of U and rows that are orthogonal to the rows of V ∗. This implies that

‖M +UV ∗‖ = max {‖M‖ , ‖UV ∗‖} = max {‖M‖ , 1} . (4.3.37)

So, for any matrix X,

‖X‖∗ = sup
‖Q‖≤1

〈X,Q〉 (4.3.38)

≥ sup
‖M‖≤1

〈X,UV ∗ + PT⊥ [M ]〉 (4.3.39)

= 〈X,UV ∗〉+ sup
‖M‖≤1

〈PT⊥ [X],M〉 (4.3.40)

= 〈X,UV ∗〉+ ‖PT⊥ [X]‖∗ . (4.3.41)

Let X̂ be any optimal solution to our problem (4.3.30). It can be written as

X̂ = Xo +H, with H = X̂ −Xo ∈ null(A). From the above calculation, we

have

‖Xo +H‖∗ ≥ 〈Xo +H,UV ∗〉+
∥∥∥PT⊥ [X̂]

∥∥∥
∗

(4.3.42)

= ‖Xo‖∗ + 〈H,UV ∗〉+ ‖PT⊥ [H]‖∗ (4.3.43)

≥ ‖Xo‖∗ − ‖PT[H]‖∗ + ‖PT⊥ [H]‖∗ . (4.3.44)

So, if a better solution than Xo exists, the feasible perturbation H must satisfy

the following cone restriction:

‖PT⊥ [H]‖∗ ≤ ‖PT[H]‖∗ . (4.3.45)

Matrix Restricted Strong Convexity Property.
As in the proof of `1 success, we want to show that feasible perturbations

H ∈ null(A) must have ‖PT⊥ [H]‖∗ > ‖PT[H]‖∗. This is true if the operator

A satisfies the following (uniform) matrix restricted strong convexity property

(RSC) property:

Definition 4.13 (Matrix Restricted Strong Convexity). The linear operator A
satisfies the matrix restricted strong convexity (RSC) condition of rank r with

constant α if for the support T of every matrix of rank r and for all nonzero H

satisfying

‖PT⊥ [H]‖∗ ≤ α · ‖PT[H]‖∗ . (4.3.46)

with some constant α ≥ 1, we have

‖A[H]‖22 > µ · ‖H‖2F (4.3.47)
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for some constant µ > 0.

The following theorem says that if A satisfies the rank-RIP, then it satisfies

the matrix RSC:

Theorem 4.14 (Rank-RIP Implies Matrix RSC). If a linear operator A satisfies

rank-RIP with δ4r <
1

1+α
√

2
, then A satisfies the matrix-RSC condition of rank

r with constant α.

Both the statement and proof of Theorem 4.14 parallel Theorem 3.17 for the

`1 norm. Theorem 4.14 involves δ4r, as opposed to δ2k for k-sparse vectors. The

bigger constant in 4r = r+3r reflects the need to account for all three components

of the singular value decomposition in the proof:

Proof Using the parallelogram identity, similar to Lemma 3.16, it is not difficult

to show that for any Z, Z ′ such that Z ⊥ Z ′, and rank(Z) + rank(Z ′) ≤ 4r,
∣∣〈A[Z],A[Z ′]

〉∣∣ ≤ δ4r(A) ‖Z‖F
∥∥Z ′

∥∥
F
. (4.3.48)

Let T denote the support subspace for some matrix of rank r. Take any H that

satisfies the cone restriction ‖PT⊥ [Z]‖∗ ≤ α · ‖PT[Z]‖∗, and write

H = PT[H] + PT⊥ [H]. (4.3.49)

Let HT denote PT[H]. For the second term, PT⊥ [H], write its compact singular

value decomposition

PT⊥ [H] =
∑

i

ηiφiζ
∗
i , (4.3.50)

where φ1,φ2, . . . are the left singular vectors, ζ1, ζ2, . . . the right singular vec-

tors, and η1 ≥ η2 ≥ · · · > 0 the singular values. From the variational character-

ization of the singular vectors, each φi is orthogonal to the columns of U , and

each ζi is orthogonal to the columns of V . So, if we partition PT⊥ [H] as

PT⊥ [H] =

r∑

i=1

ηiφiζ
∗
i

︸ ︷︷ ︸
.
=Φ1

+

2r∑

i=r+1

ηiφiζ
∗
i

︸ ︷︷ ︸
.
=Φ2

+ · · · , (4.3.51)

we have Φi ⊥ Φj for i 6= j, Φi ⊥HT for every T.

Since the singular values ηi are non-increasing, the largest singular value of

the (i+ 1)-th block is bounded by the average of the singular values in the i-th

block.

∀i ≥ 1, ‖Φi+1‖ ≤
‖Φi‖∗
r

. (4.3.52)

So, noting that as an element in T, we have rank(HT) ≤ 2r and so rank(HT +

Φ1) ≤ 3r. Notice that

A[HT] +A[Φ1] = A[H]−A[Φ2]−A[Φ3]− · · · . (4.3.53)
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Then, very similar to the derivation of inequalities (3.3.32) in Theorem 3.17, and

by applying the rank-RIP to matrices of rank bounded by at most 4r, we have

(1− δ4r) ‖HT + Φ1‖2F
≤ 〈A[HT + Φ1],A[HT + Φ1]〉
= 〈A[HT + Φ1],A[H]−A[Φ2]−A[Φ3]− · · ·〉
≤
∑

j≥2

|〈A[HT],A[Φj ]〉|+ |〈A[Φ1],A[Φj ]〉|+ 〈A[HT + Φ1],A[H]〉

≤ δ4r (‖HT‖F + ‖Φ1‖F )
∑

j≥2

‖Φj‖F + ‖A[HT + Φ1]‖2 ‖A[H]‖2

≤ δ4r
√

2 ‖HT + Φ1‖F
∑

j≥2

‖Φj‖F + (1 + δ4r) ‖HT + Φ1‖F ‖A[H]‖2

≤ δ4r
√

2 ‖HT + Φ1‖F
‖PT⊥ [H]‖∗√

r
+ (1 + δ4r) ‖HT + Φ1‖F ‖A[H]‖2 .

Note that H is restricted by the cone condition (4.3.46), which leads to:

‖PT⊥ [H]‖∗ ≤ α ‖HT‖∗ ≤ α
√
r ‖HT‖F ≤ α

√
r ‖HT + Φ1‖F . (4.3.54)

Combining this with the previous inequality, we obtain:

‖A[H]‖2 ≥
1− δ4r(1 + α

√
2)

1 + δ4r
‖HT + Φ1‖F . (4.3.55)

Since the singular values ηi are non-increasing, the ith singular value in Φ2 +

Φ3 + · · · is no larger than the mean of the first i singular values in PT⊥ [H]. So

we have

∀i ≥ r + 1, ηi ≤ ‖PT⊥ [H]‖∗ /i. (4.3.56)

This leads to

‖Φ2 + Φ3 + · · ·‖2F =

∞∑

i=r+1

η2
i (4.3.57)

≤ ‖PT⊥ [H]‖2∗
∞∑

i=r+1

1

i2
(4.3.58)

≤ ‖PT⊥ [H]‖2∗
r

≤ α2 ‖HT‖2∗
r

(4.3.59)

≤ α2 ‖HT‖2F ≤ α2 ‖HT + Φ1‖2F . (4.3.60)

Since Φi with i ≥ 2 are orthogonal to HT + Φ1, this gives us

‖H‖2F ≤ (1 + α2) ‖HT + Φ1‖2F . (4.3.61)

Combining this with the previous bound (4.3.55) on ‖A[H]‖2, we obtain

‖A[H]‖2 ≥
1− δ4r(1 + α

√
2)

(1 + δ4r)
√

1 + α2
‖H‖F . (4.3.62)

This concludes the proof.
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Note that for the nuclear norm minimization problem, the feasible perturba-

tion H satisfies the cone restriction (4.3.45). Thus Theorem 4.12 is essentially a

corollary to Theorem 4.14 with constant α = 1 for the cone restriction.

4.3.5 Rank-RIP of Random Measurements

Theorem 4.12 indicates that the rank-RIP implies a very strong conclusion: nu-

clear norm minimization exactly recovers low-rank matrices. Moreover the re-

covery is uniform in the sense that a single set of measurements A suffices to

recover any sufficiently low-rank matrix Xo. The remaining question is what

measurement operators satisfy the rank-RIP?

Random Gaussian Measurements.
A simple and natural choice is to consider the random Gaussian measurements:

A[X] = (〈A1,X〉, . . . , 〈Am,X〉), (4.3.63)

where the entries of the matrices A1, . . . ,Am ∈ Rn1×n2 are all i.i.d. Gaussian

N (0, 1
m ). This is equivalent to viewing A as an m × n1n2 matrix with entries

Aij sampled i.i.d. N (0, 1
m ). We demonstrate that such random maps satisfy the

rank-RIP with high probability, using ideas and techniques similar to the proof

of the (regular) RIP of random Gaussian matrices in Section 3.4.2:

Theorem 4.15 (Rank-RIP of Gaussian Measurements). If the measurement op-

erator A is a random Gaussian map with entries i.i.d. N (0, 1
m ), then A satisfies

the rank-RIP with constant δr(A) ≤ δ with high probability, provided m ≥
Cr(n1 + n2)× δ−2 log δ−1, where C > 0 is a numerical constant.

Proof Let

Sr
.
= {X | rank(X) ≤ r, ‖X‖F = 1}.

Notice that δr(A) ≤ δ if and only if

sup
X∈Sr

| 〈A[X],A[X]〉 − 1 |≤ δ. (4.3.64)

We complete the rest of the proof in three steps.

1. Constructing a covering ε-net for Sr.
Notice that for any rank-r matrix X ∈ Rn1×n2 , it can be represented by its SVD;

X = UΣV ∗. So to construct a covering of all rank-r matrices, we can try to

construct a covering for each of the terms U ,V and Σ, respectively.

Lemma 4.16. There is a covering ε-net NU for the H = {U ∈ Rn1×r | U∗U = I}
in operator norm, i.e.,

∀U ∈ H, ∃U ′ ∈ NU satisfying ‖U −U ′‖ ≤ ε, (4.3.65)

of size |NU | ≤ (6/ε)n1r.
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Proof Let N′ be an ε/2-net for {U ∈ Rn1×r | ‖U‖ ≤ 1} of size |N′| ≤ (6/ε)n1r.

The existence of such a net follows immediately from the volumetric argument

used in the proof of Lemma 3.25. Let

Q
.
= {U ′ ∈ N′ | ∃U ∈ H with ‖U −U ′‖ ≤ ε/2}.

For each U ′ ∈ Q, let Û(U ′) be the nearest element of H. Set NU = {Û(U ′) |
U ′ ∈ Q} ⊆ H. By the triangle inequality, NU is an ε-net for H.

Similarly, one can construct an ε-net NV for H′ = {V ∈ Rn2×r | V ∗V = I} of

size |NV | ≤ (6/ε)n2r. With this lemma, we have the following result.

Lemma 4.17. There is a covering ε-net Nr for the set Sr, of size |Nr| ≤ exp
(
(n1+

n2)r log(18/ε) + r log(9/ε)
)
.

Proof Choose ε/3-nets NU and NV that cover H and H′, respectively, in operator

norm. According to the above lemma, the sizes of the nets can be less than

(18/ε)n1r and (18/ε)n2r, respectively. Form a covering ε/3-net NΣ for

D
.
= {Σ ∈ Rr×r | Σ diagonal, ‖Σ‖F = 1},

in Frobenius norm. According to Lemma 3.25, the size of the net can be less

than |NΣ| ≤ (9/ε)r.

Now consider the following net for the whole set Sr:

Nr
.
= {UΣV ∗ | U ∈ NU ,Σ ∈ NΣ,V ∈ NV }.

Its size is bounded by the product of all three nets, hence the expression in the

Lemma. Now we only have to show that this is indeed a covering ε-net for Sr.

For any given X = UΣV ∗, we can find X̂ = ÛΣ̂V̂
∗ ∈ Nr with ‖U − Û‖ ≤ ε/3,

‖V − V̂ ‖ ≤ ε/3, and ‖Σ− Σ̂‖F ≤ ε/3.

The triangle inequality gives

‖X − X̂‖F
≤ ‖U − Û‖‖ΣV ∗‖F + ‖Û‖‖Σ− Σ̂‖F ‖V ∗‖+ ‖ÛΣ̂‖F ‖V ∗ − V̂

∗‖
≤ ε,

where we have used that each of the approximation errors is bounded by ε/3,

‖Û‖ = ‖V ‖ = 1, and ‖ΣV ∗‖F = ‖ÛΣ̂‖F = 1.

2. Discretization.
As in the `1 case for sparse signals in Section 3.4.2, the goal of discretization

is trying to show that if A is restricted isometric on the finite set of (discrete)

points in the covering net Nr with a constant δNr , so is A on the whole set Sr,

with a constant δr possibly slightly larger than δNr .

Now consider a point X in Sr and its closest point X̂ in Nr. Thus, we have
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‖X − X̂‖F ≤ ε. Also we have10

|〈A[X],A[X]〉 − 〈A[X̂],A[X̂]〉|
= |〈A[X],A[X − X̂P V ]〉+ 〈A[X − P ÛX],A[X̂P V ]〉

+〈A[P ÛX − X̂],A[X̂P V ]〉+ 〈A[X̂],A[X̂P V − X̂]〉|.
To bound the first term in the above expression, notice that

‖X − X̂P V ‖F = ‖(X − X̂)P V ‖F ≤ ‖X − X̂‖F ≤ ε.
Also, X − X̂P V is of rank r. So we have

|〈A[X],A[X − X̂P V ]〉| ≤ (1 + δr(A))ε.

For the second term, since P Û is an orthogonal projection onto the space of

matrices whose columns are the same as X̂, we have

‖X − P ÛX‖F ≤ ‖X − X̂‖F ≤ ε.
Also, since X and P ÛX have the same row space, so X −P ÛX is of rank r or

less. Therefore, we also have

|〈A[X − P ÛX],A[X̂P V ]〉| ≤ (1 + δr(A))ε.

Similarly for the third and fourth terms, each is bounded by the same bound.

Therefore, we get

|〈A[X],A[X]〉 − 〈A[X̂],A[X̂]〉| ≤ 4(1 + δr(A))ε.

From this we have

δr(A)− δNr ≤ 4(1 + δr(A))ε. (4.3.66)

This gives

δr(A) ≤ 4ε+ δNr

1− 4ε
. (4.3.67)

3. Union bound.
For each X ∈ Nr, A[X] ∈ Rm is a random vector with entries independent

N (0, 1/m). We have

P
[∣∣∣‖A[X]‖22 − 1

∣∣∣ > t
]
≤ 2 exp(−mt2/8). (4.3.68)

Hence, summing the probabilities over all elements of Nr, we have

P [δNr > t] ≤ 2 |Nr| exp
(
−mt2/8

)

= 2 exp

(
−mt

2

8
+ (n1 + n2)r log(18/ε) + r log(9/ε)

)
.

If we choose ε = c · δ and t = c · δ for some small constant c and ensure m ≥
Cr(n1 +n2)δ−2 log δ−1 for some large enough C, the above failure probability is

10 Notice that here the derivation is more subtle than the `1 case because X − X̂ is not

necessarily of rank r.
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bounded by 2 exp(−c′mδ2). On the complement of this “failure” event, δNr ≤ c·δ,
and due to (4.3.67) we have δr(A) ≤ δ. This concludes the proof of the Theorem

4.15.

The number of measurements m = O(r(n1 + n2)) required is nearly optimal,

since an n1×n2 rank-r matrix has r(n1 +n2− r) degrees of freedom. Of course,

the big O notation hides a numerical constant. Like the `1 minimization for

sparse recovery, when the dimension is high, nuclear norm minimization exhibits

a phase transition between success and failure. Identifying this transition yields

more precise estimates of the number m of measurements required to reconstruct

a low rank matrix. We discuss this issue in more detail below.

Random Submatrix of a Unitary Basis.
Although random Gaussian measurements have very nice properties such as

(rank) RIP, the lack of structure in such measurements makes it rather expensive

to generate, store and apply such operators in practice. Hence it is natural to

ask if there exist other more structured measurements that have similarly good

RIP properties. In Section 3.4.3, we saw that given any unitary matrix that is

incoherent from sparse signals, then a randomly selected subset of its rows will

satisfy the RIP with high probability. An important special case that has been

widely used in practice for compressive sensing is a randomly chosen submatrix

of the discrete Fourier transform basis. It is then natural to ask what are the

Fourier-type bases for matrices.

In the case of sparse recovery, we start with a unitary basis U ∈ Cn×n and

show that if the rows {ui}ni=1 of the basis is incoherent with sparse signals:

∀i ‖ui‖∞ = sup
x:‖x‖2=1,‖x‖0=1

〈ui,x〉 ≤ ζ/
√
n

for some constant ζ, then a randomly selected (sufficient) number of rows of U

will satisfy RIP.

To simplify the discussion of matrices, we will assume n1 = n2 = n for the

rest of this subsection; a similar approach applies when n1 6= n2. Let us assume

{U1,U2, . . . ,Un2} ⊂ Cn×n form a unitary basis for the matrix space Cn×n.

Similarly we want each of the matrix U i to be incoherent with low-rank matrices.

Note that for any X ∈ Cn×n,

‖U i‖ = sup
X:‖X‖2=1,rank(X)=1

〈U i,X〉. (4.3.69)

Hence in order for each U i to be incoherent with low-rank matrices, we could

require:

∀i ‖U i‖ ≤ ζ/
√
n. (4.3.70)

Then to construct the measurement operator A, we randomly select a subset of
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m bases from {U1,U2, . . . ,Un2} and properly scale them as:11

A : Ai =
n√
m
U i, i = 1, . . . ,m. (4.3.71)

Then one should expect that when m is large enough, with high probability, the

so-defined A satisfies the rank-RIP. The following theorem makes this precise:

Theorem 4.18. Let us assume {U1,U2, . . . ,Un2} ⊂ Cn×n be a unitary basis

for the matrix space Cn×n and with ‖U i‖ ≤ ζ/
√
n for some constant ζ. Let A

to be defined as per (4.3.71). Then if

m ≥ Cζ2 · rn log6 n, (4.3.72)

then with high probability, A satisfies the rank-RIP over the set of all rank-r

matrices.

The proof of this theorem is out of the scope of this book and interested readers

may refer to the work of [Liu11].

According to this statement, from an incoherent unitary basis, with high prob-

ability we could find a (compressive) sensing operator A such that it is rank-RIP.

Hence with this operator, one can recover all rank-r matrices via the nuclear

norm minimization. The remaining question is what type of structured bases (of

the matrix space) are rank-incoherent as per (4.3.70)? To this end, one should

seek a matrix analogue to the Fourier basis.

In the case of MRI imaging, we have seen that measurements that one can

physically take are essentially the Fourier coefficients of the brain image. As it

turns out, the matrix analogue to Fourier basis also has a natural origin from

physics. In quantum-state tomography, a system of k qubits is of dimension

n = 2k. The quantum state of such a system is described by a density matrix

Xo ∈ Cn×n which is positive semidefinite with trace 1. When the state is early

pure, Xo is a very low-rank matrix with rank (Xo) = r � n.

One problem in quantum physics is how to recover the quantum state Xo

of a system from linear measurements. As it turns out, a set of experimentally

feasible measurements are given by the so-called Pauli observables. Each Pauli

measurement is given by the inner product of Xo with matrices of the form

P 1 ⊗ · · · ⊗ P k where ⊗ is the tensor (Kronecker) product and each P i = 1√
2
σ

where σ is a 2× 2 matrix chosen from the following four possibilities:

σ1 =

[
1 0

0 1

]
, σ2 =

[
0 1

1 0

]
, σ3 =

[
0 −i
i 0

]
, σ4 =

[
1 0

0 −1

]
.

It is easy to see that there are a total of 4k possible choices for the tensor product,

denoted as {U i}4
k

i=1 and they together form an orthonormal basis for the matrix

space Cn×n where n = 2k.

One can show that for each basis U i = P 1 ⊗ · · · ⊗ P k, its operator norm

is bounded as ‖U i‖ ≤ 1/
√
n hence incoherent with low-rank matrices. Then

11 The scaling is to ensure that the “column” of A to be of unit norm.
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according to Theorem 4.18, a randomly selected m ≥ Crn log6 n rows of the

Pauli bases will satisfy the rank-RIP property with high probability. Hence, such

a sensing operator will be able to uniformly recover all pure quantum states less

than rank r.

4.3.6 Noise, Inexact Low Rank, and Phase Transition

Above, we established that, under fairly broad conditions, nuclear norm min-

imization correctly recovers a low-rank matrix Xo from ideal measurements

y = A[Xo]. In practice, the measurements can be corrupted by noise or mea-

surement errors. In some cases, Xo may not be exactly low rank. It is desirable

to understand whether nuclear norm minimization still gives reasonably good

estimates of Xo in these situations.

In Section 3.5, we established that `1 minimization accurately estimates sparse

signals under deterministic noise, random noise, and even inexact sparsity. As

we will see in this section, essentially the same analysis and results generalize to

the case of nuclear norm minimization for recovering low-rank matrices.

Deterministic Noise.
Here we still assume the matrix Xo is perfectly low-rank, but the measurements

y is corrupted by small additive noise:

y = A[Xo] + z, ‖z‖2 ≤ ε. (4.3.73)

Similar to Theorem 3.29, for recovering low-rank matrices with (deterministic)

noise, we have the following result.

Theorem 4.19 (Stable Low-rank Recovery via BPDN). Suppose that y = A[Xo]+

z, with ‖z‖2 ≤ ε, and let rank (Xo) = r. If δ4r(A) <
√

2− 1, then any solution

X̂ to the optimization problem

min ‖X‖∗
subject to ‖A[X]− y‖2 ≤ ε.

(4.3.74)

satisfies ∥∥∥X̂ −Xo

∥∥∥
F
≤ Cε. (4.3.75)

Here, C is a numerical constant.

Proof The proof of this theorem parallels that for Theorem 3.29 and we leave

the details for the reader as an exercise (see Exercise 4.17).

Random Noise.
Now let us consider the case when the noise in the above measurement model

(4.3.73) is random (Gaussian):

y = A[Xo] + z, (4.3.76)
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where entries of z are random i.i.d. Gaussian N (0, σ
2

m ). Then we have the fol-

lowing theorem that parallels Theorem 3.31 for the `1 case.

Theorem 4.20 (Stable Low-rank Recovery via Lasso). Suppose that A ∼iid

N (0, 1
m ), and y = A[Xo] + z, with Xo of rank r and z ∼iid N (0, σ

2

m ). Solve the

matrix Lasso

min 1
2 ‖y −A[X]‖22 + λm ‖X‖∗ , (4.3.77)

with regularization parameter λm = c · 2σ
√

(n1+n2)
m for a large enough c. Then

with high probability,

∥∥∥X̂ −Xo

∥∥∥
F
≤ C ′σ

√
r(n1 + n2)

m
. (4.3.78)

Notice in contrast to deterministic noise, random noise leads to a much more

favorable scaling
√

r(n1+n2)
m in the estimation error: To see this, notice that in a

typical compressive sensing setting (as suggested by Theorem 4.15), the sampling

dimension m needs to be at least C ·r(n1 +n2) for some large constant C. Hence

the scaling factor is proportional to 1/
√
C and it becomes small when C is large.

Proof The overall proof strategy is quite similar to that of Theorem 3.31 for

the stability of Lasso estimate. We will lay out the key places that are different

from the `1 case and leave the details to the reader as an exercise.

In the proof of Lemma 3.30, we see that in order to establish the cone condition

for the Lasso type minimization, one of the key steps is to bound |〈A∗z,h〉| via

|〈A∗z,h〉| ≤ ‖A∗z‖∞ ‖h‖1 .

Following similar arguments, in the matrix Lasso case here, we need to bound

|〈A∗z,H〉| instead as

|〈A∗z,H〉| ≤ ‖A∗z‖ ‖H‖∗ ,

where ‖A∗z‖ is the operator norm (largest singular value) of the matrix A∗z =∑m
i=1 ziAi. To this end, we need to provide a tight bound for the operator norm

of A∗z.

Notice that

M
.
=

∥∥∥∥∥
m∑

i=1

ziAi

∥∥∥∥∥ = sup
u∈Sn1−1,v∈Sn2−1

u∗
m∑

i=1

ziAiv (4.3.79)

= sup
u∈Sn1−1,v∈Sn2−1

〈z,A[uv∗]〉. (4.3.80)

The u? and v? that achieve the maximum value in (4.3.80) depend on z andA. So

in order to eliminate this dependency and provide a bound for ‖∑m
i=1 ziAi‖, we

cover the two spheres Sn1−1 and Sn2−1 with two ε-nets N1 and N2 respectively.

According to Lemma 3.25, the sizes of the nets can be less than (3/ε)n1 and

(3/ε)n2 respectively.
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Let us denote

MN
.
= sup
u∈N1,v∈N2

u∗
m∑

i=1

ziAiv,

and then it is easy to show that12

M ≤ MN

1− 2ε
. (4.3.81)

Notice that given any u ∈ N1,v ∈ N2, 〈z,A[uv∗]〉 is a Gaussian variable of

distribution N (0, ‖A[uv∗]‖22(σ2/m)). Since A is rank-RIP and uv∗ is a rank-1

matrix of unit Frobenius norm, we have

‖A[uv∗]‖22 ≤ (1 + δ) ≤ 2. (4.3.82)

Thus, we have

P

[∣∣∣∣∣u
∗
m∑

i=1

ziAiv

∣∣∣∣∣ > t

]
≤ 2 exp

(
−mt

2

4σ2

)
. (4.3.83)

Apply the union bound on all possible pairs of (u,v) from the two nets and

choose t = ασ
√

n1+n2

m for some large enough α, then we have MN > t with

diminishing probability as n1 or n2 becomes large. Therefore, we have

M =

∥∥∥∥∥
m∑

i=1

ziAi

∥∥∥∥∥ ≤ βσ
√
n1 + n2

m
(4.3.84)

for some constant β with high probability.

Now, similar to the proof of Lemma 3.30, if we choose λm to be in the order

of O
(
σ
√

n1+n2

m

)
, then the feasible perturbation H satisfies the cone restriction.

Since A is rank-RIP, it implies that A satisfies the matrix restricted strong

convexity (RSC) property. That leads to the bound on the estimation error:

‖H‖F =
∥∥∥X̂ −Xo

∥∥∥
F
≤ C ′σ

√
r(n1 + n2)

m
. (4.3.85)

The details of the proof for this follow essentially the same steps as those in the

proof of Theorem 3.31 for the `1 case. We leave those to the reader as an exercise

(see Exercise 4.19.)

The error bound given in the above theorem can actually be shown to be nearly

optimal as it is close to the best error that can be achieved by any estimator over

all rank-r matrices. The following theorem, due to [CP11] makes this precise:

Theorem 4.21. Suppose that A ∼iid N (0, 1
m ) and we observe y = A[Xo] + z

where entries of z are i.i.d. N (0, σ
2

m ) random variables. Set

M?(A) = inf
X̂(y)

sup
rank(X)≤r

E
∥∥∥X̂(y)−X

∥∥∥
2

F
. (4.3.86)

12 We leave the details of proving this inequality to the reader as an exercise.
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Then we have

M?(A) ≥ cσ2 rn

m
, (4.3.87)

for n = max{n1, n2}, where c > 0 is a numerical constant.

The proof of this theorem is beyond the scope of this book; we refer interested

readers to [CP11] for a proof. According to Theorem 4.20, the worst error of the

matrix Lasso matches the best achievable by any estimator, up to constants.

Inexact Low-rank Matrices.
In the case when Xo is not exactly low-rank, let [Xo]r be the best rank-r ap-

proximation of Xo. We can rewrite the observation model

y = A[Xo] + z, ‖z‖2 ≤ ε. (4.3.88)

as:

y = A [[Xo]r] +A [Xo − [Xo]r] + z, ‖z‖2 ≤ ε.

Theorem 4.22 (Inexact Low-rank Recovery). Let y = A[Xo]+z, with ‖z‖2 ≤ ε.
Let X̂ solve the denoising problem

min ‖X‖∗
subject to ‖y −A[X]‖2 ≤ ε.

(4.3.89)

Then for any r such that δ4r(A) <
√

2− 1,

∥∥∥X̂ −Xo

∥∥∥
2
≤ C

‖Xo − [Xo]r‖∗√
r

+ C ′ε (4.3.90)

for some constants C and C ′.

Proof The proof of this theorem parallels that for Theorem 3.33 for the inexact

sparse recovery problem. We here only setup some analogous concepts and key

ideas that allow us to extend that proof to the matrix case here. But we leave

details of the proof as an exercise to the reader.

Let Xo = UΣV ∗ denote the compact SVD of the true solution Xo. Then its

best rank-r approximation is [Xo]r = U rΣrV
∗
r . Now let

T
.
=
{
U rR

∗ +QV ∗r | R ∈ Rn2×r, Q ∈ Rn1×r} ⊆ Rn1×n2 . (4.3.91)

Show that in the inexact low-rank case, instead of the cone restriction (4.3.45),

we have the following restriction for the feasible perturbation H = X̂ −Xo:

‖PT⊥ [H]‖∗ ≤ ‖PT[H]‖∗ + 2 ‖PT⊥ [Xo]‖∗ . (4.3.92)

Notice that PT⊥ [Xo] = Xo− [Xo]r. Then, similar to the proof of Theorem 3.33,

simply carry the extra term 2 ‖PT⊥ [Xo]‖∗ at the places in the proof of Theorem

4.14 where the cone restriction is applied. One can reach the conclusion of the

theorem. We leave details of the proof as an exercise to the reader (see Exercise

4.18).
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Figure 4.7 Phase Transitions in Low-rank Matrix Recovery. We plot the
probability of successfully recovering an n× n low-rank matrix Xo from Gaussian
measurements. Horizontal axis: sampling rate p = m/n2. Vertical axis rank-dimension
ratio r/n. The success of nuclear norm minimization exhibits a very sharp transition
from success to failure.

Phase Transition in Low-rank Matrix Recovery.
Thus far, we have seen strong parallels between sparse vector recovery using

`1 norm minimization and low-rank matrix recovery using nuclear norm mini-

mization. In both cases, we saw how an appropriate notion of restricted isometry

property could be used to guarantee exact recovery from a near-minimal number

of random measurements – about k log(n/k) for k-sparse vectors, and about nr

for rank-r matrices. However, just like in the sparse vector case, this tool does

not yield sharp constants.

In fact, there is a phase transition phenomenon for low-rank recovery, which

mirrors that for sparse recovery: as the dimension grows, the transition between

success and failure in low-rank recovery becomes increasingly sharp. Figure 4.7

illustrates this.

Just as we did for sparse recovery, we can use the “coefficient space” geometry

of the low-rank recovery problem to derive very sharp estimates of this transition.

This geometry is phrased in terms of the descent cone D of the nuclear norm at

the target solution Xo:

D
.
= {H | ‖Xo +H‖∗ ≤ ‖Xo‖∗} . (4.3.93)

As for sparse recovery, Xo is the unique optimal solution to the nuclear norm

minimization problem if and only if D ∩ null(A) = {0}. Hence, quantifying the

probability of success under a random linear projection becomes equivalent to

quantifying the probability that the two convex cones D and null(A) have only

trivial intersection. Deploying Theorem 6.14, we find that there is a sharp tran-
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sition between success and failure around

m? ∼ δ(D), (4.3.94)

the statistical dimension of the descent cone. Moreover, the theorem tells us

that the width of the transition region is roughly O(
√
n1n2). The location of

the transition region can be characterized using the same machinery that we

deployed in Section 3.6 to estimate the statistical dimension of the descent cone

of the `1 norm. This machinery involves estimating the expected squared distance

of a random vector (here, random matrix) to the polar cone, which is spanned

by the subdifferential of the nuclear norm. For convenience, for a matrix M

with singular value decomposition M = UΣV ∗, let us define the singular value

thresholding operator as

Dτ [M ]
.
= USτ [Σ]V ∗, (4.3.95)

where Sτ [·] is the entry-wise soft thresholding operator:

∀X, Sτ [X] = sign(X) ◦ (|X| − τ)+,

where ◦ is the entry-wise (Hadamard) product of two matrices. An intermediate

result produced by these calculations is as follows:

Theorem 4.23 (Phase Transition in Low-rank Recovery). Let D denote the

descent cone of the nuclear norm at any matrix Xo ∈ Rn1×n2 of rank r. Let G

be an (n1 − r)× (n2 − r) matrix with entries i.i.d. N (0, 1). Set

ψ(n1, n2, r) = inf
τ≥0

{
r(n1 + n2 − r + τ2) + EG

[
‖Dτ [G]‖2F

]}
. (4.3.96)

Then

ψ(n1, n2, r)− 2
√
n2/r ≤ δ(D) ≤ ψ(n1, n2, r). (4.3.97)

This theorem identifies a sharp transition in low-rank recovery. It is possible

to use asymptotic results on the limiting distribution of the singular values of

a random matrix to give a formula for ψ(n1, n2, r)/(n1n2), which is valid when

n1 → ∞, n1/n2 → α ∈ (0,∞) and r/n1 → ρ ∈ (0, 1). In the exercises, we

guide the interested reader through this derivation. Here, we merely display

the result of this calculation in Figure 4.7, and note the excellent agreement

between this theoretical prediction and numerical experiment: for the idealized

setting of “generic” measurements, we have a very precise prediction of the phase

transition!

4.4 Low-Rank Matrix Completion

We have seen how concepts from sparse recovery transpose directly to the low-

rank recovery problem. The concept of sparsity had a natural analogue in the
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concept of rank-deficiency. The `1 minimization problem for sparse recovery had

a natural analogue in the nuclear norm minimization problem for low-rank re-

covery. Moreover, these convex relaxations succeed under analogous conditions

involving restricted isometry properties of the observation operator.

However, in many of the most interesting applications of nuclear norm mini-

mization, the RIP does not hold! In the introduction to this chapter, we sketched

applications to recommendation systems, in which we had access to a subset of

the entries of a low-rank user-item matrix. We also sketched problems in recon-

structing 3D shape, in which we observed a subset of the pixels of the rank-3

matrix NL. Finally, we sketched a problem in Euclidean embedding, in which

we observe a subset of the distances between some objects of interest. In all of

these problems, the object of interest is a low-rank matrixXo ∈ Rn×n; the obser-

vation selects a subset Ω ⊂ [n]× [n] of the entries of Xo. The matrix completion

problem asks us to fill in the missing entries:

Problem 4.24 (Matrix Completion). Let Xo ∈ Rn×n be a low-rank matrix.

Suppose we are given y = PΩ[Xo], where Ω ⊆ [n] × [n]. Fill in the missing

entries of Xo.

In matrix completion, the observation operator A = PΩ is the restriction onto

some small subset Ω ⊆ [n] × [n] of the entries. In this situation, if (i, j) /∈ Ω,

PΩ[Eij ] = 0 where Eij denotes the matrix with all zeros except for the (i, j)th

entry being 1. That is to say, if Ω is a strict subset of [n] × [n], then PΩ has

matrices of rank one in its null space! So, the rank-RIP cannot hold for any

positive rank r with any nontrivial δ < 1.

At a more basic level, the example of Xo = Eij suggests that there are some

(very sparse) matrices that are impossible to complete from only a few entries.

This is in contrast to our discussion of low-rank matrix recovery thus far, in

which the only factor that dictates the ease or difficulty of recovering a target

Xo is the complexity rank(Xo). Nevertheless, our development thus far suggests

that even for the more challenging problem of matrix completion, there may be

some class of well-structured matrices Xo of interest for applications, which can

be efficiently completed from just a few entries. In this section, we will see that

this is indeed the case.

4.4.1 Nuclear Norm Minimization for Matrix Completion

In light of our previous study of matrix recovery, a natural approach to complet-

ing a low-rank matrix from a small subset Y = PΩ[Xo] of its entries is to look

for the matrix X of minimum nuclear norm that agrees with the observation:

min ‖X‖∗
subject to PΩ[X] = Y .

(4.4.1)

This is a special instance of the general nuclear norm minimization problem

(4.3.14), with observation operatorA = PΩ. As such, it is a semidefinite program,
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and can be solved with high accuracy in polynomial time. In practice, though,

it is more important to have methods that scale to large problem instances.

In the next section, we sketch one approach to achieving this, using Lagrange

multiplier techniques. This approach has pedagogical value: it introduces several

objects that will be used for analyzing when we can solve matrix completion

problems efficiently. It also yields reasonably scalable algorithms. For practical

matrix completion at the scale of n ∼ 106 and beyond, even more scalable

methods are needed; we discuss these issues in Chapters 8-9.

4.4.2 Algorithm via Augmented Lagrange Multiplier

There are two basic challenges in solving problem (4.4.1) at large scale. The

first arises from the nonsmoothness of the nuclear norm ‖·‖∗; the second is due

to the need to satisfy the constraint PΩ[X] = Y exactly.13 The fundamental

technology for handling constraints in optimization is Lagrange duality.

The basic object is the Lagrangian, which introduces a matrix Λ of Lagrange

multipliers for the constraint PΩ[X] = Y . The Lagrangian for (4.4.1) is

L(X,Λ) = ‖X‖∗ + 〈Λ,Y − PΩ[X]〉 . (4.4.2)

As introduced in the Appendix C, the optimal X? solution is characterized as a

saddle point of the Lagrangian which is minimized with respect to X, and maxi-

mized with respect to Λ. A basic approach to solving a constrained problem such

as (4.4.1) is to seek such a saddle point. In practice, more robustly convergent

algorithms can be derived by instead working with the augmented Lagrangian

Lµ(X,Λ) = ‖X‖∗ + 〈Λ,Y − PΩ[X]〉+ µ
2 ‖Y − PΩ[X]‖2F , (4.4.3)

which encourages satisfaction of the constraint by adding an additional quadratic

penalty term µ
2 ‖Y − PΩ[X]‖2F . A more general introduction to augmented La-

grangian method (ALM) is given in section 8.4 of Chapter 8.

The augmented Lagrangian method seeks a saddle point of Lµ by alternating

between minimizing with respect to the “primal variables” X and taking one

step of gradient ascent to increase Lµ using the “dual variables” Λ:

Xk+1 ∈ arg min
X
Lµ(X,Λk), (4.4.4)

Λk+1 = Λk + µPΩ

[
Y −Xk+1

]
. (4.4.5)

Here, PΩ

[
Y − Xk+1

]
= ∇ΛLµ(Xk+1,Λ). The ALM algorithm makes a very

special choice of the step size (µ) for updating Λ. This choice is important in

general: it ensures that Λ stays dual feasible, an issue that we will explain in

more depth in section 8.4 of Chapter 8.

Under very general conditions, the iteration (4.4.4)-(4.4.5) converges to a pri-

mal dual optimal pair (X?,Λ?), and hence yields a solution to (4.4.1). While

13 In practice, when observations are noisy, exactly satisfying PΩ[X] = Y is neither

necessary nor desirable. We study the noisy matrix completion in Section 4.4.5, and
develop dedicated algorithms for it in Chapter 8.
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this algorithm appears simple, some caution is necessary: the first step is itself

a nontrivial optimization problem! This subproblem has a characteristic form,

which we encountered in our study of sparse recovery in noise: the objective func-

tion is a sum of a smooth convex term f(X), and a nonsmooth convex function

g(X) = ‖X‖∗:

min
X

‖X‖∗︸ ︷︷ ︸
g(X) convex

+ 〈Λ,Y − PΩ[X]〉+ µ
2 ‖Y − PΩ[X]‖2F︸ ︷︷ ︸

f(X) smooth, convex

. (4.4.6)

Here,

∇f(X) = −PΩ[Λ] + µPΩ[X − Y ]. (4.4.7)

This is µ-Lipschitz, in the sense that for any pair of matrices X and X ′,
∥∥∇f(X)−∇f(X ′)

∥∥
F
≤ µ

∥∥X −X ′
∥∥
F
. (4.4.8)

This class of problem is amenable to the proximal gradient method.

The general proximal gradient iteration applies to objectives of the form

F (X) = g(X) + f(X), where g is convex, and f is convex, smooth, and has

L-Lipschitz gradient. See section 8.2 of Chapter 8. Here we have the Lipschitz

constant L = µ. So the iteration takes the form

Xk+1 = arg min
X

{
g(X) + µ

2

∥∥∥X −
(
Xk − 1

µ∇f(Xk

)∥∥∥
2

F

}
. (4.4.9)

In particular, it requires us to solve a sequence of “proximal problems”

min
X

{
g(X) + µ

2 ‖X −M‖
2
F

}
, (4.4.10)

for particular choices of the matrixM . When g is the nuclear norm, this problem

can be solved in closed form from the SVD of M . Recall from (4.3.95), for a

matrix M with the singular value decomposition M = UΣV ∗, its singular

value thresholding operator is defined to be

Dτ [M ] = USτ [Σ]V ∗,

where Sτ [X] = sign(X) ◦ (|X| − τ)+ is the soft thresholding operator.

Theorem 4.25. The unique solution X? to the program:

min
X

{
‖X‖∗ + µ

2 ‖X −M‖
2
F

}
, (4.4.11)

is given by

X? = Dµ−1 [M ]. (4.4.12)

The proof of this result follows from Exercise 4.13. The resulting procedures are

stated as Algorithms 4.1-4.2. Here, for simplicity, we have neglected important

issues such as the choice of stopping conditions, and the effect of inexact solution
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Algorithm 4.1 (Matrix Completion by ALM)

1: initialize: X0 = Λ0 = 0, µ > 0.

2: while not converged do

3: compute Xk+1 ∈ arg minX Lµ
(
X,Λk

)
(say by Algorithm 4.2);

4: compute Λk+1 = Λk + µ
(
Y − PΩ

[
Xk+1

])
.

5: end while

Algorithm 4.2 (Proximal Gradient for Augmented Lagrangian)

1: initialize: X0 starts with the Xk from the outer loop of Algorithm 4.1.

2: while not converged do

3: compute

X`+1 = proxg/µ
(
X` − µ−1∇f(X`)

)

= Dµ−1

[
PΩc [X`] + Y + µ−1PΩ

[
Λk

]]
.

4: end while

to subproblem (4.4.4) on the convergence of the basic ALM iteration in Algorithm

4.1.

To understand when the convex program (4.4.1) and the above algorithm

correctly recover a matrix X = Xo from a part of its entries, we vary the rank

r of the matrix Xo as a fraction of the dimension n and a fraction p ∈ (0, 1)

of (randomly chosen) observed entries. In other words, p is the probability that

an entry is given. Figure 4.8 shows the simulation results of using the above

algorithm to recover a random low-rank matrix Xo under different settings.

We may draw a few observations from the above simulations: 1. the convex

program (4.4.1) and the above algorithm indeed succeed under a surprisingly

wide range of conditions, as long as the rank of the matrix is relatively low and

a fraction of the entries are observed. 2. the success and failure of the convex

program (4.4.1) exhibit a sharp phase-transition phenomenon.

4.4.3 When Nuclear Norm Minimization Succeeds?

The above simulations encourage us to understand the conditions under which

the nuclear norm minimization program (4.4.1) is guaranteed to succeed for

matrix completion?14 It may be easier to first think about when it fails. It may

fail if (i) Xo is sparse (as in the example of Eij), or (ii) if the sampling pattern

Ω is chosen adversarially (e.g., if we miss an entire row or column of Xo). Below,

we will state a theorem that makes this intuition precise – namely, if Xo is

low-rank, and not too “spiky”, and Ω is chosen at random, then nuclear norm

14 Or ultimately, if possible, to precisely characterize the phase transition behavior we have

observed through experiments.
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Figure 4.8 Matrix Completion for Varying Rank and Sampling Rate. Fraction
of correct recoveries across 50 trials, as a function of the rank-dimension ratio r/n
(vertical-axis) and fraction p of observed entries (horizontal-axis). Here, n = 60. In all
cases, Xo = AB∗ is a product of two independent n× r i.i.d. N (0, 1/n) matrices.
Trials are considered successful if ‖X̂ −Xo‖F /‖Xo‖F < 10−3.

minimization succeeds with high probability. Below we make these assumptions

precise.

Incoherent Low-rank Matrices.
Although our intuition is that Xo itself should not be too “sparse”, for technical

reasons it will be necessary to enforce this condition on the singular vectors of

Xo, rather than on Xo itself. Let Xo = UΣV ∗ be the (reduced) singular value

decomposition of Xo. We say that Xo is ν-incoherent if the following hold:

∀ i ∈ [n], ‖e∗iU‖22 ≤ νr/n, (4.4.13)

∀ j ∈ [n], ‖e∗jV ‖22 ≤ νr/n. (4.4.14)
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These two conditions control the “spikiness” of the singular vectors of Xo. To

understand them better, note that U is an n × r matrix whose columns have

unit `2 norm. Hence,
∑
i ‖e∗iU‖22 = ‖U‖2F = r. There are n rows, and so at least

one of them must have `2 norm at least as large as the average, r/n. Hence, for

any matrix U with unit norm columns, maxi ‖e∗iU‖22 ≥ r/n. The incoherence

parameter ν quantifies how much we lose with respect to this optimal bound. So,

if ν is small, the singular vectors are, in a sense, spread around. To give a sense

of scale, notice that it is always true that

1 ≤ ν ≤ n/r. (4.4.15)

If U and V are chosen uniformly at random (say by orthogonalizing the columns

of a Gaussian matrix), then with high probability ν is bounded by C log(n).

However, the definition does not require U and V to be random.

One important implication of this definition for matrix completion is that when

ν is small, there are no sparse matrices close to the tangent space T. Indeed, let

Eij = eie
∗
j denote the one-sparse matrix whose nonzero element occurs in entry

(i, j). Then, using the expression (4.3.34) for the projection operator PT onto

the tangent space T, we have that

‖PT[Eij ]‖2F = ‖UU∗Eij‖2F + ‖(I −UU∗)EijV V
∗‖2F

≤ ‖U∗ei‖22 +
∥∥e∗jV

∥∥2

2

≤ 2νr

n
. (4.4.16)

This indicates that no standard basis matrix Eij is too close to the subspace

T. Strangely enough, this implies the standard basis {Eij} is a good choice for

reconstructing elements from T. This is similar in spirit to our observations on

incoherent operator bases: if no Eij is too close to T, information about any

particular element Xo ∈ T must be spread across many different Eij . It will

only take a few of these projections to be able to reconstruct Xo. Note, however,

a crucial difference between this notion of incoherence and our previous notions

for matrix and vector recovery: here, the subspace T depends on Xo itself. The

discussion in this section suggests that random sampling will be effective for

reconstructing the particular matrix Xo. We make this intuition formal below.

Exact Matrix Completion from Random Samples.
We assume that each entry (i, j) belongs to the set Ω independently with proba-

bility p. We call this a Bernoulli sampling model, since the indicators 1(i,j)∈Ω are

independent Ber(p) random variables. Under this model, the expected number

of observed entries is

m = E
[
|Ω|
]

= pn2. (4.4.17)

Under this model, nuclear norm minimization succeeds even when the number

m of observations is close to the number of intrinsic degrees of freedom in the

rank-r matrix Xo. The following theorem makes this precise:
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Theorem 4.26 (Matrix Completion via Nuclear Norm Minimization). Let Xo ∈
Rn×n be a rank-r matrix with incoherence parameter ν. Suppose that we observe

Y = PΩ[Xo], with Ω sampled according to the Bernoulli model with probability

p ≥ C1
νr log2(n)

n
. (4.4.18)

Then with probability at least 1− C2n
−c3 , Xo is the unique optimal solution to

minimize ‖X‖∗ subject to PΩ[X] = Y . (4.4.19)

There are several things to notice about the above theorem. First, the expected

number of measurements is

m = pn2 = C1νnr log2(n). (4.4.20)

Since a rank-r matrix has O(nr) degrees of freedom, the oversampling factor is

only about Cν log2(n) – the number of samples we must see is nearly minimal.15

Second, the number of samples required scales with the coherence of the matrix

Xo. So, if we want to recover a very coherent (think, “nearly sparse”) Xo,

we will simply need more observations. Finally, the probability of success is in

all the possible choices of the observed subset but is only for a given low-rank

matrix Xo. This is in contrast with the probability of success in the generic case

studied in the previous sections, where an incoherent sampling operator is good

for recovering the set of all matrices of rank less than r.

Of course, the precise conditions of the above theorem can only be interpreted

as an idealized mathematical abstraction of real matrix completion or collabo-

rative filtering problems. In particular, in real problems there may be noise in

the observation, and, more importantly the observations may not be uniformly

distributed.

4.4.4 Proving Correctness of Nuclear Norm Minimization

In this section, we prove Theorem 4.26. This section can be skipped for first

time readers who are not theory oriented or are not strongly interested in the

techniques needed for a rigorous proof of the theorem.

Our approach is analogous to our proof that `1 recovers sparse vectors under

incoherence (in Section 3.2.2) – we simply write down the optimality conditions

and try to show that they are satisfied! Carrying this program through will be

trickier, though.

To get started, we need an optimality condition for the nuclear norm mini-

mization problem (4.4.19). As mentioned in the previous section, the Lagrangian

associated with the matrix completion problem (4.4.19) is

L(X,Λ) = ‖X‖∗ + 〈Λ,Y − PΩ[X]〉 , (4.4.21)

15 According to Theorem 1.7 of [CT09], if the sampling probability p <
νr log(2n)

2n
, there will

be infinitely many matrices of rank at most r that satisfy the incoherence condition and all
have the same entries on Ω.
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and the KKT conditions for the desired optimal Xo are such that there exist

Lagrangian multipliers Λ that satisfy:

PΩ[Λ] = 0, Λ ∈ ∂ ‖·‖∗ (Xo). (4.4.22)

Similar to the `1 case in Section 3.2.2, such Λ, if can be found, are called a dual

certificate that certifies the optimality of the ground truth Xo.

Subdifferential of the Nuclear Norm.
Similar to the case with `1 norm minimization, the above conditions suggest we

need an expression for the subdifferential of the nuclear norm. The following

lemma provides one:

Lemma 4.27. Let X ∈ Rn×n have compact singular value decomposition X =

UΣV ∗. The subdifferential of the nuclear norm at X is given by

∂ ‖·‖∗ (X) = {Z | PT[Z] = UV ∗, ‖PT⊥ [Z]‖ ≤ 1} . (4.4.23)

Proof Consider any Z satisfying PT[Z] = UV ∗, and ‖PT⊥ [Z]‖ ≤ 1. Notice

that ‖Z‖ = 1. Since X ∈ T,

〈X,Z〉 = 〈X,UV ∗〉 = 〈U∗XV , I〉 = 〈Σ, I〉 = ‖X‖∗ . (4.4.24)

For every X ′,

‖X‖∗ +
〈
Z,X ′ −X

〉
=
〈
Z,X ′

〉
≤ ‖Z‖

∥∥X ′
∥∥
∗ = ‖X ′‖∗. (4.4.25)

Thus Z is a subgradient of the nuclear norm at X: Z ∈ ∂‖ · ‖∗(X). To complete

the proof, we need to show that every element Z ∈ ∂‖ · ‖∗(X) satisfies PT[Z] =

UV ∗ and ‖PT⊥ [Z]‖ ≤ 1. We leave the converse as an exercise (see Exercise

4.20).

If we compare to the expression for the subdifferential of the `1 norm, here,

the subspace T plays the role of the support of the matrix, while the matrix UV ∗

is playing the role of the signs. Indeed, in this language, ∂ ‖·‖∗ consists of those

Z that are equal to the “sign” UV ∗ on the support T, and whose dual norm ‖·‖
is bounded by one on the orthogonal complement T⊥ of the support.

Optimality Conditions.
Once we have the subdifferential in hand, we can fairly immediately write down

an optimality condition for the convex program of interest. Indeed, consider the

optimization problem

min ‖X‖∗
subject to PΩ[X] = PΩ[Xo].

(4.4.26)

Any feasible X can be written as Xo + H, where H ∈ null(PΩ), i.e., H is

supported on the set Ωc of entries that we do not observe. Similar to the `1 case

in Section 3.2.2, if we can find a dual certificate Λ such that it satisfies (the KKT

condition):
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• (i) Λ is supported on Ω and

• (ii) Λ ∈ ∂ ‖·‖∗ (Xo) – i.e., PT[Λ] = UV ∗ and ‖PT⊥ [Λ]‖ ≤ 1,

then we have

‖Xo +H‖∗ ≥ ‖Xo‖∗ + 〈Λ,H〉 = ‖Xo‖∗ , (4.4.27)

where the final equality holds because Λ is supported on Ω and H is supported

on Ωc. In addition, if we further have ‖PΩcPT‖ < 1 and ‖PT⊥ [Λ]‖ < 1, then one

can show that Xo is the unique optimal solution. The proof is similar to that

in the `1 case (see the proof of Theorem 3.3) and we leave to the reader as an

exercise (see Exercise 4.16).

A natural idea for constructing Λ might be to simply follow the program that

has worked before (in the `1 minimization case) and look for a matrix Λ of

smallest 2-norm that satisfies the equality constraints

PΩc [Λ] = 0, PT[Λ] = UV ∗, (4.4.28)

and then hope to check that it satisfies the inequality constraints

‖PT⊥ [Λ]‖ ≤ 1.

For example, we could take Λ = PΩ[G], with G = (PTPΩ)†[UV ∗], where (·)†
denotes the pseudo inverse. We are then left to check that

∥∥PT⊥PΩ(PTPΩ)†[UV ∗]
∥∥ (4.4.29)

is small. This is a random matrix, but it is an exceedingly complicated one. It

actually is possible to analyze its norm, but the analysis is quite intricate. The

challenge arises because the thing that is random here is the support Ω. It is

repeated in several places, creating probabilistic dependencies, which complicates

the analysis.

Relaxed Optimality Conditions.
As it is difficult to directly find a dual certificate satisfying the KKT conditions

exactly, we might want to relax these conditions and see if we could still find

another certificate for the optimality. The following proposition suggests that we

can ensure the optimality of Xo with an alternative set of (relaxed) conditions:

Proposition 4.28 (KKT Conditions – Approximate Version). The matrix Xo

is the unique optimal solution to the nuclear minimization problem (4.4.19) if

the following set of conditions hold

1 The operator norm of the operator p−1PTPΩPT − PT is small:
∥∥p−1PTPΩPT − PT

∥∥ ≤ 1
2 .

2 There exists a dual certificate Λ ∈ Rn×n that satisfies PΩ[Λ] = Λ and

1 ‖PT⊥ [Λ]‖ ≤ 1
2 ;

2 ‖PT[Λ]−UV ∗‖F ≤ 1
4n .
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Conditions 2(a) and 2(b) above trade off between the degree of satisfaction of

the equality constraint PT[Λ] = UV ∗ and the inequality constraint for the dual

norm ‖PT⊥Λ‖ ≤ 1 in the original KKT conditions. This is possible under the

additional assumption that
∥∥p−1PTPΩPT − PT

∥∥ is not too large. This assump-

tion is satisfied whenever the sampling map p−1PΩ nearly preserves the length

of all elements X ∈ T – in other words, restricted on T the operator p−1PΩ

is nearly isometric. It can be considered a strengthening of the condition that

T ∩ Ω⊥ = {0}, which was needed for unique optimality.

To prove Proposition 4.28, we will need another lemma. This says that pro-

vided PΩ acts nicely on matrices from T, every feasible perturbation H (i.e., H

such that PΩ[H] = 0) must have a non-negligible component along T⊥:

Lemma 4.29. Suppose that the operator PΩ satisfies

∥∥PT − p−1PTPΩPT

∥∥ ≤ 1

2
. (4.4.30)

Then for any H satisfying PΩ[H] = 0, we have

‖PT⊥ [H]‖F ≥
√
p

2
‖PT[H]‖F . (4.4.31)

Proof We have

〈PΩPT[H],PΩPT[H]〉 = 〈PT[H],PΩPT[H]〉
= p〈PT[H], p−1PΩPT[H]〉
= p〈PT[H],PTp

−1PΩPTPT[H]〉
≥ p
(

1−
∥∥PT − PTp

−1PΩPT

∥∥
)
‖PT[H]‖2F

≥ p

2
‖PT[H]‖2F , (4.4.32)

Then from PΩPT[H] + PΩPT⊥ [H] = PΩ[H] = 0, we have

0 = ‖PΩPT[H] + PΩPT⊥ [H]‖F
≥ ‖PΩPT[H]‖F − ‖PΩPT⊥ [H]‖F

≥
√
p

2
‖PT[H]‖F − ‖PT⊥ [H]‖F , (4.4.33)

giving the conclusion.

We are now ready to prove the optimality of Xo under the conditions given

by Proposition 4.28.

Proof We want to show that under the above conditions, for any feasible per-

turbation H 6= 0 and X = Xo +H, we have ‖X‖∗ > ‖Xo‖∗. Let PT⊥ [H] =

ŪΣ̄V̄
∗
. Then we have Ū V̄

∗ ∈ T⊥ and
∥∥Ū V̄ ∗

∥∥ ≤ 1. Therefore, we have UV ∗+

Ū V̄
∗ ∈ ∂ ‖·‖∗ (Xo) is a subgradient of the nuclear norm at Xo.
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Also, we have 〈Ū V̄ ∗,PT⊥ [H]〉 = ‖PT⊥ [H]‖∗ and 〈Λ,H〉 = 0 and apply them

to the following inequalities:

‖Xo +H‖∗ ≥ ‖Xo‖∗ + 〈UV ∗ + Ū V̄
∗
,H〉,

= ‖Xo‖∗ + 〈UV ∗ + Ū V̄
∗ −Λ,H〉,

= ‖Xo‖∗ + 〈UV ∗ − PT[Λ],H〉+ 〈Ū V̄ ∗ − PT⊥ [Λ],H〉,

≥ ‖Xo‖∗ −
1

4n
‖PT[H]‖F +

1

2
‖PT⊥ [H]‖∗ ,

≥ ‖Xo‖∗ +
(

1
2 − 1

4n

√
2
p

)

︸ ︷︷ ︸
> 0, since p>n−2.

‖PT⊥ [H]‖F . (4.4.34)

In the final inequality, we have invoked Lemma 4.29.

Hence, for feasible perturbations H, ‖Xo +H‖∗ ≥ ‖Xo‖∗, with equality if

and only if PT⊥ [H] = 0. But via Lemma 4.29, PT⊥ [H] = 0 =⇒ H = 0. Thus,

for any nonzero feasible perturbation H, ‖Xo +H‖∗ > ‖Xo‖∗, establishing the

desired condition.

The Optimality Condition is Satisfied with High Probability.
To complete the proof, we simply need to show that the optimality condition

can be satisfied with high probability. To do this, we need to verify two claims:

first, that with high probability the sampling operator Ω acts nicely on T, in the

sense that
∥∥p−1PTPΩPT − PT

∥∥ is small. We then need to show that with high

probability we can construct the desired dual certificate Λ.

1. The sampling operator acts nicely on T:
We next prove that the sampling operator PΩ preserves some part of every el-

ement of T, in the sense that
∥∥p−1PTPΩPT − PT

∥∥ is small. This phenomenon

is a consequence of the incoherence of the matrix Xo and the uniform random

model on Ω. The proof of the following lemma uses the matrix (operator) Bern-

stein inequality to show this rigorously.

Lemma 4.30. Let PΩ : Rn×n → Rn×n denote the operator

PΩ[X] =
∑

ij

Xij1(i,j)∈ΩEij (4.4.35)

with 1(i,j)∈Ω independent Bernoulli random variables with probability p. Fix any

ε with c
√

logn
n ≤ ε ≤ 1. There is a numerical constant C such that if p > C νr logn

ε2n ,

then with high probability,

∥∥PT − p−1PTPΩPT

∥∥ ≤ ε. (4.4.36)

Proof We apply the matrix Bernstein inequality in Theorem E.8 to bound the
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norm of

PT − p−1PTPΩPT =
∑

ij

PT

( I
n2
− p−1

1(i,j)∈ΩEij 〈Eij , ·〉
)
PT

︸ ︷︷ ︸
.
=Wij

.

Here,Wij : Rn×n → Rn×n are independent random linear maps, and E
[∑

ijWij

]
=

0. The matrix Bernstein inequality requires (i) an almost sure bound R on

maxij ‖Wij‖, and (ii) control of the “variance”

∑

ij

E
[
W∗ijWij

]
. (4.4.37)

We provide these as follows.

(i) Almost sure control of the summands:

‖Wij‖ ≤ max
{∥∥n−2PT

∥∥ ,
∥∥p−1PT[Eij ] 〈PT[Eij ], ·〉

∥∥} , almost surely

= max
{
n−2, p−1 ‖PT[Eij ]‖2F

}
,

≤ max

{
n−2,

2νr

np

}
,

≤ max

{
1

n2
,

2ε2

C log n

}
,

=
2ε2

C log n
. (4.4.38)

We may take R = 2ε2

C logn .

(ii) Control of the “operator variance”. Note that

∑

ij

E
[
W∗ijWij

]

=
∑

ij

E
[ 1

n4
PT −

2p−1

n2
1(i,j)∈ΩPTEij 〈Eij , ·〉 PT

+ 1(i,j)∈Ω p
−2PTEij ‖PTEij‖2F 〈Eij , ·〉 PT

]

� p−1
∑

ij

PTEij ‖PTEij‖2F 〈Eij , ·〉 PT

� p−1 2νr

n

∑

ij

PTEij 〈Eij , ·〉 PT

� 2ε2

C log n
PT. (4.4.39)

The operator
∑
ij E

[
W∗ijWij

]
is self-adjoint and positive semidefinite. The above
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calculation therefore implies that

σ2 = max





∥∥∥∥∥∥
∑

ij

E
[
W∗ijWij

]
∥∥∥∥∥∥
,

∥∥∥∥∥∥
∑

ij

E
[
WijW∗ij

]
∥∥∥∥∥∥





≤ 2ε2

C log n
. (4.4.40)

Using these calculations, we obtain a bound

P



∥∥∥∥∥∥
∑

ij

Wij

∥∥∥∥∥∥
> t


 ≤ 2n exp

(
−t2/2

2ε2

C logn + t 2ε2

3C logn

)
. (4.4.41)

The probability of failure for t = ε is bounded by n−ρ; the exponent ρ can be

made as large as desired by choosing C appropriately.

Choosing ε = 1/2 in the statement of the above lemma, we obtain the desired

condition needed for Lemma 4.29.

2. Construction of a dual certificate by the golfing scheme.
From the above discussion, in order to prove Theorem 4.26, we only have to

show that under the conditions of the theorem, we can find a dual certificate

that satisfies two conditions 2(a) and 2(b) of Proposition 4.28. In this section,

we show how to construct such a dual certificate, Λ. In the next chapter, we will

reuse this construction to analyze the related problem of robust matrix recovery,

in which a fraction of the entries of a low-rank matrix have been corrupted. For

this purpose, we give a complete summary of the properties of our construction

in the following proposition. Here, properties (i) and (ii) are essential for matrix

completion; property (iii) will be used in the following chapters for robust matrix

recovery.

Proposition 4.31 (Dual Certificate for Low-rank Recovery). Let Xo ∈ Rn×n be

a rank-r matrix, with coherence ν. Let U ,V ∈ Rn×r be matrices whose columns

are leading left- and right singular vectors of Xo. Let

T =
{
UX∗ + Y V ∗ |X,Y ∈ Rn×r

}
. (4.4.42)

Then if Ω ∼ Ber(p), with

p > C0
νr log2 n

n
, (4.4.43)

there exists a matrix Λ supported on Ω, satisfying

1 ‖PT[Λ]−UV ∗‖F ≤ 1
4n ,

2 ‖PT⊥ [Λ]‖ ≤ 1
4 ,

3 ‖Λ‖∞ < C1 logn
p × ‖UV ∗‖∞,

with high probability. Here, C1 is a positive numerical constant.



4.4 Low-Rank Matrix Completion 181

We prove this proposition using an iterative construction. Let

Ω1, . . . ,Ωk (4.4.44)

be independent random subsets, chosen according to the Bernoulli model with

parameter q. Set

Ω =

k⋃

i=1

Ωi. (4.4.45)

Then Ω is also a Bernoulli subset, with parameter

p = 1− (1− q)k. (4.4.46)

The parameter p is the probability that a given entry is in at least one of the

subsets Ωi. Hence, p ≤ kq. The argument that we develop below will lead us to

choose k = Cg log(n), with Cg a constant. Because k is not too large, this implies

that the parameter q is also not too small:

q ≥ p

k
=
C0

Cg

νr log n

n
. (4.4.47)

Provided C0 is large enough compared to Cg, the subsets Ωi all satisfy the

conditions of Lemma 4.30, and so with high probability
∥∥PT − q−1PTPΩjPT

∥∥ ≤ 1
2 , j = 1, . . . , k. (4.4.48)

We will construct a sequence of matrices Λ0,Λ1, . . . ,Λk, in which each Λj

depends only on Ω1, . . . ,Ωj . We let Λ0 = 0. And let

Ej = PT[Λj ]−UV ∗. (4.4.49)

Since our goal is to obtain Λ such that PT[Λ] ≈ UV ∗, Ej should be considered

the error at iteration j. To get our next Λ, we simply try to correct the error:

Λj = Λj−1 −
(
q−1PΩj

)
[Ej−1]. (4.4.50)

This construction is known as the golfing scheme, as it tries to reach the goal by

reducing error step by step.

There are several things worth noting about this construction. First, it pro-

duces Λj supported only on Ω1 ∪ · · · ∪Ωj . Thus, as desired, Λk is supported on

Ω. Second, because UV ∗ ∈ T, Ej ∈ T for each j. This means that

Ej = PT[Λj ]−UV ∗

= PT[Λj−1]−UV ∗ − q−1PTPΩj [Ej−1]

= Ej − q−1PTPΩj [Ej−1]

= (PT − q−1PTPΩjPT)[Ej−1].

Since E
[
q−1PΩj

]
= I, in expectation, this iterative process drives the error to

zero: E[Ej ] = 0.
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As it turns out, due to the fact that
∥∥PT − q−1PTPΩjPT

∥∥ ≤ 1
2 , after k steps,

the error reduces to

‖PT[Λk]−UV ∗‖F = ‖Ek‖F ≤ 2−k ‖E0‖F (4.4.51)

with high probability.

So, based on the golfing scheme, to achieve the desired accuracy as suggested by

the above lemma, we want 2−k ‖E0‖F = 2−k
√
r ≤ 1

4n . Since r < n, we only need

to have 2−k ∼ O(1/n2), that is to choose k = Cg log(n) for some large enough

constant Cg, say Cg = 20. Therefore, under these conditions, the dual certificate

constructed after k iterations Λk satisfies condition 2 (b) of Proposition 4.28:

‖PT[Λk]−UV ∗‖F ≤
1

4n
. (4.4.52)

Finally, to satisfy Condition 2(a) of Proposition 4.28, we need to show that

the operator norm of the random matrix PT⊥ [Λk] is bounded as

‖PT⊥ [Λk]‖ ≤ 1/4.

Notice that from the construction of Λk, we have

Λk =

k∑

j=1

−q−1PΩj [Ej−1],

Ej = (PT − PTq
−1PΩjPT)[Ej−1], with E0 = −UV ∗.

The matrix of interest can be expressed as

PT⊥ [Λk] =

k∑

j=1

−q−1PT⊥PΩj [Ej−1] =

k∑

j=1

PT⊥(PT − q−1PΩjPT)[Ej−1],

(4.4.53)

where the second identity is due to PT⊥PT = 0 and PT[Ej ] = Ej .

Since we are interested in bounding the norm of PT⊥ [Λk], it would help if we

know good bounds on various norms of PΩj and its interaction with the operator

PT or PT⊥ . Notice each PΩj is a summation of independent random operators.

A very powerful tool we can use to bound the norm of summation of random

matrices (or operators) is the so-called matrix Bernstein inequality introduced

in the Appendix E, which we have used once before in Lemma 4.30.

To bound the norm of PT⊥ [Λk], we need good bounds on three additional

operators similar to that in Lemma 4.30. The proofs of these bounds16 are all

similar to that of Lemma 4.30 by utilizing the matrix Bernstein inequality. We

hence leave their derivations as exercises to the reader to get familiar with the

matrix Bernstein inequality.

We phrase these bounds in terms of

‖Z‖∞ = max
ij
|Zij |, (4.4.54)

16 following the work of [CJSC13].
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and the maximum of the largest `2 norm of a row and the largest `2 norm of a

column, which we denote by ‖·‖rc:

‖Z‖rc = max

{
max
i
‖e∗iZ‖2 , max

j
‖Zej‖2

}
. (4.4.55)

Lemma 4.32. Let Z be any fixed n× n matrix, and Ω a Ber(q) subset, with

q > C0
νr log n

n
. (4.4.56)

Then with high probability

∥∥(q−1PΩ − I
)

[Z]
∥∥ ≤ C

( n

C0νr
‖Z‖∞ +

√
n

C0νr
‖Z‖rc

)
, (4.4.57)

where C is a numerical constant.

Proof Exercise 4.23.

Lemma 4.33. Let Z be any fixed n×n matrix. There exists a numerical constant

C0 such that if Ω is a Ber(q) subset with

q > C0
νr log n

n
, (4.4.58)

then with high probability

∥∥(q−1PTPΩ − PT)[Z]
∥∥
rc
≤ 1

2

(√ n

νr
‖Z‖∞ + ‖Z‖rc

)
. (4.4.59)

Proof Exercise 4.24.

Lemma 4.34. Suppose Z is a fixed n × n matrix in T. There exists a constant

C0 such that if Ω is a Bernoulli(q) subset with

q > C0
νr log n

n
. (4.4.60)

Then with high probability we have

∥∥(PT − q−1PTPΩPT)[Z]
∥∥
∞ ≤

1
2 ‖Z‖∞ . (4.4.61)

Proof Exercise 4.25.

With these three lemmas in hand, we are now ready to show that the spectral

norm of PT⊥ [Λk] is very small, in particular can be bounded as ‖PT⊥ [Λk]‖ ≤ 1/4:
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Proof From the golfing construction, PT⊥ [Λk] can be expressed as the series

given in (4.4.53). Hence we have

‖PT⊥ [Λk]‖ ≤
k∑

j=1

∥∥PT⊥(PT − q−1PΩjPT)[Ej−1]
∥∥

≤
k∑

j=1

∥∥(PT − q−1PΩjPT)[Ej−1]
∥∥

=

k∑

j=1

∥∥(I − q−1PΩj )[Ej−1]
∥∥ . (4.4.62)

Notice that in the construction of the golfing scheme, we have ensured that

each subset Ωj is sampled according to the Bernoulli model, with parameter

q > C0
νr logn

n for some large enough C0. This means each of the k subsets Ωj
satisfies the conditions of the above lemmas. We first apply Lemma 4.32 to the

right hand side of the last inequality and obtain (assuming C0 > 1):

‖PT⊥ [Λk]‖ ≤ C√
C0

k∑

j=1

( n
νr
‖Ej−1‖∞ +

√
n

νr
‖Ej−1‖rc

)
. (4.4.63)

To bound ‖Ej−1‖∞ we apply Lemma 4.34 and obtain

‖Ej−1‖∞ =
∥∥∥(PT − 1

qPTPΩj−1PT) · · · (PT − 1
qPTPΩ1PT)[E0]

∥∥∥
∞

≤
(1

2

)j−1

‖UV ∗‖∞ . (4.4.64)

Using this together with the fact that Λk = −∑j q
−1PΩj [Ej−1], we obtain

‖Λk‖∞ ≤ q−1
∑

j

‖Ej−1‖∞ (4.4.65)

≤ 2q−1 ‖UV ∗‖∞ . (4.4.66)

Since q > p/Cq log n, this establishes property (iii) of Proposition 4.31 for Λk.

To bound ‖Ej−1‖rc we apply Lemma 4.33 and obtain

‖Ej−1‖rc =
∥∥∥(PT − 1

qPTPΩj−1
PT)[Ej−2]

∥∥∥
rc

≤ 1

2

√
n

νr
‖Ej−2‖∞ +

1

2
‖Ej−1‖rc . (4.4.67)

Combine the above two inequalities and apply them recursively to j − 1, j −
2, . . . , 0 and we obtain

‖Ej−1‖rc ≤ j
(1

2

)j−1
√

n

νr
‖UV ∗‖∞ +

(1

2

)j−1

‖UV ∗‖rc . (4.4.68)

Substitute the bounds (4.4.64) and (4.4.68) to the right and side of (4.4.63)
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and we obtain

‖PT⊥ [Λk]‖ ≤ C√
C0

n

νr
‖UV ∗‖∞

k∑

j=1

(j + 1)
(1

2

)j−1

+
C√
C0

√
n

νr
‖UV ∗‖rc

k∑

j=1

(1

2

)j−1

≤ 6C√
C0

n

νr
‖UV ∗‖∞ +

2C√
C0

√
n

νr
‖UV ∗‖rc . (4.4.69)

As the matrix Xo satisfies the incoherence conditions (4.4.13) and (4.4.14),

we have

‖UV ∗‖∞ ≤ max
i,j

{
‖U∗ei‖2 × ‖V ∗ej‖2

}
≤ νr

n
,

‖UV ∗‖rc ≤ max

{
max
i
‖e∗iUV ∗‖2 ,max

j
‖UV ∗ej‖2

}
≤
√
νr

n
.

Therefore,

‖PT⊥ [Λk]‖ ≤ 6C√
C0

+
2C√
C0

≤ 1

4
(4.4.70)

for large enough C0. This establishes property (ii) of Proposition 4.31 for PT⊥ [Λk].

The above derivations and results show that the relaxed KKT conditions in

Proposition 4.28 can be satisfied with high probability, proving Theorem 4.26.

4.4.5 Stable Matrix Completion with Noise

So far in the matrix completion problem, we have assumed that the observed en-

tries are precise. In real world matrix completion problems, the observed entries

are often corrupted with some noise:

Yij = [Xo]ij + Zij , (i, j) ∈ Ω, (4.4.71)

where Zij can be some small noise. Or equivalently, we can write

PΩ[Y ] = PΩ[Xo] + PΩ[Z], (4.4.72)

where Z is an n×n matrix of noises. We may assume that the overall noise level

is small ‖PΩ[Z]‖F < ε. As in the stable matrix recovery case, we could expect

to recover a low rank matrix matrix close to Xo via solving the following convex

program:

min ‖X‖∗
subject to ‖PΩ[X]− PΩ[Y ]‖F < ε.

(4.4.73)

The following theorem states that under the same conditions of Theorem 4.26

when the nuclear norm minimization recovers the correct low rank matrix from
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noiseless measurements, the above program gives a stable estimate X̂ of the true

low-rank matrix Xo:

Theorem 4.35 (Stable Matrix Completion). Let Xo ∈ Rn×n be a rank-r, ν-

incoherent matrix. Suppose that we observe PΩ[Y ] = PΩ[Xo] + PΩ[Z], where Ω

is a subset of [n]× [n]. If Ω is uniformly sampled from subsets of size

m ≥ C1νnr log2(n), (4.4.74)

then with high probability, the optimal solution X̂ to the convex program (4.4.73)

satisfies

‖X̂ −Xo‖F ≤ c
n
√
n log(n)√
m

ε ≤ c′ n√
r
ε (4.4.75)

for some constant c > 0.

Proof Similar to the proof of Theorem 4.26 in the noiseless case which has the

same incoherence condition on Xo and the sampling condition, we know the

sampling operator PΩ and the dual certificate Λk constructed via the golfing

scheme satisfies the properties in Proposition 4.28. All we need to show here is

that these properties also imply the conclusion of this theorem for the case with

noisy measurements.

Let H = X̂ −Xo. Notice that we can split H into two parts H = PΩ[H] +

PΩc [H]. For the first part, we have

‖PΩ[H]‖F = ‖PΩ[X̂ −Xo]‖F
≤ ‖PΩ[X̂ − Y ]‖F + ‖PΩ[Y −Xo]‖F
≤ 2ε. (4.4.76)

Notice that the second part PΩc [H] is a feasible perturbation to the noiseless

matrix completion problem. From the proof of Proposition 4.28 and in particular

(4.4.34), we have

‖Xo + PΩc [H]‖∗ ≥ ‖Xo‖∗ +
(1

2
− 1

4C2
√
nr

)
‖PT⊥ [PΩc [H]]‖F , (4.4.77)

and based on triangle inequality, we also have

‖X̂‖∗ = ‖Xo +H‖∗ ≥ ‖Xo + PΩc [H]‖∗ − ‖PΩ[H]‖∗ . (4.4.78)

Since ‖X̂‖∗ ≤ ‖Xo‖∗, we have

‖PΩ[H]‖∗ ≥
(1

2
− 1

4C2
√
nr

)
‖PT⊥ [PΩc [H]]‖F . (4.4.79)

This leads to

‖PT⊥ [PΩc [H]]‖F ≤ 4 ‖PΩ[H]‖∗ ≤ 4
√
n ‖PΩ[H]‖F ≤ 4

√
nε. (4.4.80)

Since PΩc [H] = PT⊥ [PΩc [H]] + PT[PΩc [H]], we remain to bound the term
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PT[PΩc [H]]. Applying the proof of Lemma 4.29 to PΩc [H], we have

‖PT⊥ [PΩc [H]]‖F ≥ C1

√
m

n log(n)
‖PT[PΩc [H]]‖F

for some large enough C1. Therefore, we have

‖PT[PΩc [H]]‖F ≤
n log(n)

C1
√
m
‖PT⊥ [PΩc [H]]‖F ≤ c

n
√
n log(n)√
m

ε. (4.4.81)

This bound dominates the bounds of all the other terms, leading to the conclusion

of the theorem.

4.5 Summary

In this chapter, we have studied the problem of recovering a low-rank matrix

from a number of m linear observations much fewer than its number of entries:

y = A[X] ∈ Rm,

where A is a linear operator typically incoherent to the low-rank structure in

X ∈ Rn×n. This problem arises in a range of applications. It generalizes the

problem of recovering a sparse vector. We described a convex relaxation of the

low rank recovery problem, in which we minimize the nuclear norm, which is the

sum (`1 norm) of the singular values of a matrix. We proved that, similar to the

`1 minimization for recovering sparse vectors, if the measurements satisfy the

restricted isometry property for low-rank matrices, then with a nearly minimum

number of linear measurements in the order of

m = O(nr),

the convex program associated with nuclear norm minimization recovers all rank-

r matrices correctly with high probability.

We have also studied a specific matrix completion problem with a more struc-

tured measurement model, in which we observe only a small subset of the entries

of a low-rank matrix:

Y = PΩ[X],

where PΩ samples a subset of entries of X ∈ Rn×n in the support set Ω, with

|Ω| = m < n2. This matrix completion problem captures the special structure

of some of the most important practical low rank recovery applications, such as

in the recommendation problem. It is mathematically more challenging, because

certain sparse low-rank matrices cannot be completed without seeing almost all

of their entries. Nevertheless, we observe that for low rank matrices incoher-

ent to this measurement model, i.e.matrices whose singular vectors are not so

concentrated on any coordinates, nuclear norm minimization succeeds with high

probability with nearly minimum number of measurements in the order of

m = O(nr log2 n).
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Almost parallel to the development for the recovery of sparse vectors, we have

shown that these theoretical results and algorithms can be extended to cope with

nuisance factors, such as measurement noise. The resulting algorithms are stable

to small noise in the measurements. Moreover, in the next chapter we will see

how to combine these ideas with those from sparse recovery to generate even

richer classes of models and more robust algorithms.

4.6 Notes

As we have discussed in the beginning of this Chapter, rank minimization prob-

lems arise in a very broader range of engineering fields and applications. Ar-

guably optimization issues associated with rank minimization have been stud-

ied most extensively and systematically in control [MP97] and identification

[FHB01, FHB04] of dynamical systems. The fact that the nuclear norm is the

convex envelope of the rank over the operator norm ball is due to [FHB01], lead-

ing to a convex formulation of the rank minimization problem. The extension

of the restricted isometric property (RIP) to the matrix case is due to [RFP10]

and it has helped characterized conditions under which the convex formulation

succeeds, similar to the theory for sparse vectors studied the previous chapter.

For the matrix completion problem, the golfing scheme is due to Gross [Gro10].

Variants of Theorem 4.26 have been established by Gross [Gro10] and Recht

[Rec10]; both include the extra assumption that ‖UV ∗‖∞ is small. The form

stated here (without this assumption) is due to Chen [Che13]. It is easy to see

that with little modification, the proofs and results established for matrix com-

pletion with respect to the standard basis can be generalized to any orthonormal

(matrix) basis {Bi}n
2

i=1 as long as it is incoherent (inner product being small)

with low-rank matrices. Since we have |〈Bi,X〉| ≤ ‖Bi‖ ‖X‖∗, for the basis to

be incoherent with the low-rank matrix X, we usually desire the base matrix Bi

to have small operator norm. Fourier or Pauli bases are both such bases.

For the noisy matrix completion problem, the result in Theorem 4.35 is es-

sentially attributed to the work of [CP10] but here the statement and proof are

adapted to the weaker notion of incoherence required in the previous section. As

result, we need an extra term of log(n) for the error bound, compared to that

of [CP10].

Many methods have been developed in the literature that may sacrifice recov-

erability for computational efficiency or for measurement efficiency. To push for

extreme scalability, the convex formulation that computes with the full n × n
matrix might becomes unaffordable. In such cases, people start to investigate

direct nonconvex formulations such as

min
U ,V
‖Y − PΩ[UV ∗]‖22,

where U ,V ∈ Rn×r are rank-r matrices. Somewhat surprisingly, despite its
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nonconvex nature, we will see in Chapter 7 that under fairly broad conditions, one

can still find its optimal (and correct) low-rank solution using simple algorithms

such as gradient descent.

4.7 Exercises

4.1 (Proof of Schoenberg’s Theorem). In this exercise, we invite the interested

reader to prove Schoenberg’s Euclidean embedding theorem (Theorem 4.1). Let

D be a Euclidean distance matrix for some point set X = [x1, . . . ,xn] ∈ Rd×n,

i.e., Dij = ‖xi‖22 + ‖xj‖22 − 2 〈xi,xj〉. Let 1 ∈ Rn denote the vector of all ones,

and Φ = I− 1
n11∗. Using that Φ1 = 0, argue that ΦDΦ∗ satisfies the conditions

of Schoenberg’s theorem, i.e., it is negative semidefinite and has rank at most d.

For the converse, let D be a symmetric matrix with zero diagonal, and suppose

that ΦDΦ∗ is negative semidefinite and has rank at most d. Argue that there

exists some matrix X ∈ Rd×n for which Dij = ‖xi − xj‖22.

4.2 (Derivation of the SVD). Let X ∈ Rn1×n2 be a matrix of rank r. Argue that

there exists matrices U ∈ Rn1×r, V ∈ Rn2×r, with orthonormal columns and a

diagonal matrix Σ = diag(σ1, . . . , σr) ∈ Rr×r, with σ1 ≥ · · · ≥ σr > 0, such that

X = UΣV ∗. (4.7.1)

Hint: what is the relationship between the singular values σi and singular vectors

vi and the eigenvalues / eigenvectors of the matrix X∗X?

4.3 (Best Rank-r Approximation). We prove Theorem 4.5. First, consider the

special case in which Y = Σ = diag(σ1, . . . , σn) with σ1 > σ2 > · · · > σn.

An arbitrary rank-r matrix X can be expressed as X = FG∗ with F ∈ Rn1×r,
F ∗F = I and G ∈ Rn2×r.

1 Argue that for any fixed F , the solution to the optimization problem

min
G∈Rn2×r

‖FG∗ −Σ‖2F (4.7.2)

is given by Ĝ = Σ∗F , and the optimal cost is

‖(I − FF ∗)Σ‖2F . (4.7.3)

2 Let P = I − FF ∗, and write νi = ‖Pei‖22. Argue that
∑n
i=1 νi = n1 − r and

νi ∈ [0, 1]. Conclude that

‖PΣ‖2F =

n1∑

i=1

σ2νi ≥
n1∑

i=r+1

σ2
i , (4.7.4)

with equality if and only if ν1 = ν2 = · · · = νr = 0 and νr+1 = · · · = νn.

Conclude that Theorem 4.5 holds in the special case Y = Σ.

3 Extend your argument to the situation in which the σi are not distinct (i.e.,

σi = σi+1 for some i).
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4 Extend your argument to any Y ∈ Rn×n. Hint: use the fact that the Frobe-

nius norm ‖M‖F is unchanged by orthogonal transformations of the rows and

columns: ‖M‖F = ‖RMS‖F for any orthogonal matrices R,S.

4.4 (Minimal Rank Approximation). We consider a variant of Theorem 4.5 in

which we are given a data matrix Y and we want to find a matrix X of minimum

rank that approximates Y up to some given fidelity:

min rank(X),

subject to ‖X − Y ‖F ≤ ε.
(4.7.5)

Give an expression for the optimal solution(s) to this problem, in terms of the

SVD of Y . Prove that your expression is correct.

4.5 (Multiple and Repeated Eigenvalues). Consider the eigenvector problem

min − 1
2q
∗Γq subject to ‖q‖22 = 1, (4.7.6)

where Γ is a symmetric matrix. In the text, we argued that when the eigenvalues

of Γ are distinct, every local minimizer of this problem is global. (i) Argue that

even when Γ has repeated eigenvalues, every local minimum of this problem is

global. (ii) Now suppose we wish to find multiple eigenvector/eigenvalue pairs.

Consider the optimization problem over the Stiefel manifold:

min − 1
2Q
∗ΓQ

subject to Q ∈ St(n, p)
.
= {Q ∈ Rn×p | Q∗Q = I} .

(4.7.7)

Argue that every local minimizer of this problem has the form

Q = [u1, . . . ,up] Π, (4.7.8)

where u1, . . . ,up are eigenvectors of Γ associated with the p largest eigenvalues,

and Π is a permutation matrix.

4.6 (The Power Method). In this exercise, we derive how to compute eigenvec-

tors (and hence singular vectors) using the power method. Let Γ ∈ Rn×n be a

symmetric positive semidefinite matrix. Let q0 be a random vector that is uni-

formly distributed on the sphere Sn−1 (we can generate such a random vector by

taking an n-dimensional iid N (0, 1) vector and then normalizing it to have unit

`2 norm). Generate a sequence of vectors q1, q2, . . . via the iteration

qk+1 =
Γqk
‖Γqk‖2

. (4.7.9)

This iteration is called the power method.

Suppose that there is a gap between the first and second eigenvalues of Γ:

λ1(Γ) > λ2(Γ).

1 What does qk converge to? Hint: write Γ = V ΛV ∗ in terms of its eigenvec-

tors/values. How does V ∗qk evolve?

2 Obtain a bound on the error ‖qk − q∞‖2 in terms of the spectral gap λ1−λ2

λ1
.
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3 Your bound in 2 should suggest that as long as there is a gap between λ1 and λ2,

the power method converges rapidly. How does the method behave if λ1 = λ2?

4 How can we use the power method to compute the singular values of a matrix

X ∈ Rn1×n2?

4.7 (Variational Forms of Nuclear Norm). Prove the statements of Proposition

4.6.

4.8 (Convex Envelope Property via the Bidual). In Theorem 4.9, we proved that

the nuclear norm ‖X‖∗ is the convex envelope of rank(X) over the operator

norm ball Bop = {X | ‖X‖ ≤ 1}. Here, we give an alternative derivation of this

result, using the fact that the biconjugate of a function over a set B is the convex

envelope. Let f(X) = rank(X) denote the rank function.

1 Prove that the Fenchel dual

f∗(Y ) = sup
X∈B
{〈X,Y 〉 − f(X)}

can be expressed as

f∗(Y ) = ‖D1[Y ]‖∗ ,
where Dτ [M ] is the singular value thresholding operator, given by Dτ [M ] =

USτ [S]V ∗ for any singular value decomposition M = USV ∗ of M .

2 Prove that the dual of f∗,

f∗∗(X) = sup
Y
〈X,Y 〉 − f∗(Y )

can satisfies

f∗∗(X) = ‖X‖∗ .
3 Use Proposition B.14 of Appendix B to conclude that ‖·‖∗ is the convex enve-

lope of rank(·) over B.

4.9 (Nuclear Norm of Submatrices). Let M1,M2 ∈ Rn×m be two matrices, and

M = [M1,M2] be their concatenation. Show that:

1 ‖M‖∗ ≤ ‖M1‖∗ + ‖M2‖∗.
2 ‖M‖∗ = ‖M1‖∗ + ‖M2‖∗ if M∗

1M2 = 0 (that is, the spans of M1,M2 are

orthogonal).

4.10 (Convexifying Low-rank Approximation). Consider the following optimiza-

tion problem:

min ‖ΠY ‖2F
subject to 0 � Π � I, trace[Π] = m− r.

(4.7.10)

Prove that if σr(Y ) > σr+1(Y ), this problem has a unique optimal solution Π?,

which is the orthoprojector onto the linear span of the n1−r trailing singular vec-

tors ur+1,ur+2, . . . ,un1
. The matrix (I−Π?)Y is the best rank-r approximation

to Y .
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4.11 (Tangent Space to the Rank-r Matrices). Consider a matrix Xo of rank

r with compact singular value decomposition Xo = UΣV ∗. Argue that the

tangent space to the collection Mr = {X | rank(X) = r} at Xo is given by

T = {UR∗ +QV ∗}. Hint: consider generating a nearby low-rank matrix by

writing X ′ = (U + ∆U )(Σ + ∆Σ)(V + ∆V )∗.

4.12 (Quadratic Measurements). Consider a target vector xo ∈ Rn×n. In many

applications, the observation can be modeled as a quadratic function of the vector

xo. In notation, we see the squares

y1 = 〈a1,xo〉2 , y2 = 〈a2,xo〉2 , . . . , ym = 〈am,xo〉2

of the projections of xo onto vectors a1, . . . ,am. Notice that from this observa-

tion, it is only possible to reconstruct xo up to a sign ambiguity: −xo produces

exactly the same observation.

1 Consider the quadratic problem

min
x

n∑

i=1

(
yi − 〈ai,x〉2

)2

. (4.7.11)

Is this problem convex in x?

2 Convert this to a convex problem, by replacing the vector valued variable x

with a matrix valued variable X = xx∗: convert the problem to

min
X

n∑

i=1

(yi − 〈Ai,X〉)2
. (4.7.12)

How should we choose the matrices A1, . . . ,Am? Show that if m < n2, Xo =

xox
∗
o is not the unique optimal solution to this problem. How can we use the

fact that rank(Xo) = 1 to improve this?

3 In the absence of noise, we can attempt to solve for Xo by solving the convex

program

min ‖X‖∗ such that A[X] = y. (4.7.13)

Implement this optimization using a custom algorithm or CVX. Does it typi-

cally recover Xo?

4 Does the operator A satisfy the rank RIP?

4.13 (Proof of Theorem 4.25). We prove Theorem 4.25. The goal here is to show

that the solution to

min
X
‖X‖∗ + 1

2 ‖X −M‖
2
F (4.7.14)

is given by D1[M ].

1 Argue that Problem (4.7.14) is strongly convex, and hence has a unique optimal

solution.

2 Show that a solution X? is optimal if and only if X? ∈M − ∂ ‖·‖∗ (X?).
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3 Using the condition from part 2, show that if M is diagonal, i.e., Mij = 0 for

i 6= j, then S1[M ] is the unique optimal solution to (4.7.14).

4 Use the SVD to argue that in general, D1[M ] is the unique optimal solution

to (4.7.14).

4.14. Prove Theorem 4.11.

4.15 (Uniform Matrix Completion?). Let Ω be a strict subset of [n]× [n]. Show

that there exist two matrix Xo and X ′o of rank one such that PΩ[Xo] = PΩ[X ′o].
The implication of this is that it is not possible to reconstruct all low-rank

matrices from the same observation Ω.

4.16 (Unique Optimality for Matrix Completion). Consider the optimization

problem

min ‖X‖∗
subject to PΩ[X] = PΩ[Xo].

(4.7.15)

Suppose that ‖PΩcPT‖ < 1. Assume that we can find some Λ such that

1 Λ is supported on Ω and

2 Λ ∈ ∂ ‖·‖∗ (Xo) – i.e., PT[Λ] = UV ∗ and ‖PT⊥ [Λ]‖ < 1.

Show that Xo is the unique optimal solution to the optimization problem.

4.17. Prove Theorem 4.19

4.18. Fill in the detailed steps of proof for Theorem 4.22.

4.19. Derive detailed steps that prove the error bound (4.3.85) in the proof of

Theorem 4.20.

4.20. Show that in Lemma 4.27, any subdifferential of nuclear norm must be of

the form given in (4.4.23).

4.21. Let RΩ[Xo] =
∑q
`=1[Xo]i`,j`ei`e

∗
j`

with each (i`, j`) chosen iid at random

from the uniform distribution on [n] × [n]. Use the matrix Bernstein inequality

to show that if q > Cνnr log n for sufficiently large C, we have
∥∥∥PT⊥

n2

q RΩPT

∥∥∥ ≤ t. (4.7.16)

for any arbitrarily small constant t with high probability. [Hint: similar to the

proof of Lemma 4.30.]

4.22. For the dual certificate Λ constructed from the golfing scheme, use the fact

in Exercise 4.21 and the fact that
∥∥∥n2

q PT⊥RΩj [Ej ]
∥∥∥
F
≤
∥∥∥n2

q PT⊥RΩjPT

∥∥∥ ‖Ej‖F ,

show that if

m ≥ Cνnr2 log2 n

for a large enough constant C, we have ‖PT⊥ [Λ]‖ ≤ 1/2 with high probability.
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4.23. Prove Lemma 4.32. Hint: write:

(q−1PΩ − I)[Z] =
∑

ij

Zij
(
q−1

1ij∈Ω − 1
)
Eij︸ ︷︷ ︸

.
=W ij

,

and apply the operator Bernstein inequality, controlling the operator norm of

W ij in terms of ‖Z‖∞ and controlling the matrix variance in terms of ‖Z‖rc.

4.24. Prove Lemma 4.33. Use the matrix Bernstein inequality to obtain a bound

on the probability that the `-th row ‖e∗`
(
q−1PTPΩ − PT

)
[Z]‖ is large, repeat for

each column, and then sum the failure probabilities over all rows and columns to

obtain a bound on the probability that the ‖ · ‖rc is large. Hint: apply the matrix

Bernstein inequality to the random vector:

e∗`
(
q−1PTPΩ − PT

)
[Z] =

∑

ij

Zij(q
−1
1ij∈Ω − 1)e∗`PT[Eij ]︸ ︷︷ ︸

.
=wij

.

4.25. Prove Lemma 4.34. Apply the standard Bernstein inequality to bound the

probability that the k, l entry of (PT − q−1PTPΩPT)[Z] is large, and then sum

this probability over all entries k, l to bound the probability that the `∞ norm is

large. For the k, l entry work with the sum of independent random variables
[(
PT − q−1PTPΩPT

)
[Z]
]
kl

=Zkl − [q−1PTPΩ[Z]kl]

=
∑

ij

n−2Zkl − q−1
1ij∈Ω 〈PT[Ekl],PT[Eij ]〉Zij︸ ︷︷ ︸

.
=wij

.



5 Decomposing Low-Rank and
Sparse Matrices

“The whole is greater than the sum of the parts.”
– Aristotle, Metaphysics

In the previous chapters, we have studied how either a sparse vector or a low-

rank matrix can be recovered from compressive or incomplete measurements. In

this chapter, we will show that it is also possible to simultaneously recover a

sparse signal and a low-rank signal from their superposition (mixture) or from

highly compressive measurements of their superposition (mixture). This combi-

nation of rank and sparsity gives rise to a broader class of models that can be

used to model richer structures underlying high-dimensional data, as we will see

in examples in this chapter and later application chapters. Nevertheless, we are

also faced with new technical challenges about whether and how such structures

can be recovered correctly and effectively, from few observations.

5.1 Robust PCA and Motivating Examples

5.1.1 Problem Formulation

In this chapter, we study variants of the following problem. We are given a large

data matrix Y ∈ Rn1×n2 which is a superposition of two matrices:

Y = Lo + So, (5.1.1)

where Lo ∈ Rn1×n2 is a low-rank matrix and So ∈ Rn1×n2 is a sparse matrix.

Neither Lo, nor So is known ahead of time. Can we hope to efficiently recover

both Lo and So?

This problem resembles another classical low-rank matrix recovery problem in

which the observed data matrix Y ∈ Rn1×n2 is a superposition of two matrices:

Y = Lo +Zo, (5.1.2)

where as before Lo ∈ Rn1×n2 is a low-rank matrix but here Zo ∈ Rn1×n2 is

assumed to be a small, but dense perturbation matrix. For example, Zo could

be a Gaussian random matrix with small standard deviation. In other words,

one wants to recover a low-rank matrix Lo (or the low-dimensional subspace

spanned by the columns of Lo) from noisy measurements. The classical Principal
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Component Analysis (PCA) [Jol86] seeks the best rank-r estimate of Lo by

solving

min
L
‖Y −L‖F subject to rank (L) ≤ r. (5.1.3)

This problem is also known as the best rank-r approximation problem. As we

have seen in Section 4.2.2, it can be solved very efficiently via the Singular Value

Decomposition (SVD): If Y = UΣV ∗ is the SVD of the matrix Y , the optimal

rank-r approximation to Y is

L̂ = UΣrV
∗,

where Σr keeps only the first r leading singular values of the diagonal matrix Σ.

This solution enjoys a number of optimality properties when the perturbation in

matrix Zo is small or i.i.d. Gaussian [Jol02].

However, in the new measurement model (5.1.1), the perturbation term So can

have elements with arbitrary magnitude and hence its `2 norm can be unbounded.

In a sense, the measurement we observe

Y = Lo + So

is a corrupted version of the low-rank matrix Lo – entries of Y where So is

nonzero carry no information about Lo. The problem of recovering the matrix

Lo (and the associated low-dimensional subspace) from such highly corrupted

measurements can be considered a form of Robust Principal Component Analysis

(RPCA), as opposed to the classical PCA which is only stable to small noise or

perturbation.

In this chapter, we use S and Σo to denote the support and signs of the sparse

matrix So, respectively:

S
.
= supp(So) ⊆ [n1]× [n2], (5.1.4)

Σo
.
= sign(So) ∈ {−1, 0, 1}n1×n2 . (5.1.5)

We note that if we somehow knew the support S of So, we could potentially

recover Lo by solving a matrix completion problem (as in the previous chapter)

using PΩ[Lo] with Ω = Sc. But in the problems described above, both Lo and

So are unknown.

5.1.2 Matrix Rigidity and Planted Clique

Using this connection to matrix completion, one can show that the Robust PCA

problem is NP-Hard in general. The hardness can also be shown directly via a

connection to the concept of matrix rigidity. We say a matrix M is rigid if it is

far from a low-rank matrix in Hamming distance. Or more formally,
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= +

Figure 5.1 Superposition of a low-rank matrix Lo and a sparse matrix So.

Definition 5.1 (Matrix Rigidity). The rigidity of a matrix M (relative to rank

r matrices) is defined to be:

RM (r)
.
= min{‖S‖0 : rank (M + S) ≤ r}, (5.1.6)

the smallest number of entries that need to be modified in order to change M to

a rank r matrix.

Matrix rigidity is an important concept in computational complexity theory:

It has been shown by [Val77] that matrix rigidity gives a lower bound on the

circuit complexity for computing the linear transform Mx. Matrix rigidity is

also related to the notion of communication complexity [Wun12]. Nevertheless,

computing matrix rigidity is in general NP-hard [MSM07], and so it is hard to

decompose a general matrix:

M = L+ S

into a low-rank and sparse one. Exercise 5.2 studies the hardness of matrix

rigidity and guides the interested reader through this connection.

The hardness of the Robust PCA problem can also be established through its

connection to the Planted Clique problem [AB09].

Definition 5.2 (Planted Clique Problem). Given a graph G with n nodes, ran-

domly connect each pair of nodes with probability 1/2. Then select any no nodes

and make them a clique – a fully connected subgraph. The goal is to find this

hidden clique from the graph G.

It is known that with high probability the largest clique of the randomly

generated graph (with 1/2 connectivity) is 2 log2 n. Hence, theoretically, if

no > 2 log2 n,

we should be able to identify such a planted clique and distinguish the graph

from the randomly generated one. It is also known that if

no = Ω(
√
n),
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it is possible to efficiently identify the planted clique [Kuč95,AKS98] using spec-

tral methods. The interesting and difficult part of this problem is for

2 log2 n < no <
√
n.

There is a working conjecture about the complexity of this problem1:

Conjecture: ∀ε > 0, if no < n0.5−ε, then there is no tractable algorithm that can find
the hidden clique from G with high probability.

In our context, if we consider the adjacency matrix A of the graph G, then we

have

A = Lo + So,

where Lo is a rank-1 matrix with an no × no block of all ones, and So is a

relatively sparse matrix with around (n − no)/2 nonzero entries. Hence, given

the difficulty of the planted clique problem, we should not expect that there

exists an efficient algorithm to decompose the matrix A correctly to a rank-1

matrix Lo and a sparse So when no < n0.5−ε. We leave more detailed study of

the planted clique problem as exercises, which will help the reader understand

better the working conditions of the method proposed in this chapter.

For our purposes here, however, we simply note that the situation for Robust

PCA is analogous to that for low-rank recovery and for sparse recovery: we should

not expect to find an efficient algorithm which works for every problem instance.

Instead, the instances Y that are of practical interest are relatively “soft”: they

can be made significantly low-rank by correcting a small number of entries, as

we will see in a number of important applications discussed below.

5.1.3 Applications of Robust PCA

Many important practical applications confront us with instances of the problem

(5.1.1). We here give a few representative examples inspired by some contempo-

rary challenges in data science. Notice that depending on the applications, either

the low-rank component or the sparse component could be the object of interest.

Video Surveillance.
Given a sequence of surveillance video frames, we often need to identify activities

that stand out from the background. If we stack the video frames as columns of a

matrix Y , then the low-rank component Lo represents the stationary background

and the sparse component So captures the moving objects in the foreground.

However, since each image frame may have thousands or millions of pixels and

each video fragment may contain hundreds or thousands of frames, it would be

1 For more evidence on the complexity of the planted clique problem around no = Θ(
√
n),

one may refer to the work of [GZ19]. The more recent work of [BB20] has further revealed
the important role of the planted clique problem in characterizing computational hardness

taxonomy among various statistical inference problems regarding low-dimensional models

in high-dimensional spaces.
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only possible to decompose Y this way if we have a truly scalable solution to

this problem. The method developed in this chapter will enable us to achieve

this goal, as we will later see in an example shown in Figure 5.3.

Face Recognition.
As we learned in Section 4.1.1, images of a convex, Lambertian surface under

varying illuminations span a low-dimensional subspace [BJ03]. That is, if we

stack face images of a person as column vectors of a matrix, then this matrix is

(approximately) a low-rank matrix Lo. This fact has been a major reason why

low-dimensional models are effective for imagery data. In particular, images of

a human’s face can be well-approximated by a low-dimensional subspace. Being

able to correctly retrieve this subspace is crucial in many applications such as face

recognition and alignment. However, realistic face images often suffer from self-

shadowing, specularities, or saturation in brightness (as we have seen in images

on the left of Figure 4.2), which make this a difficult task and subsequently

compromise the recognition performance. A more careful study shows that the

face images are better modeled by a low-rank matrix Lo superposed with a sparse

matrix So which models such imperfection [ZMKW13]. To be able to recover

both components from occluded images will allow us to repair such images for

better recognition, as we will soon see an example in Figure 5.4.

Latent Semantic Indexing.
Web search engines often need to analyze and index the content of an enormous

corpus of documents. A popular scheme is the Latent Semantic Indexing (LSI),

[DFL+88, PTRV98] which we have discussed in the preceding chapter, Section

4.1.4. Recall that the basic idea is to gather a document-versus-term matrix Y

whose entries typically encode the relevance of a term (or a word) to a document

such as the frequency it appears in the document (e.g., term frequency-inverse

document frequency, also known as TF-IDF). PCA (or SVD) has traditionally

been used to decompose the matrix as a low-rank part plus a residual, which

is not necessarily sparse (as we would like). If we were able to decompose Y

as a sum of a low-rank component Lo and a sparse component So, then Lo
could capture a few topic models of all the documents while So captures the few

keywords that best distinguish each document from others. See [MZWM10] for

more details about such a joint topic-document model (via a superposition of a

low-rank and sparse matrix).

Ranking and Collaborative Filtering.
As we have seen in Section 4.1.2, anticipating user preferences has been an impor-

tant problem in online commerce and advertisement. Companies now routinely

collect user rankings for various products, e.g., movies, books, games, or web

tools, among which the Netflix Prize for movie ranking is the best known exam-

ple. The problem posed in the Netflix Prize is to use very sparse and incomplete

rankings provided by the users on some of the products to predict the preference
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of any given user on any products, also known as collaborative filtering [Hof04].

In the previous chapter, this problem has been cast as a problem completing

a low-rank matrix, say Lo. However, in reality, as the data collection process

often lacks control or is sometimes even ad hoc, a small portion of the available

rankings could be rather random and even tampered with by malicious users or

competitors. We may model those entries as a sparse matrix So. The recommen-

dation problem now becomes more challenging since we need to simultaneously

complete a low-rank matrix Lo and correct these (sparse) errors So. That is, we

need to infer the low-rank matrix Lo from a set of incomplete and corrupted en-

tries, a problem that methods introduced in the previous chapter are inadequate

to solve.

Community Discovery and Data Clustering.

With the increasing popularity of social networks, one important task is to dis-

cover hidden patterns and structures in such networks. We model a social net-

work as a graph G, with a node representing a person and an edge representing

friendship. Then the adjacency matrix of the graph is a symmetric matrix A

with aij = aji = 1 if and only if i and j are friends, and 0 otherwise. A “com-

munity” in the network is a subgroup of nodes that have much higher density

of connectivity among themselves than with others. Such a group of nodes is

also known as a “cluster,” as shown in Figure 5.2. Note that each cluster can be

approximately modeled as a fully connected subgraph, also known as a “clique.”

Each clique corresponds to a rank-1 submatrix with all ones. Hence, for a graph

that consists of multiple communities, the adjacent matrix A will be of the form:

A = Lo + So,

where Lo is a low-rank matrix consisting of several blocks of rank-1 submatrices

with all ones, and So is a sparse matrix that corresponds to the remaining

few spurious or missing connections. This can be viewed as an extended (more

challenging) version of the “planted clique” problem discussed earlier as here

we allow multiple cliques in the graph. In data science and engineering, many

tasks that try to cluster data into multiple subgroups, segments, subsystems, or

subspaces, can be reduced to a problem of this nature [VMS16].

All the applications that we have listed above require solving the problem

of decomposing a low-rank and sparse matrix possibly of very high dimension,

under various conditions. As it turns out, mathematically, this class of problems

is rather fundamental to machine learning and system theory. They are actually

the underlying problem for correctly and robustly learning graphical models and

identifying dynamical systems, as discussed in Chapter 1, the Introduction of

this book.
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Figure 5.2 A graph with two densely connected clusters, which can be used to model
two tight communities in a social network. Image reprinted with permission from
Professor Yuxin Chen of Princeton University.

5.2 Robust PCA via Principal Component Pursuit

In each of the above problems, the dataset Y can be modeled as a superposition

of a low-rank matrix and a sparse matrix:

Y = Lo + So. (5.2.1)

We like to simultaneously find the low-rank Lo and the sparse So from the

given Y . For the majority of this chapter, we will simplify notation by assuming

Y ∈ Rn×n is a square matrix. Extensions of both the theory and algorithms to

the non-square case Y ∈ Rn1×n2 are for the most part straightforward, some of

which will be discussed in Section 5.3 or left to the reader as exercises.

5.2.1 Convex Relaxation for Sparse Low-Rank Separation

Like sparse vector recovery in Chapter 3 and low-rank matrix recovery in Chapter

4, we might expect to find efficient algorithms that solve for such well-structured

instances. Based on our knowledge from previous chapters, we should have a very

clear idea of how to approach this! A natural idea is to solve a problem with two

matrix valued variables of optimization, L and S, in which we try to make the

nuclear norm of L small and the `1 norm of S small:

minimize ‖L‖∗ + λ‖S‖1
subject to L+ S = Y .

(5.2.2)

Here, λ > 0 is a positive weight parameter. The linear equality constraint L +

S = Y is convex; moreover, since a sum of two convex functions is convex, the

objective is also convex. This is a convex program, which we refer to as Principal

Component Pursuit (PCP).

The relative ease with which we derived this convex relaxation highlights a

conceptual advantage of “convex modeling”: because convex sets and functions

can be combined in nontrivial ways to form new convex sets and functions,

it is often straightforward to extend the models to handle new situations of
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practical interest. Indeed, although it should be straightforward to write down

the optimization problem (5.2.2), this opens the door to many new applications,

including those listed in the previous section.

Nevertheless, two crucial questions remain. First, since most of these applica-

tions involve large data sets, we will need both efficient and scalable algorithms

for solving the problem (5.2.2). Second, to deploy the algorithms with confi-

dence, we will need to understand if and when they correctly recover the target

low-rank and sparse components Lo and So. We will address these questions in

Sections 5.2.2 and 5.3, respectively. We will then close the chapter by addressing

several additional extensions to problem with both corruptions and missing data,

which further highlight the flexibility of the framework and allow us to model

additional nuisance factors in practical applications.

5.2.2 Solving PCP via Alternating Directions Method

The PCP problem can be solved to very high accuracy in polynomial time us-

ing semidefinite programming. Classical polynomial time algorithms for SDP are

based on interior point methods [GB14], which converge to highly accurate so-

lutions in very few steps, but have a high per-step cost (O(n6) for a problem

involving n × n matrices). This complexity limits such methods to be practical

only for small problems, say with n < 100. However, for most aforementioned

applications of PCP/RPCA, n can be very large. In such situations, a more ap-

propriate goal is to achieve moderate accuracy with algorithms that are both

scalable and efficient. In this section, we sketch one way of achieving this, us-

ing the technology of Lagrange duality – in particular, the alternating directions

method of multipliers (ADMM), which will be studied in more details for general

cases in Chapter 8.

The main challenge in efficiently solving the PCP problem is coping with the

constraint L+S = Y . As in the previous chapter on matrix completion, we use

the machinery of Lagrange duality. Here, the Lagrangian is

L(L,S,Λ)
.
= ‖L‖∗ + λ ‖S‖1 + 〈Λ,L+ S − Y 〉 . (5.2.3)

which is used for characterizing optimality conditions of the constrained pro-

gram. To derive a practical algorithm, as we will introduce formally in Chapter

8 Section 8.4, it is better to work with the augmented Lagrangian:2

Lµ(L,S,Λ)
.
= ‖L‖∗ + λ‖S‖1 + 〈Λ,L+ S − Y 〉+

µ

2
‖L+ S − Y ‖2F . (5.2.4)

A generic Lagrange multiplier algorithm, like the one we derived for matrix

completion, would solve PCP by repeatedly setting

(Lk+1,Sk+1) = arg min
L,S
Lµ(L,S,Λk), (5.2.5)

2 One may also refer to the classic book [Ber82] for a systematic exposition of the

augmented Lagrangian method.
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Algorithm 5.1 (Principal Component Pursuit by ADMM)

1: Initialize: S0 = Λ0 = 0, µ > 0.

2: while not converged do

3: Compute Lk+1 = D1/µ(Y − Sk − µ−1Λk);

4: Compute Sk+1 = Sλ/µ(Y −Lk+1 − µ−1Λk);

5: Compute Λk+1 = Λk + µ(Lk+1 + Sk+1 − Y );

6: end while

7: Output: L? ← Lk;S? ← Sk.

and then updating the Lagrange multipliers (here as a matrix)

Λk+1 = Λk + µ(Lk+1 + Sk+1 − Y ). (5.2.6)

Notice that at each iteration, we need to solve a convex program (5.2.5) with

both L and S as unknown. Although this is a convex program, it can be very

inefficient to solve with generic algorithms such as subgradient descent. We can

avoid doing that by recognizing that the two subproblems: minL Lµ(L,S,Λ) and

minS Lµ(L,S,Λ) both have very simple and efficient solutions.

Let Sτ : R→ R denote the shrinkage operator

Sτ [x] = sgn(x) max(|x| − τ, 0),

and extend it to matrices by applying it to each element. It is easy to show that

arg min
S
Lµ(L,S,Λ) = Sλ/µ(Y −L− µ−1Λ). (5.2.7)

Similarly, for matrices M , let Dτ (M) denote the singular value thresholding

operator given by Dτ (M) = USτ (Σ)V ∗, where M = UΣV ∗ is any singular

value decomposition. It is not difficult to show that

arg min
L
Lµ(L,S,Λ) = D1/µ(Y − S − µ−1Λ). (5.2.8)

Thus, a more practical strategy is to first minimize Lµ with respect to L (fixing

S), then minimize Lµ with respect to S (fixing L), and then finally update the

Lagrange multiplier matrix Λ based on the residual L + S − Y according to

(5.2.6). We summarize this strategy as Algorithm 5.1.

As it turns out, the above alternating strategy is a special case of a more

general class of augmented Lagrange multiplier methods known as alternating

directions methods of multipliers (ADMM). We will formally introduce ADMM

in Section 8.5 of Chapter 8 and study its convergence and other matters. Algo-

rithm 5.1 performs excellently on a wide range of instances: as we will see below,

relatively small numbers of iterations suffice to achieve good relative accuracy.

The dominant cost of each iteration is computing Lk+1 via singular value thresh-

olding. This requires us to compute those singular vectors of Y − Sk + µ−1Λk

whose corresponding singular values exceed the threshold µ. Empirically, we

have observed that the number of such large singular values is often bounded
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by rank(Lo), allowing the next iterate to be computed efficiently via a partial

SVD.3

Very similar ideas can be used to develop simple and effective augmented

Lagrange multiplier algorithms for the robust matrix completion problem (5.6.1)

to be introduced in Section 5.6, with similarly good performance.

5.2.3 Numerical Simulations and Experiments of PCP

In this section, we perform numerical simulations and experiments of Algorithm

5.1 for PCP and illustrate several of its many applications in image and video

analysis. We first investigate its ability to correctly recover matrices of various

rank from errors of various density. We then sketch applications in background

modeling from video and removing shadows and specularities from face images.

One important implementation detail in PCP is the choice of λ. As we will

see in the next section, theoretical analysis to justify the effectiveness of PCP

suggests one natural choice,

λ = 1/
√

max(n1, n2),

which will be used throughout this section. For practical problems, however,

it is often possible to improve performance by choosing λ according to prior

knowledge about the solution. For example, if we know that S is very sparse,

increasing λ will allow us to recover matrices L of larger rank. For practical

problems, we recommend λ = 1/
√

max(n1, n2) as a good rule of thumb, which

can then be adjusted slightly to obtain possibly better results.

I. Simulation: exact recovery from varying fractions of error.
We first verify how the algorithm does on recovering randomly generated in-

stances, under favorable conditions (i.e., rank of L is very low and S is rather

sparse). We consider square matrices of varying dimension n = 500, . . . , 3000.

We generate a rank-r matrix Lo as a product Lo = UV ∗ where U and V are

n×r matrices with entries independently sampled from a N (0, 1/n) distribution.

So is generated by choosing a support set S of size k uniformly at random, and

setting So = PS[E], where E is a matrix with independent Bernoulli ±1 entries.

Table 5.1 reports the results for a challenging scenario: rank(Lo) = 0.05 × n
and k = 0.10 · n2. In all cases, we set λ = 1/

√
n. Notice that in all cases,

solving the convex PCP gives a result (L̂, Ŝ) with the correct rank and sparsity.

Moreover, the relative error ‖L̂ − Lo‖F /‖Lo‖F is small, less than 10−5 in all

examples considered.4

The last two columns of Table 5.1 give the number of partial singular value

3 Further performance gains might be possible by replacing this partial SVD with an
approximate SVD, as suggested in [GM09] for nuclear norm minimization.

4 We measure relative error in terms of L only, since we usually view the sparse and low-rank

decomposition as recovering a low-rank matrix Lo from gross errors. So is of course also

well-recovered: in this example, the relative error in S is actually smaller than that in L.
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Dim. n rank(Lo) ‖So‖0 rank(L̂) ‖Ŝ‖0 ‖L̂−Lo‖F
‖Lo‖F

# SVD time(s)

500 25 25,000 25 25,000 1.2× 10−6 17 4.0

1,000 50 100,000 50 100,000 2.4× 10−6 16 13.7

2,000 100 400,000 100 400,000 2.4× 10−6 16 64.5

3,000 150 900,000 150 900,000 2.5× 10−6 16 191.0

Table 5.1 Correct Recovery for Random Problems of Varying Sizes. Here,
Lo = UV ∗ ∈ Rn×n with U ,V ∈ Rn×r; U ,V have entries sampled from
i.i.d. N (0, 1/n). So ∈ {−1, 0, 1}n×n has support chosen uniformly at random and
independent random signs; ‖So‖0 is the number of nonzero entries in So. In all cases, the
rank of Lo and `0-norm of So are correctly estimated. Moreover, the number of partial
singular value decompositions (# SVD) required to solve PCP is almost constant.

decompositions computed in the course of the optimization (# SVD) as well

as the total computation time.5 As we see from Algorithm 5.1, the dominant

cost in solving the convex program comes from computing one partial SVD per

iteration. Strikingly, in Table 5.1, the number of SVD computations is nearly

constant regardless of dimension, and in all cases less than 17, suggesting that

the ADMM algorithm gives a reasonably practical solver for PCP.

II. Experiment: background modeling from surveillance video.
Video is a natural candidate for low-rank modeling, due to the correlation be-

tween frames. One of the most basic algorithmic tasks in video surveillance is

to estimate a good model for the background variations in a scene. This task is

complicated by the presence of foreground objects: in busy scenes, every frame

may contain some anomaly. Moreover, the background model needs to be flex-

ible enough to accommodate changes in the scene, for example due to varying

illumination. In such situations, it is natural to model the background variations

as approximately low rank. Foreground objects, such as cars or pedestrians, gen-

erally occupy only a fraction of the image pixels and hence can be treated as

sparse errors.

We investigate whether the convex PCP program can separate these sparse

errors from the low-rank background. Here, it is important to note that the

error support may not be well-modeled as Bernoulli: errors tend to be spatially

coherent, and more complicated models such as Markov random fields may be

more appropriate [CSD+09,ZWMM09]. Hence, our theorems do not necessarily

guarantee the algorithm will succeed with high probability. Nevertheless, as we

will see, PCP still gives visually appealing solutions to this practical low-rank

and sparse separation problem, without using any additional information about

the spatial structure of the error.

5 This experiment was performed in Matlab on a Mac Pro with dual quad-core 2.66 GHz
Intel Xenon processors and 16 GB RAM.
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(a) Original frames (b) Low-rank L̂ (c) Sparse Ŝ

Figure 5.3 Background modeling from video. Three frames from a 200 frame video
sequence taken in an airport [LHGT04]. (a) Frames of original video Y . (b)-(c)
Low-rank L̂ and sparse components Ŝ obtained by PCP.

We consider two example videos introduced in [LHGT04]. The first is a se-

quence of 200 grayscale frames taken in an airport. This video has a relatively

static background, but significant foreground variations. The frames have reso-

lution 176×144; we stack each frame as a column of our matrix Y ∈ R25,344×200.

We decompose Y into a low-rank term and a sparse term by solving the convex

PCP problem (5.2.2) with λ = 1/
√
n1. Figure 5.3(a) shows three frames from

the video; (b) and (c) show the corresponding columns of the low rank matrix L̂

and sparse matrix Ŝ (its absolute value is shown here). Notice that L̂ correctly

recovers the background, while Ŝ correctly identifies the moving pedestrians.

One person appearing in the images in L̂ does not move throughout the video,

hence it was (correctly) modeled as part of the static background.

We have noticed that the number of iterations for the real data is typically

higher than that of the simulations with random matrices given in Table 5.1.

The reason for this discrepancy might be that the structures of real data could

slightly deviate from the idealistic low-rank and sparse model. Nevertheless, it

is important to realize that practical applications such as video surveillance of-

ten provide additional information about the signals of interest, e.g. the support

of the sparse foreground is spatially piecewise contiguous and temporarily con-

tinuous among frames. Or they even impose additional requirements, e.g. the
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recovered background needs to be non-negative etc. We note that the simplicity

of our objective and solution suggests that one can easily incorporate additional

constraints and more accurate models of the signals so as to obtain much more

efficient and accurate solutions.

III. Experiment: removing imperfections from face images.
Face recognition is another problem domain in computer vision where low-

dimensional linear models have received a great deal of attention. This is mostly

due to the work of Basri and Jacobs, who showed that for convex, Lambertian

objects, images taken under distant illumination lie approximately in a nine-

dimensional linear subspace known as the harmonic plane [BJ03]. However, since

faces are neither perfectly convex nor Lambertian, real face images often violate

this low-rank model, in part due to cast shadows and specularities. These errors

may be large in magnitude but sparse in the spatial domain. It is reasonable

to believe that if we have enough images of the same face, PCP will be able to

remove these errors. As with the previous example, some caveats apply: the the-

oretical result suggests the performance should be good, but does not guarantee

it, since again the error support may not follow a Bernoulli model. Nevertheless,

as we will see, the results are visually striking.

Figure 5.4 shows face images of one subject taken from the Extended Yale

Face Database B [GBK01]. Here, each image has resolution 192× 168; and there

are a total of 58 illuminations per subject, which we stack as columns of our

matrix Y ∈ R32,256×58. We again solve PCP with λ = 1/
√
n1.

Figure 5.4 plots the low-rank term L̂ and the magnitude of the sparse term Ŝ

obtained as the solution to the convex program. The sparse term Ŝ compensates

for cast shadows and specular regions. In one example (bottom row of Figure 5.4

left), this term also compensates for errors in image acquisition. These results

may be useful for conditioning the training data for face recognition, as well as

face alignment and tracking under illumination variations.

IV. Simulation: phase transition in rank and sparsity.
The above simulations and experiments suggest that for well-structured problem

instances (datasets that indeed admit a low-rank and sparse decomposition Y =

Lo+So), PCP accurately recovers both Lo and So. With this as motivation, we

next systematically investigate the ability of the algorithm to recover matrices

of varying rank from errors of varying sparsity. We consider square matrices of

dimension n1 = n2 = 400. We generate low-rank matrices Lo = UV ∗ with U

and V independently chosen n× r matrices with i.i.d. Gaussian entries of mean

zero and variance 1/n. For our first experiment, we assume a Bernoulli model

for the support of the sparse term So, with random signs: each entry of So takes

on value 0 with probability 1 − ρs, and values ±1 each with probability ρs/2.

For each (r, ρs) pair, we generate 10 random problem instances, each of which is
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(a) Y (b) L̂ (c) Ŝ

Figure 5.4 Removing shadows, specularities, and saturations from face images. (a)
Cropped and aligned images of a person’s face under different illuminations from the
Extended Yale Face Database B [GBK01]. The size of each image is 192× 168 pixels,
a total of 58 different illuminations per person. (b) Low-rank approximation L̂
recovered by convex programming. (c) Sparse error Ŝ corresponding to specularities
in the eyes, shadows around the nose region, or brightness saturations on the face.
Notice in the bottom left that the sparse term also compensates for errors in image
acquisition.

solved via the ADMM Algorithm 5.1. We declare a trial to be successful if the

recovered L̂ satisfies ‖L̂−Lo‖F /‖Lo‖F ≤ 10−3.

Figure 5.5 (left) plots the fraction of correct recoveries in grey scale for each

pair (r, ρs). Notice that there is a large white region in which the recovery is

exact. This inspires us to characterize the working conditions of the algorithm

in more precise terms in the next section. The simulation already highlights an

interesting aspect of PCP: The recovery is correct even though in some cases

‖So‖F � ‖Lo‖F (e.g., for r/n = ρs, ‖So‖F is
√
n = 20 times larger!). As we

shall see in the next section, this is to be expected from the analysis (see Lemma

5.4): The optimal solution to PCP is unique and correct only depending on the

signs and support of So and the orientation of the singular spaces of Lo.

Finally, inspired by the connection between matrix completion and Robust

PCA, we compare the breakdown point of PCP for the low-rank and sparse

separation problem to the breakdown behavior of the nuclear-norm heuristic

for matrix completion (studied in the previous chapter). By comparing the two

heuristics, we can begin to answer the question how much is gained by knowing
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(a) Principal Component Pursuit (b) Matrix Completion

Figure 5.5 Correct Recovery for Varying Rank and Sparse Corruptions
(left) or Missing Entries (right). Fraction of correct recoveries across 10 trials, as
a function of rank(Lo) (x-axis) and sparsity of So (y-axis). Here, n1 = n2 = 400. In
all cases, Lo is a product of independent n× r i.i.d. N (0, 1/n) matrices. Trials are
considered successful if ‖L̂−Lo‖F /‖Lo‖F < 10−3. Left: low-rank and sparse
decomposition, in which the signs of the sparse matrix Σo = sign (So) are random.
Right: matrix completion. For matrix completion, ρs is the probability that an entry
is omitted from the observation.

the location S of the corrupted entries? Here, we again generate Lo as a prod-

uct of Gaussian matrices. However, we now provide the algorithm with only an

incomplete subset M = PSc [Lo] of its entries. Each (i, j) may be included in

S independently with probability 1 − ρs, so rather than a probability of error,

here, ρs stands for the probability that an entry is omitted.

We solve the nuclear norm minimization problem

minimize ‖L‖∗ subject to PSc [L] = PSc [M ]

using an augmented Lagrange multiplier algorithm very similar to the one dis-

cussed in the above section. We again declare Lo to be successfully recovered if

‖L̂−Lo‖F /‖Lo‖F < 10−3. Figure 5.5 (right) plots the fraction of correct recover-

ies for varying r, ρs. Notice that nuclear norm minimization successfully recovers

Lo over a wider range of (r, ρs). The difference between breakdown points can

be viewed as the price of not knowing ahead of time which entries are unreliable.

5.3 Identifiability and Exact Recovery

Simulations and real examples of the previous section reveals a similar phe-

nomenon of RPCA to that of Matrix Completion: when the solution is sufficiently

structured (i.e. sufficient low-rank and sparse), the convex relaxation (and the

associated algorithm) succeeds. Our next goal will be to understand this phe-

nomenon at a more mathematical level and to provide a theory that delineates

when the convex optimization PCP solves the RPCA problem correctly.



210 Decomposing Low-Rank and Sparse Matrices

5.3.1 Identifiability Conditions

At first sight, the RPCA problem (5.1.1) of separating a matrix into a low-rank

one and a sparse one may seem impossible to solve. In general, there is not enough

information to perfectly disentangle the low-rank and the spare components since

the number of unknowns to infer Lo ∈ Rn×n and So ∈ Rn×n is twice as many

as the observations given in Y ∈ Rn×n. Clearly, we will need both Lo and So
to be well structured, in the sense that Lo is sufficiently low-rank, and So is

sufficiently sparse.

However, identifiability issues arise even for very structured examples. For

instance, suppose the matrix Y is equal to e1e
∗
1 (this matrix has a one in the

top left corner and zeros everywhere else). Then since Y is both sparse and low-

rank, how can we decide whether it is low-rank or sparse? To make the problem

meaningful, we need to impose that the low-rank component Lo is not sparse so

it can be differentiated from So.
6

Incoherence Conditions on Lo.
In the matrix completion problem of the previous chapter (Section 4.4), we have

introduced the notion of ν-incoherence to ensure that a low-rank matrix is not

too sparse. Let us write the singular value decomposition of Lo ∈ Rn×n as

Lo = UΣV ∗ =

r∑

i=1

σiuiv
∗
i ,

where r is the rank of the matrix, σ1, . . . , σr are the positive singular values, and

U = [u1, . . . ,ur], V = [v1, . . . ,vr] are the matrices of left- and right-singular

vectors. Then according to (4.4.13) and (4.4.14), Lo is ν-incoherent

max
i
‖e∗iU‖22 ≤

νr

n
, max

j
‖e∗jV ‖22 ≤

νr

n
. (5.3.1)

For technical reasons that we will see later in our derivation, in low-rank

and sparse separation we need a stronger notion of incoherence than the one

that sufficed for matrix completion. In addition to the above two incoherence

conditions, we further require:

‖UV ∗‖∞ ≤
√
νr

n
. (5.3.2)

Here and below, ‖M‖∞ = maxi,j |M ij |, i.e. is the `∞ norm of M viewed as a

long vector. This incoherence condition asserts that for small values of ν, the

singular vectors are reasonably spread out. As it turns out, the above condition

is not just needed for technical reasons, its necessity can also be justified from

the complexity conjecture regarding the planted clique problem, as one can see

through Exercises 5.4 to 5.5.

6 In Chapter 15, we will study the case when a matrix is simultaneously low-rank and

sparse, when the goal is to recover it as a whole instead of separating low-rank and sparse
components.
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Regardless, one can show that the above incoherence conditions are not atyp-

ical, in that they hold with high probability for low-rank matrices that are gen-

erated with random orthogonal factors U and V .

Randomness of So.
Another identifiability issue arises if the sparse matrix has low rank. This will

occur if, say, all the nonzero entries of So occur in a column or in a few columns.

Suppose for instance, that the first column of So is the opposite of that of Lo,

and that all the other columns of So vanish. Then it is clear that we would not

be able to recover Lo and So by any method whatsoever since Y = Lo + So
would have a column space equal to, or included in that of Lo. To avoid such

meaningless situations, we may assume that the sparsity pattern of the sparse

component So is selected independently and identically according to a Bernoulli

distribution

S ∼ Ber(ρs).

Under this model, the expected number of nonzero entries in So is E [|S|] = ρs·n2.

Uniqueness.
The incoherence conditions are sufficient to ensure that we will not confuse the

low-rank matrix Lo with the sparse matrix So. However, they do not yet give

a tractable algorithm for recovering them from the sum Lo + So. One natural

approach is to seek a pair (L∗,S∗) that is in some sense the simplest. In our

context, we would desire L∗ to have the lowest possible rank and S∗ the spars-

est. Or more precisely, we wish to minimize certain measure of “simplicity” or

“compactness” that encourages a decomposition such that L is low-rank and S

is sparse. Thus, if the ground truth is such that the rank of Lo is low enough and

So is sparse enough, then they will be the only optimal solution that minimizes

such a measure. In this section, we will try to show that for a properly chosen

λ ∈ R+

‖L‖∗ + λ‖S‖1
is precisely such a measure of model simplicity.

Similar to the case with recovering a sparse vector (Chapter 3) or with re-

covering a low-rank matrix (Chapter 4), could we expect that under reasonable

conditions, the above convex program PCP can actually recover the correct low-

rank Lo and sparse So?

In fact, under the minimal conditions discussed in the identifiability section

above, the solution to the convex PCP program exactly recovers the low-rank

and sparse components, provided that the rank of Lo is not too large and So is

reasonably sparse. To be more precise, the following statement is true:

Theorem 5.3 (Principal Component Pursuit). Suppose Lo is n × n and obeys

(5.3.1)–(5.3.2). Suppose that the support S of So follows the Bernoulli model with

parameter ρ < ρs, and that the signs of the nonzero entries of So are chosen
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independently from the uniform distribution on {±1}. Then, there is a numerical

constant C such that with probability at least 1−Cn−10 (over the choice of signs

and support of So), PCP (5.2.2) with λ = 1/
√
n is exact, i.e. L̂ = Lo and

Ŝ = So, provided that

rank (Lo) ≤ Cr
n

ν log2 n
. (5.3.3)

Above, Cr and ρs are positive numerical constants.

5.3.2 Correctness of Principal Component Pursuit

In this section, we prove Theorem 5.3. This section can be skipped for first

time readers who are not theory oriented or are not strongly interested in the

techniques needed for a rigorous proof of the theorem.

Dual Certificates for Optimality.
As for each optimization problem we have encountered thus far, we begin by

writing down an optimality condition. To prove that the target pair (Lo,So) is

the unique optimal solution to the convex program, we then must prove that

under our assumptions, this condition is satisfied with high probability.

The key tool for obtaining optimality conditions is the KKT conditions of

convex optimization; these conditions are naturally phrased in terms of the sub-

differential of the objective function. Recall the subdifferential of the `1 norm

∂ ‖·‖1 (So) = {Σo + F | PS[F ] = 0, ‖F ‖∞ ≤ 1} , (5.3.4)

and the nuclear norm

∂ ‖·‖∗ (Lo) = {UV ∗ +W | PT[W ] = 0, ‖W ‖ ≤ 1} . (5.3.5)

Here,U and V are matrices of left and right singular vectors of Lo, corresponding

to nonzero singular values, and

T
.
=
{
UR∗ +QV ∗ | R,Q ∈ Rn×r

}

is the tangent space to the variety of rank r matrices at Lo.

To the optimization problem

min
L,S
‖L‖∗ + λ ‖S‖1 subject to L+ S = Y , (5.3.6)

associate a matrix Λ ∈ Rn×n of Lagrange multipliers, and the Lagrangian

L(L,S,Λ) = ‖L‖∗ + λ ‖S‖1 + 〈Λ,Y −L− S〉 . (5.3.7)

The KKT conditions imply that (L?,S?) are optimal if there exists Λ such that

0 = ∂LL(L,S,Λ) and 0 ∈ ∂SL(L,S,Λ). Thus,

Λ ∈ ∂ ‖·‖∗ (L?) and Λ ∈ λ∂ ‖·‖1 (S?). (5.3.8)
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To show optimality, it is enough to find a matrix Λ that is in both the subdiffer-

ential of the nuclear norm, and the subdifferential of the `1 norm, at the same

time.

From the KKT Conditions to Usable Optimality Conditions.
Although the KKT conditions are a useful guide, the form that we have derived is

neither strong enough nor robust enough for our purposes. We need to strengthen

them to guarantee unique optimality, so that we can eventually ensure that the

true pair (Lo,So) is the only solution to the PCP problem. Moreover, as in

matrix completion, it will be easier to demonstrate that a modified condition is

satisfied, in which we merely guarantee that there exists Λ which is close to the

two subdifferentials, rather than lying exactly within them.

We introduce a simple condition for the pair (Lo,So) to be the unique optimal

solution to PCP. These conditions, given in the following lemma, are stated in

terms of a dual vector, the existence of which certifies optimality.

Lemma 5.4 (Unique Optimality). Assume that ‖PSPT‖ < 1 or equivalently

S ∩ T = {0}. Then (Lo,So) is the unique optimal solution to the PCP problem

if there exists Λ such that

[Subdifferential of ‖·‖∗]: PT[Λ] = UV ∗, ‖PT⊥ [Λ]‖ < 1, (5.3.9)

and

[Subdifferential of λ ‖·‖1]: PS[Λ] = λΣo, ‖PSc [Λ]‖∞ < λ. (5.3.10)

There are two aspects of this lemma which deserve comment. First, compared

to the KKT condition, it has the extra requirement that ‖PSPT‖ < 1. This

condition means that the subspace of matrices supported on S does not intersect

the tangent space T to the low-rank matrices at Lo. Second, compared to the

KKT condition, which just requires that Λ lie in the subdifferentials of ‖·‖∗ and

λ ‖·‖1, this condition requires that Λ lie within the relative interiors of these

two sets, by requiring ‖PT⊥ [Λ]‖ to be strictly less than one and ‖PSc [Λ]‖∞ to

be strictly less than λ. Under these stronger conditions, we can guarantee that

(Lo,So) is the unique optimal solution to the PCP problem.

Proof We consider a feasible perturbation (Lo+H,So−H) and show that the

objective increases whenever H 6= 0, hence proving that (Lo,So) is the unique

optimal solution. To do this, let PT⊥ [H] = ŪΣ̄V̄
∗

denote the reduced singular

value decomposition of PT⊥ [H]. Set W
.
= Ū V̄

∗ ∈ T⊥, and notice that

〈W ,H〉 = 〈W ,PT⊥ [H]〉 = ‖PT⊥ [H]‖∗ . (5.3.11)

Note further that UV ∗ +W ∈ ∂ ‖·‖∗ (Lo).

Similarly, set F
.
= −sign(PSc [H]), notice that λ(Σo +F ) ∈ ∂λ ‖·‖1 (So), and

that −λ 〈F ,H〉 = λ ‖PSc [H]‖1.
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Using the subgradient inequality for both ‖·‖∗ and λ ‖·‖1, we obtain that

‖Lo +H‖∗ + λ‖So −H‖1
≥ ‖Lo‖∗ + λ‖So‖1 + 〈UV ∗ +W ,H〉 − λ〈Σo + F ,H〉
= ‖Lo‖∗ + λ‖So‖1 + ‖PT⊥ [H]‖∗ + λ‖PSc [H]‖1 + 〈UV ∗ − λΣo,H〉,
= ‖Lo‖∗ + λ‖So‖1 + ‖PT⊥ [H]‖∗ + λ‖PSc [H]‖1 + 〈PT[Λ]− λPS[Λ],H〉
= ‖Lo‖∗ + λ‖So‖1 + ‖PT⊥ [H]‖∗ + λ‖PSc [H]‖1 + 〈PT⊥ [Λ]− λPSc [Λ],H〉
≥ ‖Lo‖∗ + λ‖So‖1 + ‖PT⊥ [H]‖∗ + λ‖PSc [H]‖1

− ‖PT⊥ [Λ]‖ ‖PT⊥ [H]‖∗ − λ ‖PSc [Λ]‖∞ ‖PSc [H]‖1
≥ ‖Lo‖∗ + λ ‖So‖1 + (1− β) {‖PT⊥ [H]‖∗ + λ ‖PSc [H]‖1} ,

where β = max
{
‖PT⊥ [Λ]‖ , λ−1 ‖PSc [Λ]‖∞

}
< 1. Since by assumption, S∩T =

{0}, we have ‖PT⊥ [H]‖∗ + λ‖PSc [H]‖1 > 0 unless H = 0.

This lemma gives a sufficient condition for (Lo,So) to be the unique optimal

solution. It is still challenging to work with, because it demands that Λ is an

element of both ∂ ‖·‖∗ (Lo) and ∂λ ‖·‖1 (So). This forces Λ to exactly satisfy the

equalities PT[Λ] = UV ∗ and PS[Λ] = λΣo. As we did for matrix completion,

it will be helpful to state a modified optimality condition, which accepts Λ that

satisfied these equalities approximately. We state this new condition as follows:

Lemma 5.5. Assume ‖PSPT‖ ≤ 1/2 and λ < 1. Then with the same notation,

(Lo,So) is the unique solution if there exists Λ such that

[Approx. subgradient of ‖·‖∗]: ‖PT[Λ]−UV ∗‖F ≤ λ
8 , ‖PT⊥ [Λ]‖ < 1

2 ,

(5.3.12)

and

[Approx. subgradient of λ ‖·‖1]: ‖PS[Λ]− λΣo‖F ≤ λ
8 , ‖PSc [Λ]‖∞ < λ

2 .

(5.3.13)

Proof Consider any nonzero H ∈ Rn×n. We demonstrate that in a particular

sense, H cannot be simultaneously concentrated on T and S. Observe that

‖PS[H]‖F ≤ ‖PSPT[H]‖F + ‖PSPT⊥ [H]‖F
≤ 1

2‖H‖F + ‖PT⊥ [H]‖F
≤ 1

2‖PS[H]‖F + 1
2‖PSc [H]‖F + ‖PT⊥ [H]‖F ,

and, therefore,

‖PS[H]‖F ≤ ‖PSc [H]‖F + 2‖PT⊥ [H]‖F .

Symmetric reasoning establishes that

‖PT[H]‖F ≤ ‖PT⊥ [H]‖F + 2 ‖PSc [H]‖F . (5.3.14)

With these observations in hand, we proceed in a similar spirit to the proof of
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Lemma 5.4. Notice that

UV ∗ = PT[Λ] + (UV ∗ − PT[Λ])

= Λ− PT⊥ [Λ] + (UV ∗ − PT[Λ]) , (5.3.15)

λΣo = PS[Λ] + (λΣo − PS[Λ])

= Λ− PSc [Λ] + (λΣo − PS[Λ]) , (5.3.16)

and so

UV ∗ − λΣo = −PT⊥ [Λ] + PSc [Λ] + (UV ∗ − PT[Λ]) + (λΣo − PS[Λ]) .

Following the proof of Lemma 5.4, we have

‖Lo +H‖∗ + λ‖So −H‖1
≥ ‖Lo‖∗+λ ‖So‖1 + ‖PT⊥ [H]‖∗ + λ ‖PSc [H]‖1 + 〈UV ∗ − λΣo,H〉
≥ ‖Lo‖∗+λ‖So‖1+ 1

2

(
‖PT⊥ [H]‖∗+λ‖PSc [H]‖1

)
− λ

8 ‖PT[H]‖F− λ
8 ‖PS[H]‖F

≥ ‖Lo‖∗+λ ‖So‖1 +
(

1
2 − λ

8 − λ
4

)
︸ ︷︷ ︸

≥ 1/8

‖PT⊥ [H]‖∗ +
(
λ
2 − λ

4 − λ
8

)
︸ ︷︷ ︸

≥ λ/8

‖PSc [H]‖1

> ‖Lo‖∗ + λ ‖So‖1 , (5.3.17)

where the final (strict) inequality holds because H 6= 0 and S ∩ T = {0}.

Showing that the Optimality Conditions Can be Satisfied.
We next show that under our conditions, with high probability the conditions of

Lemma 5.5 can be satisfied. To do this, we have to show two things:

1 ‖PSPT‖ < 1/2;

2 existence of a near dual certificate Λ as in Lemma 5.5.

Let Ω = Sc. These are the clean entries. Notice that if S ∼ Ber(ρs), Ω ∼
Ber(1− ρs). We are going to show 1 and 2 by building on machinery developed

in Chapter 4 for matrix completion. In particular, in that chapter we showed

that if

ρclean = 1− ρs > C0
νr log n

n
, (5.3.18)

with high probability
∥∥PT − ρ−1

cleanPTPScPT

∥∥ < 1
8 . (5.3.19)

Under this condition,

‖PTPSPT‖ = ‖PT − PTPScPT‖
≤ ‖ρcleanPT − PTPScPT‖ + ‖(1− ρclean)PT‖
= ρclean

∥∥PT − ρ−1
cleanPTPScPT

∥∥ + 1− ρclean

≤ ρclean
8 + 1− ρclean

< 1
4 , (5.3.20)
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provided ρclean >
6
7 . This implies that

‖PSPT‖ = ‖PTPSPT‖1/2 ≤ 1
2 . (5.3.21)

This establishes statement 1. By exactly the same reasoning, for any constant

σ > 0, there exists a constant ρclean,?(σ) < 1 such that if ρclean > ρclean,?, with

high probability ‖PSPT‖ < σ.

Constructing the Certificate Λ.
To show that (Lo,So) is the unique optimal solution, we further need to establish

statement 2. That is, there exists a matrix Λ that is simultaneously close to the

subdifferential ∂ ‖·‖∗ (Lo) and the subdifferential ∂λ ‖·‖1 (So) as in Lemma 5.5.

In the previous paragraph, we saw that the clean entries Ω = Sc are dis-

tributed as a Bernoulli subset, with parameter

ρclean
.
= 1− ρs. (5.3.22)

This is exactly the same model of randomness as in our analysis of matrix com-

pletion! We use this fact as a starting point for our construction. Proposition

4.31 implies that as long as the rank of Lo is not too large, i.e.,

r <
ρcleann

C0ν log2 n
, (5.3.23)

with high probability there exists a matrix ΛL supported only on the clean set

Ω satisfying

1 ‖PT[ΛL]−UV ∗‖F ≤ 1
4n ,

2 ‖PT⊥ [ΛL]‖ ≤ 1
4 ,

3 ‖ΛL‖∞ < C logn
ρclean

‖UV ∗‖∞.

This certificate ΛL lies close enough to the subdifferential of the nuclear norm.

Furthermore, let us further verify that it satisfies the condition ‖PSc [ΛL]‖∞ < λ
2

in Lemma 5.5. This is because UV ∗ is ν-incoherent: from (5.3.2), ‖UV ∗‖∞ ≤√
νr
n and with the assumption on the rank r of the matrix Lo, we have

‖ΛL‖∞ <
C log n

ρclean

√
νr

n
≤ C√

C0ρcleanν

1√
n

=
C√

ρcleanC0ν
λ. (5.3.24)

By properly choosing the constant C0 and C we can ensure that the coefficient
C√

ρcleanC0ν
< 1/4.

But ΛL is not yet close to the the subdifferential of the `1 norm – in particular,

elements of the subdifferential of the `1 norm should satisfy PS[Λ] = λΣo, but

PS[ΛL] = 0. To correct this, we choose

Λ = ΛL + ΛS ,

where the second element ΛS satisfies PS[ΛS ] = λΣo. We need to show that

we can choose ΛS such that this combined certificate Λ remains close to the

subdifferential of the nuclear norm at Lo, and is also close to the subdifferential

of λ ‖·‖1 at So. The following lemma shows that this is possible:



5.3 Identifiability and Exact Recovery 217

Lemma 5.6. Under the conditions of the Theorem 5.3, with high probability,

there exists ΛS such that

1 PS[ΛS ] = λΣo,

2 ‖PSc [ΛS ]‖∞ < λ
4 ,

3 PT[ΛS ] = 0,

4 ‖PT⊥ [ΛS ]‖ < 1
4 .

Under the assumptions of Theorem 5.3, we have in total for Λ = ΛL + ΛS :

‖PT[Λ]−UV ∗‖F = ‖PT[ΛL]−UV ∗‖F ≤
1

4n
(5.3.25)

‖PT⊥ [Λ]‖ ≤ ‖PT⊥ [ΛL‖] + ‖PT⊥ [ΛS ]‖ ≤ 1

2
(5.3.26)

PS[Λ] = PS[ΛS ] = λΣo (5.3.27)

‖PSc [Λ]‖∞ ≤ ‖PSc [ΛL]‖∞ + ‖PSc [ΛS ]‖∞
≤ ‖ΛL‖∞ +

λ

4

≤ λ

4
+
λ

4
=
λ

2
, (5.3.28)

where in the final inequality we have used the inequality (5.3.24). So with the so

constructed ΛS and ΛL, the combined

Λ = ΛL + ΛS

satisfies all conditions of Lemma 5.5 under the assumptions of Theorem 5.3. So

if we could prove Lemma 5.6, Theorem 5.3 would follow.

Constructing the Dual Certificate ΛS Using Least Squares.
To finish our proof, we need to verify Lemma 5.6, by showing that we can indeed

construct ΛS that satisfies the requisite properties. To do this, we resort to a

strategy that has proved useful at several points over the past few chapters: the

method of least squares (minimum energy). Namely, we choose ΛS to satisfy

the constraints PS[ΛS ] = λΣo and PT[ΛS ] = 0, but have the smallest possible

energy: formally,

ΛS = arg min
Λ̃

∥∥∥Λ̃
∥∥∥

2

F
subject to PS[Λ̃] = λΣo, PT[Λ̃] = 0. (5.3.29)

This optimization problem is feasible, provided S ∩ T = {0}. The constraints

ensure that ΛS satisfies criteria (i) and (iii) of Lemma 5.6 automatically.

To check that criteria (ii) and (iv) are satisfied, i.e., that PSc [ΛS ] has small `∞

norm and PT⊥ [ΛS ] has small operator norm, we utilize the scalar and operator

Bernstein’s inequalities, respectively. These calculations are facilitated by the

existence of a closed-form solution to (5.3.29):

ΛS = λPT⊥

∞∑

k=0

(PSPTPS)
k

[Σo]. (5.3.30)
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Exercise 5.13 asks you to check that this construction indeed satisfies the con-

straints, and that it is indeed the solution to the energy minimization problem

(5.3.29).

Proof of Lemma 5.6 Let E be the event that ‖PTPS‖ ≤ σ. This holds with

high probability in the support set S. Notice that on the event E ,

∞∑

k=0

∥∥∥(PSPTPS)
k
∥∥∥ ≤

∞∑

k=0

σ2k =
1

1− σ2k
< ∞. (5.3.31)

So, on E , the summation in (5.3.30) converges, and

ΛS = λPT⊥

∞∑

k=0

(PSPTPS)
k

[Σo] (5.3.32)

is well-defined. Property (iii), which states that PT[ΛS ] = 0 follows immedi-

ately, since PTPT⊥ = 0. Property (i), which states that PS[ΛS ] = λΣo, is a

consequence of the construction of ΛS as the solution to a least squares problem

(5.3.30). To verify this property, we can note that

PS[ΛS ] = λ

∞∑

k=0

(PSPTPS)
k

[Σo]− λ
∞∑

k=1

(PSPTPS)
k

[Σo]

= λΣo, (5.3.33)

as desired. Properties (iv) and (ii) state that ΛS is small, in two appropriate

senses. These require a bit more work.

Verifying (iv). Write

ΛS = λPT⊥ [Σo]︸ ︷︷ ︸
Λ

(1)
S

+ λPT⊥

∞∑

k=1

(PSPTPS)k[Σo]

︸ ︷︷ ︸
Λ

(2)
S

. (5.3.34)

For the second term, we introduce the more concise notation

R = PT⊥

∞∑

k=1

(PSPTPS)k, (5.3.35)

so that

Λ
(2)
S = λR[Σo]. (5.3.36)

Notice that

‖R‖ ≤ σ2

1− σ2
. (5.3.37)

The norm of Λ
(1)
S can be controlled by noting that
∥∥∥Λ(1)

S

∥∥∥ = λ ‖PT⊥ [Σo]‖ ≤ λ ‖Σo‖ . (5.3.38)
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With high probability,

‖Σo‖ ≤ C
√
ρm, (5.3.39)

whence for ρ < ρ? a small constant,
∥∥∥Λ(1)

S

∥∥∥ ≤ 1
16 . To control the norm of Λ

(2)
S ,

let N be a 1
2 net for Sn−1. By Lemma 3.25, such a net exists, with size |N| ≤ 6n.

Moreover,
∥∥∥Λ(2)

S

∥∥∥ = sup
u,v∈Sn−1

u∗Λ(2)
S v

≤ 4 max
u,v∈N

u∗Λ(2)
S v

= 4 max
u,v∈N

〈uv∗, λR [Σo]〉

= 4 max
u,v∈N

〈λR[uv∗],Σo〉

= 4 max
u,v∈N

〈Xu,v,Σo〉 . (5.3.40)

Conditioned on the support S of the sparse error term, we can observe that the

random variable 〈Xu,v,Σo〉 is a linear combination of Rademacher (±1) random

variables. Hoeffding’s inequality gives

P
[
〈Xu,v,Σo〉 > t | S

]
≤ exp

(
− t2

2 ‖Xu,v‖2F

)
. (5.3.41)

On E , using the bound (5.3.37), we can control the norm of Xu,v, via

‖Xu,v‖F ≤
λσ2

1− σ2
. (5.3.42)

So, for each u,v,

P
[
〈Xu,v,Σo〉 > t | E

]
≤ exp

(
− t2

2 ‖Xu,v‖2F

)
. (5.3.43)

Hence,

P
[ ∥∥∥Λ(2)

S

∥∥∥ > t
]

≤ P
[

max
u,v∈N

〈Xu,v,Σo〉 > t
4

]

≤ P
[

max
u,v∈N

〈Xu,v,Σo〉 > t
4 | E

]
+ P

[
Ec
]

≤ |N|2 × max
u,v∈N

P
[
〈Xu,v,Σo〉 > t

4 | E
]

+ P
[
Ec
]

≤ 62n × exp

(
− t

2(1− σ2)2

2λ2σ4

)
+ P [Ec] . (5.3.44)

Setting t = 1
8 , and ensuring that σ is appropriately small, we obtain that with

high probability
∥∥∥Λ(2)

S

∥∥∥ ≤ 1
8 ; combining with our bound on

∥∥∥Λ(1)
S

∥∥∥, we obtain

that ‖ΛS‖ < 1
4 with high probability, as desired.
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Verifying (ii). We finish by verifying that with high probability, ‖PSc [ΛS ]‖∞ <
λ
4 . For this, notice that

PSc [ΛS ] = λPScPT⊥

∞∑

k=0

(PSPTPS)
k

[Σo]

= λPScPTPS

∞∑

k=0

(PSPTPS)
k

[Σo]

.
= λH[Σo]. (5.3.45)

On E , for any (i, j) ∈ Sc, we have

∥∥H∗[eie∗j ]
∥∥
F

=

∥∥∥∥∥

[ ∞∑

k=0

(PSPTPS)k

]
PSPT[eie

∗
j ]

∥∥∥∥∥
F

≤
∥∥∥∥∥

[ ∞∑

k=0

(PSPTPS)k

]
PSPT

∥∥∥∥∥
∥∥PT[eie

∗
j ]
∥∥
F

≤ σ

1− σ2
×
√

2νr

n

≤ C
√

log n. (5.3.46)

Notice that

‖PSc [ΛS ]‖∞ = λmax
i,j
|e∗iH[Σo]ej | = λmax

i,j

∣∣〈H[eie
∗
j ],Σo

〉∣∣ . (5.3.47)

Write

Yij =
〈
H[eie

∗
j ],Σo

〉
∈ R. (5.3.48)

Using Hoeffding’s inequality again, we have

P
[
|Yij | > t | S

]
≤ 2 exp

(
− t2

2
∥∥H[eie∗j ]

∥∥2

F

)
. (5.3.49)

Hence,

P
[
|Yij | > t | E

]
≤ 2n−12 (5.3.50)

We have

P
[
‖PSc [ΛS ]‖∞ ≥ λ

4

]
≤ P

[
max
i,j
|Yij | > 1

4

]

≤ P
[
max
i,j
|Yij | > 1

4 | E
]

+ P
[
Ec
]

≤
∑

i,j

P
[
|Yij | > 1

4 | E
]

+ P
[
Ec
]

≤ n2 × 2n−12 + P [Ec]
≤ 2n−10 + P [Ec] . (5.3.51)

This completes the proof.
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5.3.3 Some Extensions to the Main Result

Several refinements or extensions to Theorem 5.3 are possible. We describe these

here, and leave their proofs as exercises.

Nonsquare Matrices.
In the general rectangular case where Lo is n1×n2, let n(1)

.
= max{n1, n2}. Then

PCP with λ = 1/
√
n(1) succeeds with probability at least 1 − cn−10

(1) , provided

that rank (Lo) ≤ ρrn(2) ν
−1(log n(1))

−2 and m ≤ ρs n1n2. A rather remarkable

fact is that there is no tuning parameter in solving the PCP program. Under the

assumption of the theorem, solving

min
L,S
‖L‖∗ +

1
√
n(1)
‖S‖1 subject to Y = L+ S,

always returns the correct answer. This is surprising because one might have

expected that one would have to choose the right scalar λ to balance the two

terms in ‖L‖∗+λ‖S‖1 appropriately (perhaps depending on their relative size).

This is, however, clearly not the case. In this sense, the choice λ = 1/
√
n(1) is

universal. Further, it is not so clear a priori why λ = 1/
√
n(1) is a correct choice

no matter what Lo and So are. It is the mathematical analysis which reveals

the correctness of this value. In fact, the proof of the theorem gives a range of

correct values, and we have selected arguably the simplest one in that range.

Dense Error Correction.
In the above Theorem 5.3, one may wonder how large the fraction of non-zero

entries in So, namely ρs, can be in practice. The result will not be very useful

if ρs has to be extremely small. As it turns out, in most cases, ρs can be rather

significant, and in some extreme cases, So does not even have to be sparse at

all!

To be more precise, under the same assumptions of Theorem 5.3, one can

rigorously prove: For any ρs < 1, as n becomes large7, Principal Component

Pursuit (5.2.2) exactly recovers (Lo,So) with high probability,8 provided

λ = C1

(
4
√

1− ρs +
9

4

)−1√
1− ρs
ρsn

, r <
C2n

ν log2 n
, (5.3.52)

where 0 < C1 ≤ 4/5 and C2 > 0 are certain constants. In other words, pro-

vided the rank of a matrix is of the order of n/ν log2 n, if we can choose a λ

that is dependent on ρs, PCP recovers the low-rank matrix exactly even when

an arbitrarily large fraction of its entries are corrupted by errors of arbitrary

magnitudes and the locations of the uncorrupted entries are unknown!

Furthermore, by slightly modifying the proof for the above statement, one can

7 For ρs closer to one, the dimension n must be larger; formally, n > n0(ρs).
8 By “high probability”, we mean with probability at least 1− cn−β for some fixed β > 0.
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show that the exact recovery will be guaranteed with high probability if the rank

r and the parameter λ are chosen as follows instead:

λ =
1√

n log n
, r <

C2n

ν log3 n
. (5.3.53)

That is, if there is reason to believe the rank of the matrix Lo is more restricted

(say, in practice, fixed), we only have to set λ = 1√
n logn

which does not depend

on any knowledge in the fraction of errors ρs. With such settings, PCP would

succeed in finding the correct solution. As we will see in Section 5.6, a simi-

lar choice of λ works for recovering a low-rank matrix with both missing and

corrupted entries.

In this book, we chose not to provide detailed proof to these extensions as

their proof strategy and techniques are very similar to the proof of Theorem 5.3.

Nevertheless, interested readers might resort to the work [GWL+10,CJSC13] for

more details.

Derandomization of Error Signs.
In the above Theorem 5.3, both the support and signs of the error term So are

assumed to be random. In practice, such random models might be considered as

less practical as many practical sparse signals might not be entirely random. As

it turns out, the randomness assumption on the signs of So is not crucial for the

conclusion of the theorem.

More precisely, one can prove that: Suppose Lo obeys the conditions of Theo-

rem 5.3 and that the locations of the nonzero entries of So follow the Bernoulli

model with parameter ρs, and the signs of So are i.i.d. ±1 (independent from

the locations). Then if the PCP solution is exact with high probability, then it

is also exact with at least the same probability for the model in which the signs

(and values) of So are fixed and the locations are sampled from the Bernoulli

model with parameter 1
2ρs.

That is, we may consider So comes from an arbitrary prefixed matrix S as

So = PS[S],

where S is sampled from a Bernoulli model with parameter 1
2ρs. Then the PCP

recovers the correct Lo and So with high probability too. In other words, to

remove the randomness in the signs, we lose half of the density in the error term

So. Note that the values and signs of the fixed matrix S can even be chosen to

be the most “adversarial”: S = Lo!

What about the randomness in the locations S? Can we remove it too without

significantly reducing the strength of the conclusion? As we have discussed earlier

in this section, the randomness of the support of So is to ensure identifiability.

If the support of So is not sufficiently random in both columns and rows, say it

concentrates on certain row or column, then it might easily become impossible to

recover the corresponding row or column of Lo. One may refer to [CSPW09] for
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conditions under which PCP succeeds with deterministic models for the support

of So.

Sparse Outlier Pursuit.
In many applications, the corruptions might concentrate on a small number of

columns of the low-rank matrix Lo, instead of individual entries. In other words,

the data matrix is of the form:

Y = Lo +Oo,

where Oo is a matrix with a sparse number of nonzero columns. The corre-

sponding columns can be viewed as “outliers” which have little to do with the

low-rank matrix Lo. This problem is also known as Robust PCA with sparse

(column-wise) outliers [XCS12]. In this case, one may consider a norm that pro-

motes column-wise sparsity: the sum of `2 norms of all columns, also known as

the (2, 1)-norm:

‖O‖2,1 =

n2∑

i

‖Oi‖2, (5.3.54)

where Oi ∈ Rn1 are the columns of the matrix O ∈ Rn1×n2 . So to decompose

the matrix Y , one may consider the following convex program known as “outlier

pursuit”:

min
L,S
‖L‖∗ + λ‖O‖2,1 subject to L+O = Y . (5.3.55)

Like the PCP for sparse corruptions, the above program can recover the correct

low-rank and the column-sparse components under fairly broad conditions,9 as

detailed in the work of [XCS12].

5.4 Stable Principal Component Pursuit with Noise

The PCP model and result (Theorem 5.3) is limited to situations in which the

low-rank component is exactly low-rank and the sparse component is exactly

sparse. However, in real world applications the observations are often perturbed

by noise, which may be stochastic or deterministic, affecting every entry of the

data matrix. For example, in face recognition that we mentioned earlier, the

human face is not a strictly convex and Lambertian surface hence the low-rank

model (due to photometric properties) is only approximately low-rank. In rank-

ing and collaborative filtering, user’s ratings could be noisy because of the lack

of control in the data collection process. Therefore, for the PCP method to be

applicable to a wider range of real world problems, we need to examine if it can

handle small entry-wise (dense) noise.

9 The columns of the low-rank matrix Lo satisfy certain incoherent condition, and the

fraction of outliers is bounded accordingly.
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In the presence of noise, the new measurement model becomes

Y = Lo + So +Zo, (5.4.1)

where Zo is a small error term that could affect the value of each entry of the

matrix. However, all we assume about Zo here is that ‖Zo‖F ≤ ε for some ε > 0.

To recover the unknown matrices Lo and So, one may consider solving the

following optimization problem, as a relaxed version to PCP (5.2.2):

min
L,S
‖L‖∗ + λ‖S‖1 subject to ‖Y −L− S‖F ≤ ε. (5.4.2)

where we choose λ = 1/
√
n. Note that with this choice, we typically have λ < 1/2

for large n. Our main result is that under the same conditions as PCP, the above

convex program gives a stable estimate of Lo and So:

Theorem 5.7 (Stability of PCP to Bounded Noise). Under the same assump-

tions of Theorem 5.3, that is, Lo obeys the incoherence conditions and the support

of So is uniformly distributed of size m. Then if Lo and So satisfy

rank(Lo) ≤
ρrn

ν log2 n
and m ≤ ρsn2, (5.4.3)

with ρr, ρs > 0 being sufficiently small numerical constants, with high probability

in the support of So, for any Zo with ‖Zo‖F ≤ ε, the solution (L̂, Ŝ) to the

convex program (5.4.2) satisfies

‖L̂−Lo‖2F + ‖Ŝ − So‖2F ≤ Cε2, (5.4.4)

where the constant C =
(
16
√

5n+
√

2
)2

.

Here, we would like to point out two ways to view the significance of this

result. To some extent, the model (5.4.2) unifies the classical PCA and the robust

PCA by considering both gross sparse errors and small entry-wise noise in the

measurements. So on the one hand, the above theorem says that the low-rank and

sparse decomposition via PCP is stable in the presence of small entry-wise noise,

hence making PCP more widely applicable to practical problems where the low-

rank structure is not exact. On the other hand, the theorem convincingly justifies

that the classical PCA can now be made robust to sparse gross corruptions via

certain convex program. Since this convex program can be solved very efficiently

via algorithms similar to Algorithm 5.1, at a cost not so much higher than the

classical PCA, this model and result can be applied to many practical problems

where both small noise and gross corruption are present simultaneously.

Before we set out to prove the above result, let us first introduce some new

notation. For any matrix pair X = (L,S) let

‖X‖F .
=
(
‖L‖2F + ‖S‖2F

)1/2
, ‖X‖♦ = ‖L‖∗ + λ‖S‖1.

Define a projection operator

PT × PS : (L,S) 7→ (PT[L],PS[S]).
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Also we define the subspaces Γ
.
= {(Q,Q) | Q ∈ Rn×n} and Γ⊥

.
= {(Q,−Q) |

Q ∈ Rn×n}, and let PΓ and PΓ⊥ denote their respective projection operators.

Lemma 5.8. Suppose that ‖PTPS‖ ≤ 1/2. Then for any pair X = (L,S),

‖PΓ(PT × PS)[X]‖2F ≥ 1
4‖(PT × PS)[X]‖2F .

Proof For any matrix pair X ′ = (L′,S′), PΓ[X ′] =
(
L′+S′

2 , L
′+S′

2

)
and so

‖PΓ[X ′]‖2F = 1
2‖L

′ + S′‖2F . So,

‖PΓ(PT × PS)[X]‖2F = 1
2‖PT[L] + PS[S]‖2F

= 1
2

(
‖PT[L]‖2F + ‖PS[S]‖2F + 2〈PT[L],PS[S]〉

)
.

Now,

〈PT[L],PS[S]〉 = 〈PT[L], (PTPS)PS[S]〉
≥ −‖PTPS‖‖PT[L]‖F ‖PS[S]‖F .

Since ‖PTPS‖ ≤ 1/2,

‖PΓ(PT × PS)[X]‖2F
≥ 1

2

(
‖PT[L]‖2F + ‖PS[S]‖2F − ‖PT[L]‖F ‖PS[S]‖F

)

≥ 1
4

(
‖PT[L]‖2F + ‖PS[S]‖2F

)
= 1

4‖(PT × PS)[X]‖2F ,
where we have used that for any a, b, a2 + b2 − ab ≥ (a2 + b2)/2.

Proof of Theorem 5.7. The proof for the noisy case largely relies on the method

and results we have developed before for proving the noiseless case of PCP. From

the proof of Theorem 5.3, we know that, with high probability, there exists a

dual certificate Λ satisfying the conditions in Lemma (5.5):
{ ‖PT[Λ]−UV ∗‖F ≤ λ

8 , ‖PT⊥ [Λ]‖ < 1
2 ,

‖PS[Λ]− λΣo‖F ≤ λ
8 , ‖PSc [Λ]‖∞ < λ

2 .
(5.4.5)

Our proof uses two crucial properties of X̂ = (L̂, Ŝ). First, since Xo is also

a feasible solution to (5.4.2), we have ‖X̂‖♦ ≤ ‖Xo‖♦. Second, we use triangle

inequality to get

‖L̂+ Ŝ −Lo − So‖F ≤ ‖L̂+ Ŝ − Y ‖F + ‖Lo + So − Y ‖F
≤ 2ε. (5.4.6)

Furthermore, set X̂ = Xo + H where H = (HL,HS). We want to bound

the norm of the perturbation ‖H‖2F = ‖HL‖2F + ‖HS‖2F , Notice that unlike

the noise-free case, here HL +HS is not necessarily equal to zero. So in order

to leverage results from the noise-free case, we decompose the perturbation into

the two orthogonal components in Γ and Γ⊥ respectively: HΓ = PΓ[H] and

HΓ⊥ = PΓ⊥ [H]. Then ‖H‖2F can be expanded as

‖H‖2F = ‖HΓ‖2F + ‖HΓ⊥‖2F
= ‖HΓ‖2F + ‖(PT × PΩ)[HΓ⊥ ]‖2F + ‖(PT⊥ × PSc)[H

Γ⊥ ]‖2F . (5.4.7)
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Since (5.4.6) gives us

‖HΓ‖F =
(
‖(HL +HS)/2‖2F + ‖(HL +HS)/2‖2F

)1/2 ≤
√

2/2× 2ε =
√

2ε,

(5.4.8)

it suffices to bound the second and third terms on the right-hand-side of (5.4.7).

a. Bound the third term of (5.4.7). Let Λ be a dual certificate satisfying

(5.4.5). Then we have

‖Xo +H‖♦ ≥ ‖Xo +HΓ⊥‖♦ − ‖HΓ‖♦. (5.4.9)

Since HΓ⊥
L +HΓ⊥

S = 0, following the proof of Lemma 5.5, we have

‖Xo +HΓ⊥‖♦
≥ ‖Xo‖♦ + 1/8‖PT⊥ [HΓ⊥

L ] + λ/8‖∗‖PSc [H
Γ⊥
S ]‖1

≥ ‖Xo‖♦ +
1

8

(
‖PT⊥ [HΓ⊥

L ]‖∗ + λ‖PSc [H
Γ⊥
S ]‖1

)
,

which implies that

‖PT⊥ [HΓ⊥
L ]‖∗ + λ‖PSc [H

Γ⊥
S ]‖1 ≤ 8‖HΓ‖♦. (5.4.10)

For any matrix Y ∈ Rn×n, we have the following inequalities:

‖Y ‖F ≤ ‖Y ‖∗ ≤
√
n‖Y ‖F ,

1√
n
‖Y ‖F ≤ λ‖Y ‖1 ≤

√
n‖Y ‖F ,

where we assume λ = 1√
n

. Therefore

‖(PT⊥ × PSc)[H
Γ⊥ ]‖F

≤ ‖PT⊥ [HΓ⊥
L ]‖F + ‖PSc [H

Γ⊥
S ]‖F

≤ ‖PT⊥ [HΓ⊥
L ]‖∗ + λ

√
n‖PSc [H

Γ⊥
S ]‖1

≤ 8
√
n‖HΓ‖♦ = 8

√
n
(
‖HΓ

L‖∗ + λ‖HΓ
S‖1
)

≤ 8n(‖HΓ
L‖F + ‖HΓ

S‖F ) ≤ 8
√

2n‖HΓ‖F ≤ 16nε, (5.4.11)

where the last equation uses the fact that HΓ
L = HΓ

S .

b. Bound the second term of (5.4.7). By Lemma 5.8,

‖PΓ(PT × PS)[HΓ⊥ ]‖2F ≥
1

4
‖(PT × PS)[HΓ⊥ ]‖2F .

But since PΓ[HΓ⊥ ] = 0 = PΓ[PT ×PS)[HΓ⊥ ] +PΓ[PT⊥ ×PSc)[H
Γ⊥ ], we have

‖PΓ(PT × PS)[HΓ⊥ ]‖F = ‖PΓ(PT⊥ × PSc)[H
Γ⊥ ]‖F

≤ ‖(PT⊥ × PSc)[H
Γ⊥ ]‖F .

Combining the previous two inequalities, we have

‖(PT × PS)[HΓ⊥ ]‖2F ≤ 4‖(PT⊥ × PSc)[H
Γ⊥ ]‖2F ,
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which, together with (5.4.11), gives us the desired result,

‖HΓ⊥‖2F ≤ 5‖(PT⊥ × PSc)[H
Γ⊥ ]‖2F ≤ 5× 162n2ε2. (5.4.12)

Combining this bound with (5.4.8), we obtain the conclusion for Theorem 5.7.

Notice that in the statement of the Theorem 5.7, the constant C still depends

on the dimension n, which arguably could still be removed or reduced. Indeed,

with slightly stronger condition, say the magnitude of the low-rank component

Lo is bounded, one could obtain better estimates by solving a Lasso-type pro-

gram:

min
L,S
‖L‖∗ + λ ‖S‖1 + µ

2 ‖L+ S − Y ‖2F subject to ‖L‖∞ < α. (5.4.13)

With properly chosen weights λ and µ, the bound on the estimation error in-

curred by the noise can be significantly improved, compared to that in Theo-

rem 5.7. The analysis and result are similar to those for stable sparse recovery

(Theorem 3.31) and stable low-rank recovery (Theorem 4.20) where the noise is

assumed to be random (Gaussian). For detailed analysis of the error bound for

this program, we refer the reader to the work of [ANW12]. The same analysis

also applies to the stable version of the outlier pursuit program (5.3.55):

min
L,O
‖L‖∗ + λ ‖O‖2,1 + µ

2 ‖L+O − Y ‖2F subject to ‖L‖∞ < α. (5.4.14)

5.5 Compressive Principal Component Pursuit

From the above sections, we saw that under fairly broad conditions, via convex

optimization, a low-rank matrix Lo and the sparse matrix So can be recovered

correctly if we observe fully their superposition Y = Lo + So. This is possible

because the pair (Lo,So) have far fewer degrees of freedom than the number of

observations n2. Since this target is so low-dimensional, it is natural to wonder

whether it would be possible to recover it from an even smaller set of general lin-

ear measurements Y . That is, are we are able to perform “compressive sensing”

of a low-rank structure and a sparse model superimposed together. Mathemati-

cally, we assume the observations have the form:

Y
.
= PQ[Lo + So], (5.5.1)

where Q ⊆ Rn1×n2 is a linear subspace, and PQ denotes the projection operator

onto that subspace. In fact, this problem may arise whenever we observe a “de-

formed” version of certain 2D array M , say M ◦ τ = Lo +So where τ is certain

domain deformation. One natural approach to recover the deformation τ and the

low-rank and sparse components is to linearize the above equation respect to τ

and obtain the differential of the above equation at a given τo:

M ◦ τo + J ◦ dτ ≈ Lo + So,
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where J is the Jacobian matrix and dτ is the infinitesimal deformation. To

eliminate the unknown dτ , let Q be the left kernel of the Jacobian J , i.e., Q is a

subspace spanned by all matrices Q
.
= {Q | 〈Q,J〉 = 0}. So we have

Y
.
= PQ[M ◦ τo] = PQ[Lo + So].

Can we simultaneously recover the low-rank and sparse components correctly

from highly compressive measurements via the natural convex program

min ‖L‖∗ + λ‖S‖1 subject to PQ[L+ S] = Y ? (5.5.2)

We call this convex program Compressive Principal Component Pursuit, or shortly

CPCP. In this section, we study when this program can correctly recover Lo and

So. As before, throughout this section, we assume the low-rank matrix Lo is ν-

incoherent and the support of the sparse component So, say S, is (Bernoulli)

random.

To recover both Lo and So correctly, we must require measurements Q to

be incoherent with both the low-rank and the sparse component. To ensure the

incoherence property, we may assume that Q is a randomly chosen subspace in

the matrix space Rn1×n2 .

More precisely, suppose the dimension of the subspace Q is q, and we assume Q

is distributed according to the Haar measure on the Grassmannian G(Rm×n, q).
On a more intuitive level, this means that Q is equal in distribution to the linear

span of a collection of q independent iid N (0, 1) matrices. In notation more

familiar from compressive sensing, we may let Q1, . . . ,Qq denote such a set of

matrices, and define an operator Q : Rn1×n2 → Rq via

Q[M ] =
(
〈Q1,M〉 , . . . ,

〈
Qq,M

〉)∗ ∈ Rq. (5.5.3)

Our analysis also pertains to the equivalent convex program:

min ‖L‖∗ + λ ‖S‖1 subject to Q[L+ S] = Q[Lo + So]. (5.5.4)

Since Q has full rank q almost surely, (5.5.4) and (5.5.2) are completely equiva-

lent.

With these assumptions, the following theorem gives a tight bound on the

number of (random) measurements required to correctly recover the pair (Lo,So)

from PQ[Lo + So] via CPCP:

Theorem 5.9 (Compressive PCP). Let Lo,So ∈ Rn1×n2 , with n1 ≥ n2, and

suppose that Lo 6= 0 is a rank-r, ν-incoherent matrix with

r ≤ crn2

ν log2 n1

, (5.5.5)

and sign (So) is iid Bernoulli-Rademacher with nonzero probability ρ < cρ. Let

Q ⊂ Rn1×n2 be a random subspace of dimension

dim(Q) ≥ CQ · (ρn1n2 + n1r) · log2 n1 (5.5.6)
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distributed according to the Haar measure, probabilistically independent of sign(So).

Then with probability at least 1− Cn−9
1 in (sign(So),Q), the solution to

min ‖L‖∗ + λ ‖S‖1 subject to PQ[L+ S] = PQ[Lo + So] (5.5.7)

with λ = 1/
√
n1 is unique, and equal to (Lo,So). Above, cr, cρ, CQ, C are positive

numerical constants.

Here, the magnitudes of the nonzeros in So are arbitrary, and no randomness

is assumed in Lo. The randomness in this result occurs in the sign and support

pattern of So and in the measurements Q. The bounds on r and ρ essentially

match those of PCP for the fully observed case, possibly with different constants.

So, again, r and ‖So‖0 can be rather large. On the other hand, when these quan-

tities are small, the bound on dim(Q) ensures that the number of measurements

needed for accurate recovery is also commensurately small. In fact, this result can

be obtained via general arguments that can also be applied to other compressive

sensing and decomposition problems of a family of low-dimensional structures

in high-dimensional space (as we will introduce in the next Chapter). Since the

approach and techniques of the proof are rather similar to that for the PCP, we

here do not elaborate and instead point interested readers to [WGMM13] for a

complete proof.

5.6 Matrix Completion with Corrupted Entries

We have seen that the main result on PCP (Theorem 5.3) asserts that it is

possible to recover a low-rank matrix even though a significant fraction of its

entries are corrupted. Furthermore, the above section reveals that both the low-

rank and sparse components can be recovered even if only a small number of

general linear measurements of the corrupted matrix Y are given.

In many applications, however, the (linear) measurements of the corrupted

matrix available to us are not general and have very peculiar structures. For

instance, we only get to see a small fraction of the entires of Y , and the remaining

of the entries may be missing. For instance, in the case of taking face images

under different illuminations, we can use random corruptions to model pixels

associated with surfaces that violate the Lambertian property (such as specular

surfaces); and we may assume the intensities of pixels which are blocked from

light sources (in the shadow areas) are missing. Hence the data (matrix) have

both corrupted and missing entries. Can we still expect to recover the low-rank

matrix? As the observations are no longer general (e.g., they are not incoherent

with the sparse term So), results from the above section do not directly apply

to the situations here. This section addresses this problem.

To be precise, as before, we assume Y = Lo + So is a low-rank matrix Lo
corrupted by a sparse matrix So whose support S is distributed as S ∼ Ber(ρs)

for some small constant ρs < 1.
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We further assume we only observe a small fraction ρo of the entries of Y .

Let O be a support distributed as O ∼ Ber(ρo), where O stands for “observed”

entries. We may assume S and O are independent Bernoulli variables.

Let PO be the orthogonal projection onto the linear space of matrices sup-

ported on O ⊂ [n1]× [n2],

PO[X] =

{
Xij , (i, j) ∈ O,

0, (i, j) /∈ O.

Then imagine we only have available those entries of Lo + So such that (i, j) ∈
O ⊂ [n1]× [n2], which we conveniently write as

PO([Y )] = PO[Lo + So] = PO[Lo] + S′o.

This models the following problem: we wish to recover Lo but only see a few

entries about Lo, and among those a fraction happens to be corrupted, and

we of course do not know which one. As is easily seen, this is an extension to

the Matrix Completion problem of the previous chapter, which seeks to recover

Lo from under-sampled but otherwise perfect data PO[Lo]; and this is also an

extension to the RPCA problem as there we only see a small fraction of the

corrupted matrix Y .

We propose recovering Lo (and S′o) by solving the following problem:

minimize ‖L‖∗ + λ‖S‖1
subject to PO[L+ S] = PO[Y ].

(5.6.1)

In words, among all decompositions matching the available data, Principal Com-

ponent Pursuit finds the one that minimizes the weighted combination of the

nuclear norm, and of the `1 norm. Our observation is that under some condi-

tions, this simple approach recovers the low-rank component exactly. In fact, the

techniques developed here establish this result:

Theorem 5.10 (Matrix Completion with Corruptions). Suppose Lo is n × n,

obeys the conditions (5.3.1)–(5.3.2). Suppose ρ0 > C0
νr log2 n

n and ρs ≤ Cs, and

let λ = 1√
ρ0n logn

. Then the optimal solution to the convex program (5.6.1) is

exactly Lo and S′o with probability at least 1−Cn−3 for some constant C, provided

the constants C0 is large enough and Cs is small enough.

In short, perfect recovery from incomplete and corrupted entries is possible by

convex optimization. The approach and techniques of the proof are similar to

that of the PCP, we refer interested readers for a complete and rigorous proof

to the work of [Li13].

On the one hand, this result extends the RPCA result in the following way:

If all the entries are available, i.e. ρ0 = 1, the above theorem guarantees perfect

recovery as long as 1 > C0
νr log2 n

n or r < C−1
0 nν−1(log n)−2 for small enough

C−1
0 , which is exactly Theorem 5.3. The choice of λ here reduces to the case

λ = 1√
n logn

for dense error correction discussed in Section 5.3.3. On the other
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hand, this result extends the Matrix Completion results developed in the previous

chapter too. Indeed, if ρs = 0, we have a pure matrix completion problem from

about ρ0 fraction of entries, and the above theorem guarantees perfect recovery

as long as ρ0 > C0
νr log2 n

n for large enough C0, which is exactly Theorem 4.26.

We remark that the recovery is exact, however, via a different algorithm. To

be sure, in matrix completion one typically minimizes the nuclear norm ‖L‖∗
subject to the constraint PO[L] = PO[Lo]. Here, our program would solve

minimize ‖L‖∗ + λ‖S‖1
subject to PO[L+ S] = PO[Lo],

(5.6.2)

and return L̂ = Lo, Ŝ = 0! In this context, Theorem 5.10 implies that matrix

completion is robust vis a vis gross errors.

5.7 Summary

In this chapter we have studied the problem of simultaneously recovering a low-

rank matrix Lo and a sparse matrix So from their superposition:

Y = Lo + So ∈ Rn×n.

This problem can be viewed as a robust principal component analysis (RPCA)

problem – how to robustly estimate a low-dimensional subspace while being

robust to gross (random) corruptions in the data. We have learned that under

certain benign incoherence conditions between Lo and So, the two matrices can

be correctly recovered with high probability from minimizing a weighted sum

of nuclear norm of Lo and `1 norm of So, also known as principal component

pursuit (PCP):

minimize ‖L‖∗ + 1√
n
‖S‖1

subject to L+ S = Y ,

as long as the following conditions are satisfied:

|So| ≤ ρsn2, rank (Lo) = O(n log−2 n),

where ρs > 0 is some constant factor.

We have also sturdied how the basic PCP program naturally extends to several

important variants of the RPCA problem, including when there are additive

(Gaussian) noises Zo, with randomly projected measurements on a subspace Q,

and when only entries in a subset O are observed:

Y = Lo + So +Zo, PQ[Y ] = PQ[Lo + So], PO[Y ] = PO[Lo + So],

respectively.

As we have seen from Chapter 2 to this Chapter 4, we have developed in

parallel the basic theory and algorithms for recovering sparse signals or low-rank

matrices, via convex optimization. In this chapter, we also see how these two
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Sparse v.s. Low-rank Sparse Vector Low-rank Matrix

Low-dimensionality of individual signal x a set of signals X

Low-dim measure `0 norm ‖x‖0 rank (X)

Convex surrogate `1 norm ‖x‖1 nuclear norm ‖X‖∗

Compressive sensing y = Ax Y = A(X)

Stable recovery y = Ax+ z Y = A(X) +Z

Error correction y = Ax+ e Y = A(X) +E

Recovery of mixed structures PQ[Y ] = PQ[Lo + So] +Z

Table 5.2 Comparison between sparse vectors and low-rank matrices.

low-dimensional models can be combined together to model more sophisticated

structures in the data. Table 5.2 summarizes the similarity of these two most

basic low-dimensional models studied so far. In the next chapter, we will see

how the same ideas generalize to broader family of low-dimensional models.

5.8 Notes

Second Order Convex Methods.
For small problem sizes, the above principal component pursuit program can

be solved using off-the-shelf tools such as interior point methods [GB14]. This

method was initially suggested for rank minimization in [FHB04, RFP10] and

for low-rank and sparse decomposition [CSPW09]. However, despite their supe-

rior convergence rates, interior point methods are typically limited to small-size

problems, say n < 100, due to the O(n6) complexity of computing a step direc-

tion.

First Order Convex Methods.
The limited scalability of interior point methods has inspired a recent flurry

of work on first-order methods. Exploiting an analogy with iterative threshold-

ing algorithms for `1-minimization [HYZ08,YOGD08], the work of [CCS08] has

developed an algorithm that performs nuclear-norm minimization by repeat-

edly shrinking the singular values of an appropriate matrix, essentially reduc-

ing the complexity of each iteration to the cost of an SVD. However, for our

low-rank and sparse decomposition problem, this form of iterative threshold-

ing converges slowly, requiring up to 104 iterations. [GM09] suggests to improve

convergence using continuation techniques, and has demonstrated how Bregman

iterations [YOGD08] can be applied to nuclear norm minimization.
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Accelerated Methods.
The convergence of iterative thresholding can be significantly improved using

ideas from Nesterov’s accelerated first-order algorithm for smooth minimiza-

tion [Nes83], which was extended to non-smooth functions in [Nes05, Nes07],

and later successfully applied to `1-minimization by [BT09, BBC09]. Based on

[BT09], [TY09] has developed a proximal gradient algorithm for matrix comple-

tion which they has named as Accelerated Proximal Gradient (APG). Around

the same time, a very similar APG algorithm was suggested for low-rank and

sparse decomposition in [LGW+09]. In theory, these algorithms inherit the opti-

mal O(1/k2) convergence rate of the accelerated methods. Empirical evidences

suggest that these algorithms can solve the convex PCP problem at least 50

times faster than straightforward iterative thresholding (see [LGW+09]).

Augmented Lagrange Multipler Methods.
However, despite their good convergence guarantees, the practical performance

of APG depends strongly on the design of a good continuation scheme. Generic

continuation does not guarantee good accuracy and convergence across a wide

range of problem settings.10 In this chapter, we have instead chosen to solve the

convex PCP problem (5.2.2) using an augmented Lagrange multiplier (ALM)

algorithm introduced in [LCWM09, YY09]. In our experience, ALM achieves

much higher accuracy than APG, in fewer iterations. It works stably across a wide

range of problem settings with no tuning of parameters. Moreover we observe an

appealing (empirical) property: the rank of the iterates often remains bounded by

rank(Lo) throughout the optimization, allowing them to be computed efficiently.

APG, on the other hand, does not have this property.

A systematic development of all these convex optimization methods for recov-

ering both sparse and low-rank models will be given in Chapter 8. We will also

study natural nonconvex formulations of the low-rank and sparse recovery prob-

lems in Chapter 7 and develop efficient algorithms for the nonconvex programs

in Chapter 9.

5.9 Exercises

5.1 (RPCA as an Underdetermined Linear Inverse Problem). Consider the space

V of pairs (L,S) ∈ Rn×n × Rn×n. This is a vector space over R. Consider the

function

‖·‖♦ : V→ R (5.9.1)

via

‖(L,S)‖♦ = ‖L‖∗ + λ ‖S‖1 . (5.9.2)

10 In our experience, the optimal choice may depend on the relative magnitudes of the L and

S terms and the sparsity of S.
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Show that ‖·‖♦ is a norm on V, by showing that it satisfies the axioms of a norm.

For x = (L,S) in V, let A[x] = L+ S. Interpret the PCP problem as

min ‖x‖♦ subject to A[x] = Y . (5.9.3)

5.2 (Matrix Rigidity). Give an example of “rigid” matrices in terms of Defini-

tion 5.1 and give some examples of “soft” matrices. Can you identify the main

difference between rigid and soft matrices? Propose an algorithm that can com-

pute the rigidity of any given matrix. Discuss the worst computational complexity

of the proposed algorithm.

5.3 (Find Maximum Low-rank Matrix). Given an n × n matrix M , design an

algorithm that finds the largest submatrix S such that

rank (S) ≤ r

for some given small rank r. Discuss the complexity of your algorithm.

5.4 (Planted Clique via RPCA). In the planted clique problem (see Definition

5.2), we are given a large graph G of n nodes. Now suppose it has a largest clique

of size no. Consider the adjacent matrix A of the graph G. Then we have:

A = Lo + So,

where Lo is an no × no rank-1 matrix whose entries are all ones, and So is a

matrix with at least half entries are zeros. Determine (i) rank(Lo), (ii) ν(Lo)

according (5.3.1), (iii) ν∞(Lo) according to (5.3.2). How big does the clique C

need to be for PCP to succeed?

5.5 (Lower Bounds from Planted Clique). Show the necessity of the condition

(5.3.2) based on the hardness conjecture of finding the largest clique in a graph.

5.6 (Finding Planted Cliques). Develop an experiment to test how the PCP algo-

rithm works on the planted clique problem. Is the working range consistent with

the hardness conjecture?

5.7 (Low-Rank Representation∗). Low-Rank Representation (LRR) [LLY+13] is

an extension of RPCA. It aims to solve the problem of clustering a set of n

data points in Rm: X = [x1, . . . ,xn] that are drawn from a union of multiple

low-dimensional subspaces, with potential noise and corruption. The key idea is

to find a self-expressive representation for X = XZ. But to avoid using each

point xi to represent itself, we enforce points from the same subspace to form a

“cluster”. In other words, the coefficients Z is preferably a low-rank matrix, as

we have discussed in the community discovery problem. To account for possible

sparse corruptions or outliers (points sampled outside of these subspaces), we

solve X = XZ + E with E being sparse or column sparse. This leads to the

following program:

min
Z,E
‖Z‖∗ + λ‖E‖2,1 subject to X = XZ +E.
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=⇒

Figure 5.6 Write a program to take an input as the image on the left with occlusion
and output a clean image on the right. Note that the image on the right is indeed a
recovered image from the left by a program like PCP.

Program a MATLAB function for LRR and use it for clustering a set of frontal

face images from several people, say using the Yale face dataset [Ext].

5.8 (Background Subtraction∗). Code a MATLAB program that utilizes Robust

PCA to separate the foreground images and background images in video sequences

captured by stationary cameras.

5.9 (Robust Texture Inpainting∗). Code a MATLAB program that utilizes Ro-

bust PCA to perform texture inpainting to compensate corrupted texture images

without knowing the location of the corrupted pixels:

(I_hat, E) = robust_inpainting(I),

where I is the input texture image, I_hat is the recovered texture image, and

E is the detected corruption in the same image space. See Figure fig:inpainting

as an example. To test how good your algorithm is, try different types and sizes

of occlusion on the input images. Try any ideas that may further improve the

performance of your algorithm, say by taking into account additional structures

of the possible occlusion, in addition to being sparse.

5.10 (A Monotonicity Property of PCP). Call S′ a trimmed version of S if

supp(S′) ⊂ supp(S) and S′ij = Sij whenever S′ij 6= 0. Prove that whenever

(Lo,So) is the unique optimal solution to the PCP problem with data Y o =

Lo + So, (Lo,S
′) is the unique optimal solution to the PCP problem with data

Y ′ = Lo + S′.

5.11 (Derandomizing the Signs). In this exercise, we “derandomize” the signs in

the RPCA problem, using the elimination property from Exercise 5.10. Suppose
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that for a given Lo, RPCA succeeds with high probability when sign(So) is a

Bernoulli(ρs)-Rademacher matrix. Prove that with at least the same probability,

RPCA succeeds when S ∼iid Ber(ρs/2), and sign(So) = PS[Σ̄] for some fixed

matrix of signs Σ̄ ∈ {±1}n×n.

5.12. Show that for two projection operators PS,PT, we have:

‖PSPT‖ = ‖PTPSPT‖1/2 . (5.9.4)

5.13 (Least Squares for Dual Certificates). To prove Theorem 5.3, in Lemma

5.6 we used the method of least squares (minimum energy) to construct a dual

certificate ΛS satisfying PS[ΛS ] = λΣo and PT[ΛS ] = 0. We asserted that

whenever ‖PSPT‖ < 1, the solution to the problem (5.3.29):

min
∥∥∥Λ̃
∥∥∥

2

F
subject to PS[Λ̃] = λΣo, PT[Λ̃] = 0 (5.9.5)

is given in closed form by the Neumann series (5.3.30):

ΛS = λPT⊥

∞∑

k=0

(PSPTPS)k[Σo]. (5.9.6)

Show that (i) when ‖PSPT‖ < 1, the infinite summation in (5.9.6) converges,

and (ii) that ΛS solves (5.9.5).

5.14 (Dense Errors with Random Signs). Prove that with an appropriate choice

of λ, PCP can handle any constant fraction ρs < 1 of errors.



6 Recovering General
Low-Dimensional Models

“An idea which can be used once is a trick. If one can use it more than once it
becomes a method.”

– George Pólya and Gábor Szegö, Problems and Theorems in Analysis I

In the first five chapters of this book, we introduced two main families of

low-dimensional models for high-dimensional data: sparse models and low-rank

models. In Chapter 5, we saw how we could combine these basic models to accom-

modate data matrices that are superpositions of sparse and low-rank matrices.

This generalization allowed us to model richer classes of data, including data

containing erroneous observations. In this chapter, we further generalize these

basic models to a situation in which the object of interest consists of a superposi-

tion of a few elements from some set of “atoms” (Section 6.1). This construction

is general enough to include all of the models discussed so far, as well as sev-

eral other models of practical importance. With this general idea in mind, we

then discuss unified approaches to studying the power of low-dimensional sig-

nal models for estimation, measured in terms of the number of measurements

needed for exact recovery or recovery with sparse errors (Section 6.2). These

analyses generalize and unify the ideas developed over the earlier chapters, and

offer definitive results on the power of convex relaxation. Finally, in Section 6.3,

we discuss limitations of convex relaxation, which in some situations will force

us to consider nonconvex alternatives, to be studied in later chapters.

6.1 Concise Signal Models

We have considered two models of low-dimensional signal structure. A sparse

vector x ∈ Rn is a superposition of a few coordinate basis vectors:

x =
∑

i∈I⊂[n]

xiei. (6.1.1)

A low-rank matrix X ∈ Rn×n is a superposition of just a few rank-one matrices

uiv
∗
i :

X =

r∑

i=1

σiuiv
∗
i , r < n. (6.1.2)
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The standard basis vectors form the elementary components for constructing

sparse vectors. The rank-one matrices form the elementary components for con-

structing low-rank matrices.

6.1.1 Atomic Sets and Examples

These are two specific examples of a more general situation, in which the signal x

of interest can be expressed as a superposition of a few elementary components,

selected from some set D:

x =
∑

i

αidi, di ∈ D. (6.1.3)

For sparse vectors, we can take

D = Dsparse ≡ {±ei | i = 1, . . . , n} . (6.1.4)

For low-rank matrices, we can take

D = Dlow-rank ≡ {uv∗ | ‖u‖2 = ‖v‖2 = 1} . (6.1.5)

The set D is sometimes referred to as an atomic set – it consists of a collection of

elementary components (“atoms”) from which the structured signal of interest

can be constructed. In the literature, such an atomic set is often called a “dictio-

nary,” hence the capital letter D. Here, for simplicity, we assume the dictionary

D is already known or given in advance. In Chapter 7, we will study how to learn

the dictionary from data when it is not known ahead of time.

There are at least two reasons to consider the general notion of an atomic

set. The first is that it gives a unified way of thinking about the models that we

have already studied. The second is that it allows us to model other structures of

practical interest. We describe a few examples below; Exercises 6.1-6.2 develop

several others.

Column Sparse Matrices.
In Chapter 5, we described how to estimate an underlying low-rank matrix L

even in the presence of grossly corrupted observations (or entries), which we

modeled using a sparse matrix S. In statistical applications, a different type of

corruption can occur: some data samples (or vectors) may be outliers. Hence,

some columns of the data matrix Y may be entirely corrupted. We can model

this situation as

Y = L+C, (6.1.6)

where C = [c1 | c2 | · · · | cn2
] is a matrix whose column ci is nonzero if and only

if the i-th sample yi is an outlier (e.g., see the work [XCS12]).

In this situation, we can write

D = Dcolumn sparse ≡ {ue∗i | u ∈ Rn, ‖u‖2 = 1, i ∈ {1, . . . , n2}} . (6.1.7)
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(a) G0
1 (b) {G1

j }4j=1 (c) {G2
j }16
j=1 (d) {G3

j }64
j=1

Figure 6.1 Illustration of a four-level hierarchical tree group structure defined on a 2D
grid of pixels of an image. Each circle represents a pixel, and connected circles
represent a node/group in the tree. An 8× 8 group in (a) is divided into 4 sub-group
in (b) according to spatial continuity, and each sub-group can be viewed as a child
node of (a). The similar relation goes from (b) to (c), and from (c) to (d). Black
circles represents a pixel with zero value and white circles are nonzero.

If I ⊆ [n] is the set of indices of outliers, we can write

C =
∑

i∈I

αiDi, (6.1.8)

with Di = ci
‖ci‖2

e∗i ∈ D and αi = ‖ci‖2.

Spatially Continuous Sparse Patterns
Besides column-wise sparsity, for matrices X ∈ Rn1×n2 , we may consider atoms

of the more general form X I with support I ⊂ [n1]× [n2] and ‖X I‖p = 1 for some

norm ‖ · ‖p. Popular choices of the norm include p = 2 or p =∞. In theory, we

may choose any set of supports

G .
= {Ii, i = 1, . . . , N}

for the atomic set. For instance, if G consists of supports representing columns

of the matrix and p = 2, it recovers the above column-sparse atomic set. But if

we view a matrix as a 2D grid of pixels for an image, we may select an atomic

set that promotes spatial continuity of the image:

Dspatial continuous ≡
{
X I |X I ∈ Rn1×n2 , ‖X I‖p = 1, I ∈ G

}
(6.1.9)

with G containing supports that are spatially adjacent. One such choice consists

of all 8×8, 4×4, 2×2, and 1×1 subgrids. As shown in Figure 6.1, these support

sets form a natural tree structure with 8 × 8 patches as root nodes, denoted as

G0, and then branches into groups of smaller patches, with Gi indicate patches

after i partitions. This choice of atomic set promotes sparse patterns that are

spatially continuous in terms of the grid topology. For instance, in applications

to robust face recognition [JCM12], such a choice of atomic set was used to model

spatially continuous occlusions, say due to wearing a sunglasses or a mask.
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Simultaneously Sparse and Low-rank Matrices.
Another important low-dimensional model for matrices is the simultaneously

sparse and low-rank matrices. These matrices arise naturally in applications in

which we wish to find a low-rank approximation to a data matrix which uses

only a few features (sparse PCA), or when we want to find small but densely

connected communities in a large graph (community detection). They also arise

naturally in modeling imagery data such as regular textures (see Chapter 15),

videos, and hyper-spectral images, which exhibit both low-rank and sparsity are

present. For example, videos may be low-rank along the time axis; since each

frame of the video is also a natural image, individual frames should be sparse in

an appropriate basis.

We can idealize this situation a bit by considering matrices X ∈ Rn×n whose

nonzero entries are populated on a single block of size k×k (so ‖X‖0 ≤ k2 � n2)

and whose rank is substantially smaller than k. Such matrices can be constructed

using the atomic set

D = Dsparse and low-rank ≡ {uv∗ | ‖u‖2 = ‖v‖2 = 1, ‖u‖0 ≤ k, ‖v‖0 ≤ k} .
(6.1.10)

This class of models is of fundamental importance for both theory and applica-

tions. Under the hardness of planted clique (see Section 5.1.2), this class of models

is hard. To the best of our knowledge, there is no computationally tractable tight

convex relaxation to this class of models, as we will discuss further in Section

6.3.

Low-rank Tensors.
Another important example of a low-dimensional model which does not ad-

mit efficient algorithms is high-order tensors. The rank(X ) of a tensor X ∈
Rn1×n2×···×nK is the smallest number r of components in an expression

X =

r∑

i=1

ui ⊗ vi ⊗ · · · ⊗wi. (6.1.11)

This is known as the Candecomp-Parafac (CP) rank. There are several different

notions of tensor rank, which may be appropriate in different situations [KB09].

A low-rank tensor X can be expressed as a superposition of just a few elements

from the atomic set

D = Dlow-rank tensor ≡ {u⊗ v ⊗ · · · ⊗w | ‖u‖2 = ‖v‖2 = ‖w‖2 = 1} . (6.1.12)

Notice that, when the order of the tensor is K = 2, this generalizes the atomic

set for low-rank matrices which we discussed above.

This class of models is very important for applications. However, there is an

important distinction from the matrix case: for tensors of order K ≥ 3, problems

such as computing the rank, or finding a decomposition of the form (6.1.11) are

NP-hard [HL13]. The low-rank tensors are our first example of a low-dimensional

signal model which does not admit tight efficient algorithms! We will discuss this

matter further in Section 6.3
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Sinusoids with Continuous Frequency.
In applications such as RF communications and line spectrum estimation in

scientific imaging, we encounter signals which have relatively narrow support

in the Fourier domain. The multi-tone signals are a useful idealization of this

situation: a multitone signal is a superposition of a few complex exponentials:

x =
∑

i

αiξ(ωi, φi) ∈ CN , (6.1.13)

where

ξ(ω, φ)[n] = exp (2πi (ωn+ φ)) . (6.1.14)

For such multi-tone signals, we can take

D = {ξ(ω, φ) | ω ∈ [0, 1], φ ∈ [0, 1]} . (6.1.15)

The model (6.1.14) is a sparse model, but the atomic set (dictionary) is continu-

ous! Surprisingly (and unlike our previous two examples) in many situations, it is

possible to compute efficiently with such a continuous dictionary. The advantage

of this formulation is that it avoids artifacts associated with discretizing the set

of frequencies.

6.1.2 Atomic Norm Minimization for Structured Signals

In the previous section, we saw how to use the notion of an atomic set to cap-

ture various types of low-dimensional signal structure. The value of these low-

dimensional signal models is that they can render ill-posed inverse problems

well-posed: instead of requiring a number of observations which is proportional

to the ambient dimension n, we may hope to recover the signal x from a number

of measurements which is instead determined by the number of intrinsic degrees

of freedom. For example, suppose that x =
∑k
i=1 αidi is a superposition of k < n

elements from D, and that we observe y = A [x], where A : Rn → Rm is a linear

map. How can we use the knowledge that x is simple to recover it?

Recall that to recover a sparse vector, we minimize the `1 norm of the coeffi-

cients αi in an expression x =
∑
i αidi of x with respect to Dsparse. To recover

a low-rank matrix, we minimize the nuclear norm of X – also the sum of the

coefficients αi in an expression X =
∑
i αidi with respect to Dlow-rank. In both

cases, to recover a signal which consists of a superposition of a few elements from

an atomic set, we minimize the sum of the coefficients in an expression of x as

a superposition of elements from that set. This principle immediately generalizes

to other atomic sets. To this end, we define a function ‖·‖D called the atomic

gauge, which measures the minimum of the sum of the coefficients αi, over all

ways of expressing x as a superposition of elements from D:

Definition 6.1 (Atomic Gauge). The atomic gauge associated with the set D
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is the function

‖x‖D
.
= inf

{
k∑

i=1

αi

∣∣∣∣∣ α1, . . . , αk ≥ 0 and ∃d1, . . . ,dk ∈ D s.t.
∑

i

αidi = x

}
.

(6.1.16)

The notion of atomic gauge is general enough to include all of the convex

relaxations that we have studied so far:

Example 6.2 (Examples of Atomic Gauges). The following are examples of

atomic gauges:

• Sparse vectors: ‖x‖Dsparse
= ‖x‖1.

• Low-rank matrices: ‖X‖Dlow rank
= ‖X‖∗.

• Column sparse matrices: ‖X‖Dcolumn sparse
=
∑
i ‖xi‖2.

From these examples, we can see that the atomic gauge is often actually a

norm. In fact, this is true whenever the atomic set D is symmetric:

Lemma 6.3 (Atomic Gauges and Norms). For any set D, ‖·‖D is a convex func-

tion. Moreover, if D is a symmetric set whose convex hull contains an open ball

about 0, i.e., d ∈ D =⇒ −d ∈ D, and 0 ∈ int(conv[D])1 then ‖·‖D is a norm.

Proof Convexity follows from the definition: Consider any x, x′, and any λ ∈
[0, 1]. For any ε > 0, let

x =

r∑

i=1

αidi, x′ =

r′∑

i=1

α′id
′
i (6.1.17)

be such that

r∑

i=1

αi ≤ ‖x‖D + ε, and

r′∑

i=1

α′i ≤ ‖x′‖D + ε. (6.1.18)

Then noting that

λx+ (1− λ)x′ =

r∑

i=1

λαidi +

r′∑

i=1

(1− λ)α′id
′
i, (6.1.19)

we have that

‖λx+ (1− λ)x′‖D ≤
r∑

i=1

λαi +

r′∑

j=1

(1− λ)α′i (6.1.20)

≤ λ ‖x‖D + (1− λ) ‖x′‖D + ε. (6.1.21)

Since ε > 0 can be made arbitrarily small,

‖λx+ (1− λ)x′‖D ≤ λ ‖x‖D + (1− λ) ‖x′‖D . (6.1.22)

1 Here conv[D] is the convex hull spanned by D, and int(·) is the (open) interior of a set.
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It is similarly immediate from the definition that ‖x‖D is positively homoge-

neous: for α > 0

‖αx‖D = α ‖x‖D . (6.1.23)

Symmetry of D implies that ‖−x‖D = ‖x‖D; combining with positive homogen-

ity, we obtain that for every α ∈ R

‖αx‖D = |α| ‖x‖D . (6.1.24)

Finally, if conv(D) contains an open ball about 0, i.e., ∃ε > 0 such that B(0, ε) ⊆
conv(D), then ‖x‖D is finite-valued for every x, i.e., ‖x‖D ≤ ‖x‖`2 /ε. This,

together with the previous considerations implies that ‖·‖D is a norm.

The atomic gauge allows us to define a general class of convex problems for

recovering a structured signal xo from underdetermined and/or noisy observa-

tions. For example, for recovering xo from noise-free measurements y = A[xo],

we can try to minimize the atomic norm ‖x‖D of x subject to the measurement

constraint:

min
x
‖x‖D subject to A[x] = y. (6.1.25)

In the presence of noise, we can instead solve an optimization problem which

balances between fidelity to the observed data and model simplicity, measured

by the atomic gauge:

min
x

1
2 ‖A[x]− y‖22 + λ ‖x‖D . (6.1.26)

This is a convex optimization problem, which generalizes the Lasso problem

studied in Chapter 3, as well as nuclear norm minimization problems studied in

section Chapter 4 for low-rank recovery.

For some choices of D, these problems admit very efficient algorithms – im-

portant examples include Dsparse, Dlow-rank, Dcolumn sparse, and Dsinusoids. For

other choices of D, they may be intractable – examples include Dlow rank tensor

and Dsparse and low rank. The key property that distinguishes the examples for

which the convex problems (6.1.25)-(6.1.26) are tractable is whether the simpler

problem

min
x
‖x‖D + 1

2 ‖x− z‖
2
2 (6.1.27)

admits an efficient solution. This simpler problem, called the proximal problem

associated with the gauge ‖·‖D, will form the basis for efficient and scalable

algorithms, which we will study in more depth in Chapter 8.

Other Approaches to Structured Sparsity.
The atomic norm is based on a synthesis model, in which the target signal x is

constructed as a sparse superposition of atoms. A dual approach to deriving op-

timization problems for recovering structured sparse signals is based on analysis

models, which ask certain projections of the signal x to be zero. We illustrate
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this approach through the notion of group sparsity for vectors in Rn. Given a

collection of supports G ⊆ 2[n] of the indices {1, . . . , n}, we can write

‖x‖G =
∑

I∈G
‖xI‖2. (6.1.28)

As long as ∪I∈GI = {1, . . . , n}, this is a norm. Minimizing (6.1.28) encourages

as many of the xI to be zero as possible.

How does this construction relate to the atomic norm model described above?

When the groups I ∈ G do not overlap, they are equivalent. Writing

Dgroup ≡ {xI | I ∈ G, ‖xI‖2 = 1} , (6.1.29)

we have

‖x‖Dgroup = ‖x‖G . (6.1.30)

However, when the groups I ∈ G do overlap, the atomic norm and the group

sparsity norm (6.1.28) differ, and optimizing them produces subtly different ef-

fects. For concreteness, consider x ∈ R3, let us consider two different groups of

supports:

G1 = {{1, 2}, {3}}, G2 = {{1, 2, 3}, {1, 2}, {1}, {2}, {3}}. (6.1.31)

Notice that supports in G1 do not overlap but those in G2 do. These groups give

two corresponding group sparsity norms:

‖x‖G1 = ‖x{1,2}‖2 + |x3|, ‖x‖G2 = ‖x{1,2,3}‖2 + ‖x{1,2}‖2 + |x1|+ |x2|+ |x3|.
Figure 6.2 shows the norm ball defined by the norms associated with these

groups. In the latter situation, the group sparse norm differs from the atomic

norm: minimizing the atomic norm encourages the signal to be expressible as

just a few atoms, whereas minimizing the group sparse norm encourages many

of the xI to be zero. There is a vast literature that studies group sparsity in-

ducing norms for structured signals. The manuscript of Bach et. al. [BJMO12]

gives a systematic introduction to these norms and their associated optimization

algorithms.

6.2 Geometry, Measure Concentration, and Phase Transition

In Chapter 3 and Chapter 4, we have characterized conditions for Dsparse and

Dlow-rank under which the program (6.1.25) can recover the correct solution xo.

We would like to know for a more general atomic set D whether the program

(6.1.25) also succeeds under broad conditions. Furthermore, as we have alluded

earlier in these chapters, there seems to be a sharp phase transition between

the success and failure of the program (6.1.25). This section provides a rigorous

explication of the phase transition phenomenon in a general setting, using tools

from high-dimensional statistics and geometry of convex cones.
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Figure 6.2 Left is for a non-overlapping group sparsity norm-1 ball in 3-dimensional
space: ‖x‖G1 . Right is for a structured sparsity norm-1 ball with overlapping subsets
in 3-dimensional space: ‖x‖G2 . Singular points appearing on these balls characterize
the sparsity-inducing behavior of the associated norms.

Descent cone D

null(A)
xo + null(A)

‖xo‖1 · B1

xo 0

Figure 6.3 Cones and the Coefficient Space Geometry. `1 minimization uniquely
recovers xo if and only if the intersection of the descent cone D with null(A) is {0}.

6.2.1 Success Condition as Two Non-Intersecting Cones

Geometry of `1 Norm Minimization.
Let us first draw inspiration from the familiar case of `1 norm to make general

conclusions about atomic minimization. Suppose that y = Axo for a k-sparse

vector xo. Recall the geometric picture of the `1 ball in Figure 6.3 (left), which

we introduced in Section 3.1 and in Section 3.6.2. There, we argued that xo is

the unique optimal solution to the `1 minimization problem:

min
x
‖x‖1 subject to Ax = y. (6.2.1)

if and only if the affine subspace xo + null(A) of feasible solutions x intersects

the scaled `1 ball

B1 = {x | ‖x‖1 ≤ ‖xo‖1} (6.2.2)

only at xo, as illustrated in Figure 6.3 (left).
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We can express the same geometry more cleanly in terms of the descent cone:

D
.
= {v | ‖xo + tv‖1 ≤ ‖xo‖1 for some t > 0} . (6.2.3)

This is the set of directions v for which a small (but nonzero) perturbation of

xo in the v direction does not increase the objective function ‖·‖1. The descent

cone D is visualized in Figure 6.3 (right).

Notice that the perturbation xo+ tv is a feasible solution for t 6= 0 if and only

if v ∈ null(A). The feasible perturbations which do not increase the objective

function reside in the intersection D ∩ null(A). Because D is a convex cone and

null(A) is a subspace (a special convex cone), D and null(A) always intersect

at 0. It is not difficult to see that xo is the unique optimal solution to the `1

problem if and only if 0 is the only point of intersection between null(A) and D.

This was proved in Lemma 3.34.

Hence, to study whether `1 minimization succeeds, we may equivalently check

that the subspace null(A) does not have nontrivial intersection with the cone

D. Because A is a random matrix, null(A) is a random subspace, of dimension

n −m. If A is Gaussian, then null(A) follows the uniform distribution on the

set of subspaces S ⊂ Rn of dimension n −m.2 Clearly, the probability that the

random subspace null(A) intersects the descent cone D depends on properties

of D. Intuitively, we would expect intersections to be more likely if D is “big” in

some sense.

Remark 6.4. Notice that the probability of success mentioned above is for a

given fixed xo with respect to a randomly chosen A. As we have discussed in

Section 3.6.1, this is a weaker notion of success guarantee than the case with

incoherence and RIP that we studied in Chapter 3 which states that for a fixed

matrix A, the `1 minimization (6.2.1) succeeds for all sufficiently sparse xo with

high probability.

The General Case with the Atomic Norm
For a general atomic norm ‖ · ‖D, the condition for the program (6.1.25) to

succeed is very similar to the program (6.2.1) for the `1 norm. We only need to

replace the descent cone of `1 norm with the descent cone associated with the

atomic norm:

C
.
= {v | ‖xo + tv‖D ≤ ‖xo‖D for some t > 0} , (6.2.4)

and replace the null space of A with the null space of A:

S
.
= null(A).

Then similar to Lemma (3.34), we have:

Proposition 6.5. Suppose that y = A(xo). Then xo is the unique optimal

solution to the atomic norm minimization problem if and only if C ∩ S = {0}.
2 To be more precise, null(A) is distributed according to the Haar measure on the

Grassmannian Gn,m−n.
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For a given atomic norm, the descent cone C is fixed. The measurement opera-

tor A is typically a random operator. Its null space S = null(A) is a random sub-

space. Hence, to characterize the probability of success of the program (6.1.25),

the problem reduces to charactering the probability of a random linear subspace

S intersecting a given convex cone C.

6.2.2 Intrinsic Volumes and Kinematic Formula

How can we calculate the probability of one random linear subspace S intersect-

ing a convex cone C? More over, what does the probability depend on? To get

intuition for what to expect in the general case, let us start with the simplest

case when the convex cone C itself is a linear subspace S′.

Example: Two Intersecting Subspaces
When does a randomly chosen subspace S intersect another subspace S′? From

elementary geometry, we know that if the sum of the dimensions dim(S)+dim(S′)
is greater than the ambient dimension n, then S and S′ necessarily have a non-

trivial intersection. Conversely, if dim(S) + dim(S′) ≤ n, the probability that S

intersects S′ nontrivially is zero:

Proposition 6.6 (Intersection of Two Linear Subspace). Let S′ be any linear

subspace of Rn, and let S be a uniform random subspace. Then

P [S ∩ S′ = {0}] = 0, dim(S) + dim(S′) > n; (6.2.5)

P [S ∩ S′ = {0}] = 1, dim(S) + dim(S′) ≤ n. (6.2.6)

Figure 6.4 illustrates two examples on how two subspaces in R3 intersect in

general. From the example of two intersecting subspaces, we see that the proba-

bility of whether or not they intersect only at the origin 0 depends only on the

sum of their dimensions.

Intrinsic Volumes.
In our case, however, we are dealing with the intersection of a linear subspace and

a convex cone. Or in more general cases that we will see later, we need to study

the intersection of two convex cones.3 Hence, it is natural to ask whether the

notion of “dimension” for subspaces can be generalized to convex cones? If so,

we may expect to characterize the probability for two convex cones to intersect

in a similar way as Proposition 6.6 for linear subspaces. We next develop a more

generalized way to measure the “dimension” or “size” of a given convex cone.

3 For instance, for the problem of decomposing sparse and low-rank matrices, we need to

study the intersection of the descent cone of `1 norm and that of the nuclear norm.
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0

S′

S

R3

intersection
S′ ∩ S = line

0

R3

S′

S

intersection
S′ ∩ S = 0

Figure 6.4 Left: intersection of two generic 2D planes in R3 contains a line; Right:
intersection of a 2D plane and a 1D line, in general position, is only the origin 0.

In mathematics, such topics are studied in the field of conic integral geometry

[SW08,Ame11].4

Example 6.7 (Equivalent Definitions of Dimension for Subspaces). Again, let

us first draw some ideas from the special case of a linear subspace. Notice that

the dimension, say d, of a linear subspace S can also be equivalently computed as

the average (squared) length of a random (Gaussian) vector, say g ∼ N (0, I),

projected onto the subspace:

d = dim(S) = Eg
[
‖PS[g]‖22

]
, (6.2.7)

where PS[g] is the unique nearest vector to g in S:

PS[g]
.
= arg min

x∈S
‖x− g‖22 . (6.2.8)

We may also take the random vector g as uniformly distributed on the unit sphere

Sn−1. In this case we have:

d = dim(S) = n · Eg
[
‖PS[g]‖22

]
, g ∼ uniform(Sn−1). (6.2.9)

We leave this as an exercise to the reader.

As it turns out, projecting a (random) vector is precisely the right way to

measure the “size” of a convex cone. Like a subspace, for a closed convex cone

C ⊆ Rn and a vector z, there is a unique nearest vector to z in C, denoted PC[z]:

PC[z]
.
= arg min

x∈C
‖x− z‖22 . (6.2.10)

Figure 6.5 shows the projections PCi [z] of a vector z onto two convex cones C1

4 For a more thorough survey of the history of spherical or conic integral geometry, one may

refer to [ALMT13].
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Ez‖PC1
[z]‖2

2 > Ez‖PC2
[z]‖2

2

Small convex cone C2

0

z

PC2 [z]

0

z

PC1 [z]

Large convex cone C1

Figure 6.5 Projections onto a Closed Convex Cone. For a closed convex cone C,
PC[z] is the nearest point to z in C. Notice that in this case, the projection of z onto
the larger cone C1 has greater norm than the projection of z onto the smaller cone
C2: ‖PC1 [z]‖22 > ‖PC2 [z]‖22. We can measure the “size” of a convex cone C by
averaging ‖PC[z]‖22 over all directions z; this average is known as the statistical
dimension of the cone, denoted δ(C).

and C2. Notice that it is always true that

‖PC[z]‖2 ≤ ‖z‖2 . (6.2.11)

Moreover, in Figure 6.5, the norm of the projection is larger for the wider Ci.

Thus, we could take ‖PC[z]‖22 as an indication of the “size” of C.

However, unlike a linear subspace, a convex cone, like the descent cone of the

`1 norm, may consist of many faces of different dimensions. In particular, the

descent cone of the `1 norm is a special case of an important family of convex

cones known as polyhedral cones. Each polyhedral cone is the intersection of a

finite number of half spaces. Given a polyhedral cone in Rn, in theory, it could

have faces in dimension k = 0, 1, . . . , n. We may consider the projection of a

standard normal random vector g onto faces of a particular dimension k.

Definition 6.8 (Intrinsic Volume). If C is a polyhedral cone in Rn, then the kth

intrinsic volume vk(C) is defined to be:

vk(C)
.
= P [PC[g] ∈ a k-dim face of C] , k = 0, 1, . . . , n, (6.2.12)

where g ∼ N (0, I).

According to the definition, the intrinsic volumes are actually a probability

distribution on {0, 1, . . . , n}. Hence we have vk(C) ≥ 0 for all k = 0, 1, . . . , n and

n∑

k=0

vk(C) = 1. (6.2.13)

The intrinsic volumes have many interesting properties that have been system-

atically developed in conic integral geometry.
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αβ

0

Figure 6.6 The probability of two planar cones intersecting is the sum of their angles
(as fraction of 2π).

Example 6.9 (Intrinsic Volumes of a Linear Subspace). If C is d dimensional

linear subspace S, then we have

vk(S) =

{
1 d = k,

0 else.

We leave this as an exercise to the reader.

Example 6.10 (Intrinsic Volumes of a Cone in R2). Consider a convex cone C

in R2 similar to the ones illustrated in Figure 6.5. Denote the angle of the cone

as α. Then it is easy to show that

v2(C) = α/2π, v1(C) = 1/2, and v0(C) = (π − α)/2π.

We leave the proof as an exercise to the reader.

Conic Kinematic Formula.
As usual, let us start with a simple example.

Example 6.11 (Two Cones in R2). Notice that if we have two convex cones C1

and C2 in R2, with angle α and β respectively. Let C1 be fixed and we rotate C2 by

a rotation R uniformly chosen from S1. Then the two cones C1 and R(C2) will

always have non-trivial overlap (besides at the origin 0) if and only if α+β > 2π.

If α+ β ≤ 2π, the probability that they have non-trivial intersection is precisely

(α+ β)/2π = v2(C1) + v2(C2), as shown in Figure 6.6. Or equivalently, we have

P[C1 ∩R(C2) 6= {0}] = min {1, v2(C1) + v2(C2} . (6.2.14)

We leave the verification as an exercise to the reader.

The above example suggests that the probability that two convex cones inter-

sect non-trivially depends on their intrinsic volumes. However, for convex cones

in a high-dimensional space, the situation can be much more complicated than in
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the 2D space. Surprisingly, as one of the main result in conic integral geometry,

the probability of two convex cones intersecting can be precisely characterized

in terms of their intrinsic volumes. This is known as the kinematic formula.

Proposition 6.12 (The Kinematic Formula for Two Convex Cones). Consider

two convex (polyhedral) cones C1 and C2 in Rn. Let A ∈ Rn×n be a random

matrix uniformly distributed in the orthogonal group O(n,R). Then we have

P[C1 ∩A(C2) 6= {0}] =

n∑

i=0

(1 + (−1)i+1)

n∑

j=i

vi(C1)vd+i−j(C2), (6.2.15)

where A(C2) is a cone obtained by applying the random orthogonal matrix A to

all of the elements of C2.

One may check that equation (6.2.14) for two convex cones in R2 is a special

case of this formula. Interested readers may refer to [SW08] for a proof of this

formula.

Despite its rigor and elegance, the kinematic formula is challenging to directly

use, since the intrinsic volumes vk(C) are typically not computable except for very

simple cones. For the descent cones of most atomic norms, explicit expressions for

their intrinsic volumes are not known (and also difficult to compute numerically).

Without such expressions, how can we assess the probability P[C1 ∩ A(C2) 6=
{0}]? This is where measure concentration in high-dimensional spaces comes to

help: one can use the fact that PC[g] is a function of many independent random

variables to argue that the intrinsic volumes concentrate, giving simple, but

accurate bounds on the probability of intersection (6.2.15).

6.2.3 Statistical Dimension and Phase Transition

As we have seen earlier in the case of a subspace (6.2.7), averaging the projection

of a random vector g onto the subspace gives an equivalent way of measuring

the dimension of the subspace. This concept has led to the notion of the intrin-

sic volumes for a convex cone, which give the probability vk that the random

vector is projected onto the interior of a k-dimensional face. It is then natural

to wonder if the average of the projection over the entire cone or all faces gives

an equivalent measure of “dimension” of the cone. This leads to the notion of

statistical dimension of a convex cone.

Statistical Dimension and Approximate Kinematic Formula
Definition 6.13 (Statistical Dimension). Given C is a closed convex cone in

Rn, then its statistical dimension, denoted as δ(C), is given by:

δ(C)
.
= Eg

[
‖PC[g]‖22

]
, (6.2.16)

where g ∼ N (0, I).
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To see the connection with the intrinsic volumes defined above, we may con-

sider computing the overall expectation through conditional expectation of g

projected on k-dimensional faces, denoted as Sk. We know from (6.2.7) that this

expectation is exactly the dimension of the subspace k. Therefore, conceptually,

we have

Eg
[
‖PC[g]‖22

]
=

n∑

k=0

k · vk(C). (6.2.17)

The right hand side is often taken as an alternative definition of the statistical

dimension of a convex cone.5

To great extent, the statistical dimension is the natural generalization of the

notion of “dimension” of subspaces to convex cones. It is easy to show that it

has the following nice properties:

1 For a linear subspace S, we have

δ(S) = dim(S).

2 It is invariant under orthogonal transformation:

δ(C) = δ(A(C))

for all orthogonal matrix A in the orthogonal group O(n,R).

3 The sum of the statistical dimension of a cone C and that of its orthogonal

complement, also known as the polar cone Co,6 equals the dimension of the

ambient space:

δ(C) + δ(Co) = n.

4 For the direct product of two closed convex cones C1 and C2, we have:

δ(C1 × C2) = δ(C1) + δ(C2).

We leave the proof of these properties to the reader as exercises, as well as a few

other useful properties and facts.

Phase Transition of Atomic Norm Minimization.
As we have seen in Proposition 6.6 for linear subspaces, the sum of the statistical

dimensions precisely controls whether two subspaces S and S′ have nontrivial

intersection: once δ(S)+δ(S′) > n, the probability of nontrivial intersection goes

from zero to one. For general convex cones, there is a similar phenomenon: if S

is a random subspace of Rn, and C a closed convex cone, then we have:

δ(S) + δ(C)� n =⇒ S ∩ C 6= {0} with high probability;

δ(S) + δ(C)� n =⇒ S ∩ C = {0} with high probability.

The following theorem makes this precise:

5 A formal proof can be obtained using the spherical Steiner formula [SW08]. Interested

reader may refer to [ALMT14] for a detailed derivation.
6 The polar cone Co is defined to be: Co = {y ∈ Rn : 〈y,x〉 ≤ 0, ∀x ∈ C}.
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Theorem 6.14. Let C denote any closed convex cone in Rn, and let S be a

uniformly distributed random subspace of dimension δ(S). Then

P [S ∩ C = {0}] ≤ C exp
(
− c (n− δ(S)− δ(C))

2

n

)
, δ(S) + δ(C) ≥ n;

P [S ∩ C = {0}] ≥ 1− C exp
(
− c (δ(S) + δ(C)− n)

2

n

)
, δ(S) + δ(C) ≤ n

for some constant C, c > 0.

The above equations are also known as the approximate kinematic formula

which captures the essential behavior of the kinematic formula (6.2.15) in a high-

dimensional space due to measure concentration. This theorem is a special case

of a somewhat more general result controlling the probability that two randomly

oriented convex cones intersect (that we will elaborate later). The proof relies on

technical results in spherical integral geometry. We refer the interested reader to

Theorem 1 of [ALMT14], its proof, and references therein.

Theorem 6.14 then implies our main claim about the phase transition in atomic

norm minimization (6.1.25). In our situation, the cone C of interest is the descent

cone D of the atomic norm ‖ · ‖D at xo. We wish to know whether S = null(A)

has nontrivial intersection with C. The dimension of S is n−m, and so the above

heuristics become

FAILURE: δ(D)� m =⇒ null(A) ∩ D 6= {0} with high probability;

SUCCESS: δ(D)� m =⇒ null(A) ∩ D = {0} with high probability.

In the first case, the atomic norm minimization (6.1.25) fails to recover xo; in

the second case it succeeds. Using Theorem 6.14 to make this precise, we obtain:

Corollary 6.15 (Phase Transition for Atomic Norm Minimization). Let A ∈
Rm×n be (the matrix representation of) a random linear operator, and suppose

that y = A(xo). Let D denote the descent cone of the atomic norm ‖ · ‖D at xo.

Then

P [ (6.1.25) uniquely recovers xo ] ≤ C exp

(
−c (δ(D)−m)2

n

)
, m ≤ δ(D);

P [ (6.1.25) uniquely recovers xo ] ≥ 1− C exp

(
−c (m− δ(D))2

n

)
, m ≥ δ(D).

Thus, when the number of (random) measurements m is substantially smaller

than δ(D), recovery fails with high probability; when m is substantially larger

than δ(D) recovery succeeds with high probability. To great extent, the above

theorem explains the phase transition phenomena, around δ(D), that we have

observed in Chapter 3 for sparse vector recovery and in Chapter 4 for low-rank

matrix recovery.
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6.2.4 Statistical Dimension of Descent Cone of the `1 Norm

According to the above corollary, the success of the atomic norm minimization

(6.1.25) depends on whether the number of independent measurements exceeds

the statistical dimension δ(D) of the descent cone of the atomic norm. Hence, it

is extremely important to be able to accurately estimate δ(D). In this section,

we give a detailed derivation of the statistical dimension of the descent cones of

the `1 norm. One may derive in a similar way an expression for the descent cone

of the nuclear norm, which we state (without proof) in Theorem 4.23 in Chapter

4. Interested readers may find details for the nuclear norm in [ALMT14].

In Chapter 3, we have given an expression for the phase transition of `1 norm

minimization in Theorem 3.35. We here give a detailed calculation and show that

the statistical dimension δ(D) of the descent cone D is very close to nψ(k/n),

where the function ψ(·) is defined in (3.6.6). We state this result as a lemma

below:

Lemma 6.16. Let D be the descent cone of the `1 norm at any xo ∈ Rn satisfying

‖xo‖0 = k. Then

nψ

(
k

n

)
− 4
√
n/k ≤ δ(D) ≤ nψ

(
k

n

)
. (6.2.18)

Proof For this, we will need two basic facts about projections onto convex cones.

The first is the generalized pythagorean formula, which implies that for a closed

convex cone D with polar cone

D◦ = {v | 〈v,x〉 ≤ 0 ∀ x ∈ D} , (6.2.19)

for any z ∈ Rn,

‖PDz‖22 = ‖z − PD◦z‖22 = dist2(z,D◦). (6.2.20)

This allows us to replace the norm of the projection of z onto D with the distance

of z to the polar cone D◦. The second fact is that the polar of the descent cone

is the conic hull of the subdifferential

S
.
= ∂ ‖·‖1 (xo) = {v | vI = sign(xoI), ‖vIc‖∞ ≤ 1} . (6.2.21)

Namely,

D◦ = cone(S) =
⋃

t≥0

tS

= {tv | t ≥ 0, vI = σI, ‖vIc‖∞ ≤ 1} , (6.2.22)

where σI is a shorthand for sign(xoI). For any vector z, the nearest vector ẑ ∈ tS
satisfies

ẑi =





t sign(zi) i ∈ I,

zi i ∈ Ic, |zi| ≤ t,
t sign(zi) i ∈ Ic, |zi| > t,

(6.2.23)
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and the distance is given by

dist2(z, tS) = ‖z − ẑ‖22
= ‖zI − tσI‖22 +

∑

j∈Ic

max {|zj | − t, 0}2 . (6.2.24)

Hence, for any vector z,

dist2(z,D◦) = min
t≥0

dist2(z, tS)

= min
t≥0



‖zI − tσI‖22 +

∑

j∈Ic

max {|zj | − t, 0}2


 . (6.2.25)

Using these facts, we calculate

δ(D) = Eg∼N (0,I)

[
‖PDg‖22

]

= Eg∼N (0,I)

[
dist2(g,D◦)

]

= Eg

[
min
t≥0

dist2 (g, tS)

]

≤ min
t≥0

Eg
[
dist2 (g, tS)

]

= min
t≥0

Eg


‖gI − tσI‖22 +

∑

j∈Ic

max {|gj | − t, 0}2



= min
t≥0

{
|I|(1 + t2) + 2|Ic|

∫ ∞

s=t

(s− t)2ϕ(s)ds

}

= nψ(k/n), (6.2.26)

where ϕ(s) = 1√
2π
e−s

2/2 is the Gaussian density and ψ(·) is defined in (3.6.6).

Thus, we have established nψ(k/n) as an upper bound on the statistical dimen-

sion; and hence m? = nψ(k/n) as a lower bound on the phase transition.

To finish, we show that this upper bound on δ(D) is tight, by establishing a

(nearly) matching lower bound. Let t̂ minimize Eg
[
dist2(g, tS)

]
. Then

0 =
d

dt
Eg
[
dist2(g, tS)

]∣∣∣
t=t̂

= Eg

[
d

dt
dist2(g, tS)

∣∣∣
t=t̂

]
. (6.2.27)

Let tg minimize dist2(g, tS) with respect to t. By convexity of this function in t,

dist2(g, tgS) ≥ dist2(g, t̂S) +
(
tg − t̂

) d
dt

dist2(g, tS)
∣∣
t=t̂
. (6.2.28)

Notice that by (6.2.27),

0 = t̂Eg

[
d

dt
dist2(g, tS)

∣∣∣
t=t̂

]
= E [tg] Eg

[
d

dt
dist2(g, tS)

∣∣∣
t=t̂

]
, (6.2.29)
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and so

Eg
[
min
t

dist2(g, tS)
]

= Eg
[
dist2(g, tgS)

]

≥ Eg
[
dist2(g, t̂S)

]
+ Eg

[
(tg − Eg [tg])

d

dt
dist2(g, tS)

∣∣∣
t=t̂

]
,

≥ Eg
[
dist2(g, t̂S)

]
− var(tg)1/2var

(
d

dt
dist2(g, tS)

∣∣∣
t=t̂

)1/2

. (6.2.30)

In the last line we have used the Cauchy-Schwarz inequality for random variables.

To conclude, we bound the variance of the two terms. For tg, let vg ∈ S be

such that tgvg is the nearest element to g in D◦. Notice that

‖g − g′‖2 ≥ ‖tgvg − tg′vg′‖2 ≥ ‖tgσI − tg′σI‖2 = |tg − tg′ |
√
k, (6.2.31)

whence tg is a 1/
√
k-Lipschitz function of g. By the Gaussian Poincare inequal-

ity,7 its variance is bounded as var(tg) ≤ 1/k.

Meanwhile, by Danskin’s theorem,

d

dt
dist2(g, tS) =

d

dt
‖g − tvg‖22 = 2v∗g (tvg − g) . (6.2.32)

Note that because tvg is the projection of g onto the convex set D◦, for any

other v ∈ S,

(tvg − tv)∗(tvg − g) ≤ 0, (6.2.33)

whence

v∗g(tvg − g) ≤ v∗g′(tvg − g), (6.2.34)

and

d

dt
dist2(g, tS)− d

dt
dist2(g′, tS) = 2v∗g(tvg − g)− 2v∗g′(tvg′ − g′)

≤ 2v∗g′(tvg − g)− 2v∗g′(tvg′ − g′)
≤ 2 ‖vg′‖2

(
‖tvg − tvg′‖2 + ‖g − g′‖2

)

≤ 4 ‖vg′‖2 ‖g − g′‖2
≤ 4
√
n ‖g − g′‖2 . (6.2.35)

By the same reasoning,

d

dt
dist2(g, tS)− d

dt
dist2(g′, tS) ≥ 2v∗g (tvg − g − tvg′ + g′)

≥ −4
√
n ‖g − g′‖2 , (6.2.36)

whence
∣∣∣∣
d

dt
dist2(g, tS)− d

dt
dist2(g′, tS)

∣∣∣∣ ≤ 4
√
n ‖g − g′‖2 , (6.2.37)

7 which states that if f is an L-Lipschitz function and g a Gaussian vector, then

var(f(g)) ≤ L2.
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and d
dtdist2(g, tS) is 4

√
n-Lipschitz. By the Gaussian Poincare inequality,

var

(
d

dt
dist2(g, tS)

∣∣∣
t=t̂

)
≤ 4
√
n, (6.2.38)

and so

Eg
[
min
t

dist2(g, tS)
]
≥ min

t
Eg
[
dist2(g, tS)

]
− 4
√
n/k. (6.2.39)

Thus,

nψ(k/n)− 4
√
n/k ≤ δ(D) ≤ nψ(k/n). (6.2.40)

Combining this bound with the above results proves that the phase transition

occurs within O(
√
n) of m? = nψ(k/n).

6.2.5 Phase Transition in Decomposing Structured Signals

Examples of Decomposing Structured Signals.
In the robust face recognition problem that we have seen in Chapter 2 and later

studied in Chapter 13, we want to solve a problem of recovering a sparse xo and

a sparse error eo from the mixed measurements:

y = Axo + eo, (6.2.41)

where A is a known matrix, drawn from certain random distribution. This prob-

lem can be viewed as a special case of the so-called morphological component

analysis [SDC03,SED05,ESQD05].

In the robust principal component analysis (RPCA) problem that we have

studied in Chapter 5, we want to recover a low-rank matrix Lo and a sparse

matrix So from their sum:

Y = Lo + So. (6.2.42)

Or in the compressive principal component pursuit, we want to recover the low-

rank and sparse matrices from a random projection of their sum:

Y
.
= PQ[Lo + So], (6.2.43)

where Q ⊆ Rn1×n2 is a random linear subspace and PQ denotes the projection

operator onto that subspace.

Incoherence through Randomness.
As we have seen in developing solutions to the above problems, we often require

the two mixed structured signals to be “incoherent” to each other. Otherwise the

decomposition itself is not well-defined and solutions will not be unique. Hence

to understand the underlying geometric reason when such decompositions are

possible and the solution is unique, a simple but illuminating model is to assume
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when we mix two structured signals, say xo and so, together, one signal is in a

random position with respect to the other:

y = A(xo) + zo, (6.2.44)

where A is a random orthogonal transformation in the space of xo. The random

operator A ensures that xo is in general position to zo hence the two components

A(xo) and zo are incoherent to each other.

Decomposition through Atomic Norm Minimization
Now assume xo is a low-dimensional structured signal associated with an atomic

set D1, and zo with D2. As we have seen in the face recognition and the robust

PCA cases, a natural convex program to recover xo and zo is

min
x,z
‖x‖D1 subject to ‖z‖D2 ≤ ‖zo‖D2 , y = A(x) + z, (6.2.45)

where ‖ · ‖D1
and ‖ · ‖D2

are the atomic norms associated with D1 and D2,

respectively.8

Now let C1(xo) be the descent cone of the atomic norm ‖ · ‖D1
at xo and

C2(zo) the cone for ‖ · ‖D2 at zo. Suppose (xo, zo) is not the (unique) optimal

solution to the above program and

(xo + ∆x, zo + ∆z)

is an optimal solution. Then we must have ∆x is in the descent cone C1(xo) and

∆z is in the descent cone C2(zo). Furthermore, from the constraint y = A(x)+z

we have

−A(∆x) = ∆z.

In other words, ∆z must be in the intersection of the cone C2(zo) and−A(C1(xo)):

0 6= ∆z ∈ C2(zo) ∩ −A(C1(xo)),

as illustrated in Figure 6.7 on the right. For (xo, zo) to be the only optimal

solution to the program (6.2.45), we must have the intersection of the two cones

to be trivial – only contains the origin 0, as illustrated in Figure 6.7 on the left.

Phase Transition for Decomposition.
As we have alluded to earlier, in a high-dimensional space Rn, we anticipate the

probability of two cones intersecting transitions sharply around

δ(C1(xo)) + δ(C2(zo)) = n.

8 The optimization problem (6.2.45) is equivalent to the problem

min
x,z
‖x‖D1

+ λ‖z‖D2
subject to y = A(x) + z,

under an appropriate (instance specific) choice of λ > 0. This form may be more familiar

from our discussion of face recognition and robust PCA. In this section, we study the

constrained form (6.2.45), which is slightly more convenient for geometric analysis.
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0
−A(C1)C2

0

−A(C1)

C2

Figure 6.7 The success of the program (6.2.45) depends on if the random cone −A(C1)
intersects with the fixed cone C2. Left: if the intersection is trivial, then the
decomposition problem succeeds; Right: if the intersection is not trivial, then the
decomposition problem fails.

In other words,

δ(C1) + δ(C2)� n =⇒ C1 ∩ C2 6= {0} with high probability;

δ(C1) + δ(C2)� n =⇒ C1 ∩ C2 = {0} with high probability.

The following theorem makes this precise:

Theorem 6.17. Let C1 and C2 be two closed convex cones in Rn, and let A be a

random orthogonal matrix uniformly distributed in the orthogonal group. Then

P [−A(C1) ∩ C2 ={0}] ≤ C exp
(
−c (n−δ(C1)−δ(C2))

2

n

)
, δ(C1)+δ(C2) ≥ n;

P [−A(C1) ∩ C2 ={0}] ≥ 1−C exp
(
−c (δ(C1)+δ(C2)−n)

2

n

)
, δ(C1)+δ(C2) ≤ n,

for some constant C, c > 0.

The above bounds can be considered an approximate kinematic formula which

captures the essential behavior of the kinematic formula (6.2.15) in a high-

dimensional space due to measure concentration [ALMT14]. This is a more gen-

eral statement than Theorem 6.14 where one of the two cones is a subspace.

6.3 Limitations of Convex Relaxation

Our story up to this point has been one of success. The development up to this

point has demonstrated general ways of constructing regularizers that encode

various structural assumptions about the signals we are interested in computing

with. For sparse vectors, low-rank matrices, and several other structures dis-

cussed in Section 6.1, these regularizers have turned out to be computationally

tractable, and to yield statistical performance which is nearly the best possible
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under their assumptions. In a sense, it is surprising that we do not have to pay a

stronger statistical price for effective and efficient algorithms. Nevertheless, one

should not expect convex relaxation to work equally effectively for all challenging

problems. Below we discuss a few scenarios in which convex relaxation becomes

limited or even may fail to work.

6.3.1 Suboptimality of Convex Relaxation for Multiple Structures

In Section 6.1.1 we have discussed that in some problems such as sparse PCA,

we would like to recover a matrix X that is simultaneously sparse and low-rank.

In fact, such problems arise naturally in practical applications such as structured

texture inpainting or repairing that we will study in great detail in Chapter 15,

see Section 15.3. The images of regular patterns shown in Figure 15.4, if viewed

as matrices, are both low-rank and sparse in the Fourier or wavelet domain.

A sparse and low-rank matrix is a special case of a signal that has multi-

ple structures. It seems that one natural convex relaxation to promote multiple

structures is to use a weighted sum of their corresponding atomic norms. For

instance, we may minimize

λ1‖X‖1 + λ2‖X‖∗ (6.3.1)

to promote the recovered matrix to be both sparse and low-rank.9 This is exactly

what we will be practicing in Chapter 15 for regular texture repairing, and

indeed, empirically, the combined regularization does work better than using

only one.

However, the above combined convex regularization is not optimal in terms of

statistical efficiency. To see this, let us consider the simple problem of estimating

a sparse and low-rank matrix Xo ∈ Rn×n from noisy measurements:

Y = Xo +Z ∈ Rn×n, (6.3.2)

where Z ∈ Rn×n is matrix whose entries are i.i.d Gaussian noise. Hence using

the above combined regularization, one may use the following convex program

to estimate Xo:

X̂(Y ) = arg min
X

1

2
‖Y −X‖2F + λ1‖X‖1 + λ2‖X‖∗. (6.3.3)

To evaluate the goodness of the estimate X̂(Y ), we measure the mean square

error (MSE) with respect to the ground truth:

MSE
.
= E[‖X̂(Y )−Xo‖2F ]. (6.3.4)

Suppose the ground truth Xo is a k × k sparse matrix and of rank less than r.

9 Asking X to be simultaneously low-rank and sparse is quite different from asking it to be
decomposable as a sum of low-rank and sparse, X = L+ S. The latter problem, studied in

Chapter 5 does admit convex relaxations, which succeed when L and S are sufficiently

structured and incoherent.
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It has been shown in [OJFH13] that the above convex program (6.3.3) leads to

a mean square error bounded from below as:

MSE ≥ c ·min{k2, n}

for some c > 0. Nevertheless, as shown in [OJFH13], it is actually relatively easy

to solve a non-convex program to obtain an estimate with much lower MSE:

MSE ≤ C · k

for some C > 0. Unlike the case with a single low-dimensional structure, the

convex relaxation gives an estimate that is suboptimal in terms of statistical

accuracy. This suboptimality can also be felt in the number of (noiseless) random

measurements required to reconstruct Xo: minimizing any combination of the `1

norm and nuclear norm requires at least cmin{k2, nrank(Xo)} measurements,

even Xo has only O(krank(Xo)) degrees of freedom [OJF+15]. This can be

explained in terms of the statistical dimension of the descent cone associated to

a combined convex regularization such as (6.3.1), as we will describe in the next

section.

6.3.2 Intractable Convex Relaxation for High-Order Tensors

Section 6.1 also gave the first hint that a tight correspondence between the

statistical and computational limits might not obtain for certain types of low-

dimensional structures. For example, for recovering a high-order low-rank tensor

X o of the form (6.1.11), the atomic norm associated with the set (6.1.12) (as a

natural generalization of the nuclear norm) has excellent statistical performance,

but its computationally intractable.

In practice, people often seek computationally tractable alternative to ap-

proximately promote low-rank for high-order tensors. One popular choice is to

convert a high-order tensor to matrix forms and consider the so-called Tucker

rank [Tuc66,KB09]. Given a K-order tensor X ∈ Rn1×···×nK , for each of its mode

i = 1, . . . ,K, we construct the matrix X (i) ∈ Rni×
∏
j 6=i nj by concatenating all

the mode-i fibers of X as columns of X (i). Then the so-called Tucker rank is

defined as:

ranktc(X )
.
=
(
rank

(
X (1)

)
, rank

(
X (2)

)
, . . . , rank

(
X (K)

))
. (6.3.5)

Hence, to recover a tensor X o of low (Tucker) rank, say from random measure-

ments Y = A(X o), we may impose that the ranks of all K unfolded matrices

X (i) to be low. A natural convex regularization is to minimize a weighted sum

of nuclear norms of all the K matrices:

min
X

K∑

i=1

λi‖X (i)‖∗ subject to Y = A(X ), (6.3.6)

where λi ≥ 0 are chosen weights. Notice that this convex regularization is of

the same nature as that (6.3.1) for a sparse and low-rank matrix. Each term



262 Recovering General Low-Dimensional Models

λi‖X (i)‖∗ imposes some additional structure on the same high-order tensor X .

In practice, however, one may choose to use any subset of the K matrices, as we

will see an example with camera calibration from multiple images in Chapter 15.

We may understand the role of composing multiple norms from the perspective

of statistical dimension. That is, we want to know by superposing multiple norms,

how the statistical dimension of the descent cone of the composite norm changes.

To this end, let us consider the general problem of recovering a high-dimensional

signal xo ∈ Rn that has K low-dimensional structures simultaneously. Let ‖ · ‖(i)
be the (atomic) norm associated with the i-th structure, i = 1, . . . ,K. Then,

given random measurements y = A(xo), we may try to recover xo by minimizing

the composite norm:

min
x
‖x‖com .

=

K∑

i=1

λi‖x‖(i) subject to y = A(x). (6.3.7)

Analysis of [MHWG13] has shown that the statistical dimension of the descent

cone of the composite norm ‖ · ‖com is actually dominated by the largest among

all cones for the norms λi‖ · ‖(i). So adding more penalty terms gives diminish-

ing return in terms of improving statistical efficiency. In particular, [MHWG13]

has shown that using the composite nuclear norm in (6.3.6) to solve for a

(Tucker) rank-r tensor uniquely, the number of measurements needed is essen-

tially O(rnK−1); with better arrangement of the unfolded matrices, one can

reduce the number of measurements to O(rK/2nK/2), whereas a certain noncon-

vex (potentially intractable) formulation needs only O(rK+nrK) measurements.

There are good reasons to believe, in order to bridge the gap, we may have to

deal with the nonconvex nature of high-order tensor estimation directly.

6.3.3 Lack of Convex Relaxation for Bilinear Problems

So far, we have mainly considered the problem of recovering a low-dimensional

signal xo from a set of (random or incoherent) measurements y = Axo where

the measurement operator/matrix A is known. However, in may practical appli-

cations, we do not know the matrix A.

For instance, consider A ∈ Rn×n is some (invertible) transformation on some

sparse signals, and we have observed many samples of such signals

yi = Axi ∈ Rn, i = 1, 2, . . . ,m.

If we do not know the transformation A in advance, we want to recover the

transformation so that xi = A−1yi will be maximally sparse. In other words,

if we stack yi as columns of a matrix Y = [y1, . . . ,ym] ∈ Rn×m and similarly

X = [x1, . . . ,xm] ∈ Rn×m, we want to decompose Y into

Y = AX ∈ Rn×m,

such that X is the sparsest. This is a special matrix factorization problem, also
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known as the dictionary learning problem, with A being the (complete) sparsi-

fying dictionary to be identified. In applications such as scientific imaging, the

matrix A may even have additional structures such as being a convolution. Just

like many other structured matrix factorization problems, there is no non-trivial

convex relaxation to these nonlinear problems. For these problems, we are often

forced to deal with their nonlinear and nonconvex nature directly. Nevertheless,

we will see in Section 7.3.2 of Chapter 7, such nonconvex problem has extremely

nice structures and properties. Such nice properties make the seemingly challeng-

ing nonconvex problem amenable to extremely efficient optimization algorithms

(as we will see Section 9.6.2 of Chapter 9).

6.3.4 Nonlinear Low-Dimensional Structures

All the low-dimensional models (sparse, low-rank) that we have studied so far

assume the low-dimensional structures of the data are piecewise or locally linear

– hence they can be represented as linear superposition of a few atoms. As we will

see in many of the application chapters, for most real-world data, nonlinearality

can easily come from the measurement process or certain nonlinear deforma-

tions of the otherwise structured data (say image rectification in Chapter 15).

As result, the intrinsic structures of such data are still very low-dimensional, but

they are not necessarily linear. The support of their distribution may become

nonlinear submanifolds, instead of linear subspaces! For instance, in speech recog-

nition or object recognition in images, the information we care about is invariant

to certain group of transformations: shifting, translation, scaling or rotation of

the signals (say image rectification in Chapter 15 or classification in Chapter

16). Mathematically speaking, we care about the (low-dimensional) structures

of equivalent classes of the signals under such transformations. Such structures

are known to be highly nonlinear and complicated [WDCB05].

Hence, to make the fundamental models, concepts and methods developed in

this book truly applicable and useful for real-world data and problems, we often

need to learn such a nonlinear transform of the data:

f(x) : x 7→ z, f ∈ F (6.3.8)

in some family of functions F .10 After the transformation, we expect the intrinsic

structures of z = f(x) become low-dimensional linear subspaces (as in sparse

and low-rank models), which are easier to interpret and use. As we will see in

the application chapters, principles and computational tools developed in this

book can be readily extended to undo such nonlinear mappings and reveal the

low-dimensional structures of real-world data in terms of the canonical (linear)

models that we are familiar with.

10 Typically, we assume f is a smooth or at least continuous mapping, which can be

parameterized as polynomials (see Chapter 15) or as deep networks (see Chapter 16).
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6.3.5 Return of Nonconvex Formulation and Optimization

The above difficulties with convex relaxation have compelled people to reexamine

these more challenging problems in their natural nonconvex setting. Somewhat

surprisingly, even in the nonconvex setting, low-dimensional structures of the

signals have played a crucial role in making such nonconvex problems amenable

to efficient and effective solutions. These nonconvex programs are very different

from generic nonconvex problems that are known to suffer from local minima and

slow convergence. Instead, they have surprisingly good geometric and statistical

properties which, if properly leveraged, give rise to simple, efficient algorithms.

We will reveal properties of these nonconvex problems in Chapter 7 and develop

scalable algorithms to solve them with (optimal) convergence and complexity

guarantees in Chapter 9.

To apply fundamental theory and models of this book to real-world problems,

in the last Chapter 16, we will touch upon the very important and challenging

issue with real-world data: the intrinsic low-dimensional structures of the data

can be highly nonlinear and multi-modal. Modern practice of machine learning,

especially deep learning, is precisely aiming to learn a nonlinear mapping that

leads to certain optimal (linear) representation of the data. We will see how the

concepts and principles developed in this book for low-dimensional models play a

fundamental role in rigorously interpreting and potentially improving the design

of deep networks.

6.4 Notes

As mentioned in Chapter 3, the phase transition phenomenon associated with

the `1 norm minimization was studied in the observation space by Tanner &

Donoho from the perspective of random projection of high-dimensional poly-

topes [Don05, DT09, DT10]. Later studies focused on analyzing in the coeffi-

cient space as this approach applies to more general low-dimensional struc-

tures [Sto09, OH10, CRPW12, ALMT14]. The upper bound on the statistical

dimension of the descent cone of the `1 norm is due to Stojnic [Sto09], which

derives empirically sharp guarantees for recovery by `1 minimization. The proof

of the corresponding lower bound follows Amelunxen et. al. [ALMT14], as does

our use of the term “statistical dimension” and much of the exposition in this

chapter.

The study of low-dimensional structures through convex relaxation has been

generalized through the introduction of atomic norm [BTR12] and linear inverse

problems via convex optimization [CRPW12]. These earlier works have led to the

unified framework based on statistical dimension of the descent cones [ALMT14],

presented this chapter. Statistical analysis of the recovery and decomposition

problems under noisy measurements has also been systematically developed in a

series work from Wainwright and colleagues [Wai09a,ANW12].
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Limitations of convex relaxation for certain low-dimensional structures have

been revealed through the work of [OJFH13,OJF+15] for sparse low-rank matri-

ces and later [MHWG13] for high-order tensors. In subsequent years, nonconvex

formulations have received tremendous attention, as surveyed in the recent pa-

pers [SQW15,JK+17,CLC19,Sun19a]. In the next Chapter 7, we will give a more

detailed account for the key rationale behind the nonconvex approach, and try to

elucidate why and when a nonconvex program is expected to work well. In Chap-

ter 9, we systematically introduce effective and efficient optimization algorithms

for solving this class of nonconvex problems in high-dimensional spaces.

6.5 Exercises

6.1 (Nonnegative sparse vectors and low-rank matrices). Consider the nonneg-

ative sparse vectors. Identify an atomic set Dnonnegative sparse such that a vector

x is nonnegative and k-sparse if and only if it is nonnegative combination of k

elements of Dnonnegative sparse.

Now consider low-rank matrices with nonnegative factors, i.e., matrices that

can be expressed as

X =

r∑

i=1

aib
∗
i , (6.5.1)

with ai and bi element-wise nonnegative. Identify an atomic set Dnonnegative low-rank

such that a matrix X is of the form (6.5.1) if and only if it can be expressed as

a nonnegative linear combination of r elements of Dnonnegative low-rank. Can you

guess which of the atomic norms ‖ · ‖Dnonnegative sparse
and ‖ · ‖Dnonnegative low-rank

leads to tractable optimization problems?

6.2 (The k-support norm). Consider the atomic set defined as

Dk = {x ∈ Rn | ‖x‖0 ≤ k, ‖x‖2 = 1}. (6.5.2)

Show that the atomic norm given by the gauge function of this set is the so-called

k-support norm:

‖x‖spk = min

{∑

I∈Gk
‖vI‖2 s.t.

∑

I∈Gk
vI = x

}
. (6.5.3)

This gives an alternative convex regularizer for recovering sparse vectors.

6.3. Consider an atomic set for R2:

D = {x1 ∈ S1,x2 = [±1, 0]∗}. (6.5.4)

What is the associated atomic (gauge) norm ‖x‖D for a x ∈ R2? From this

example, what can you say about a group atomic set (6.1.29) that has two supports

I′ ⊂ I?
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6.4. Prove that the definitions of the dimension of a linear subspace are equivalent

in Example 6.7.

6.5. Compute the intrinsic volumes of a d-dimensional subspace in Rn according

to the Definition 6.8 for convex cones.

6.6. Compute the intrinsic volumes of a cone in R2 described in Example 6.10.

6.7. Derive the kinematic formula for two cones in R2 described in Example 6.11.

6.8. Prove the following properties of the statistical dimension of close convex

clones:

1 The sum of the statistical dimension of a cone C ⊂ Rn and that of its polar

cone Co ⊂ Rn satisfies

δ(C) + δ(Co) = n.

2 For the direct product of two closed convex cones C1 and C2, we have:

δ(C1 × C2) = δ(C1) + δ(C2).

6.9. In the derivation of (6.2.26), first, show that for g ∼ N (0, I), we have

Eg
[
‖gI − tσI‖22

]
= |I|(1 + t2).

Second, discuss how you can solve the following minimization problem:

ψ(η) = min
t≥0

{
η(1 + t2) + 2(1− η)

∫ ∞

s=t

(s− t)2ϕ(s)ds

}
?



7 Nonconvex Methods for
Low-Dimensional Models

“The mathematical sciences particularly exhibit order, symmetry, and limitations;
and these are the greatest forms of the beautiful.”

– Aristotle, Metaphysica

7.1 Introduction

As engineering and the sciences become increasingly data and computation

driven, the role of optimization has expanded to touch almost every stage of

the data analysis pipeline, from the signal and data acquisition to modeling,

analysis, and prediction. While the challenges in computing with physical data

are many and varied, basic recurring issues arise from nonlinearities at different

stages of this pipeline:

• Nonlinear Measurements are ubiquitous in imaging, optics, and astronomy. A
canonical example are magnitude measurements, which arise when, due to physical
limitations, it is easy to measure the (Fourier) modulus of a complex signal, but hard
to measure the phase. For example, we might measure the Fourier magnitude of a
complex signal x ∈ Cn [Pat34, Pat44, SEC+15, JEH17]:1

y
observation

=

∣∣∣∣F ( x
unknown signal

)∣∣∣∣ ∈ Rm. (7.1.1)

Here, x represents a signal or image of interest, and the goal is to reconstruct x from
the nonlinear measurements y. This is sometimes called a Fourier phase retrieval
problem.

• Nonlinear Models are often well-suited to express the variability of real datasets.
For example, observations in microscopy, neuroscience, and astronomy can often be
approximated as sparse superpositions of basic motifs.2 We can cast the problem of
finding these motifs as one of seeking a representation of the form

Y
data

= A
motifs

X.
sparse coefficients

(7.1.2)

1 In contrast, in the MRI example of Section 2.1 of Chapter 2, we studied a much simplified
linear model in which we assume to have the full complex measurements of Fourier

transform of a brain image. In reality that is not the case.
2 Mathematically, one may view such motifs as the atoms of a dictionary that we have

studied in the previous chapter.
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Here, the columns of Y ∈ Rm×p are observed data vectors, the columns of A ∈ Rm×n

are basic motifs, and X ∈ Rn×p is a sparse matrix of coefficients that expresses
each observed data point as a superposition of motifs. This is sometimes called a
sparse dictionary model. A typical goal is to infer both A and X from observed
data. Because both A and X are unknown, this model should be considered nonlinear
(strictly, bilinear). Natural images may have even more variability, which is better
modeled by hierarchical models (convolutional neural networks) with more complicated
nonlinearities [LB95a, GPAM+14, GBC16].

7.1.1 Nonlinearity, Symmetry, and Nonconvexity

In the two examples described above, nonlinearities are not just a nuisance: they

are part of the structure of the problems we face. They have strong implications

on the sense in which we can hope to solve these problems, and, as we will see

in this chapter, on our ability to efficiently compute solutions.

Notice that both models exhibit certain symmetries. The model y = |F(x)| in
(7.1.1) exhibits a phase symmetry: both x and xeiφ (for any φ ∈ [0, 2π)) produce

the same observation y. The sparse dictionary model Y = AX in (7.1.2) exhibits

a permutation symmetry: for any signed permutation Π, (A,X) and (AΠ,Π∗X)

produce the same observation Y .3 In either case, we can only hope to recover

the physical ground truth up to these basic symmetries.

Nonconvex Programs from Symmetry.
A typical computational approach to find the correct solution is to formulate an

optimization problem

min
z

ϕ(z), (7.1.3)

and attempt to solve it with iterative methods such as gradient descent [Cau47].4

Here, z represents the signal or model to be recovered – for example, in phase

retrieval, z = x, while in dictionary learning the optimization variable z is the

pair (A,X). Typically, ϕ(·) measures quality of fit to observed data and the

extent to which the solution satisfies assumptions such as sparsity. As we shall

see, most natural choices of ϕ inherit the symmetries of the data generation

model: e.g., for phase recovery, we have

ϕ(eiθx) = ϕ(x), ∀θ ∈ [0, 2π) = S1,

while for dictionary learning,

ϕ((A,X)) = ϕ((AΠ,Π∗X)), ∀Π ∈ SP(n),

3 Here, and below, the notation M∗ denotes the complex conjugate transpose of a matrix
M . If M is real-valued, this is simply the matrix transpose.

4 We will give a full exposition of optimization methods in the next part of the book, in

particular Chapter 9 for nonconvex programs. In this chapter, we focus on characterizing

geometric properties of the optimization problems and their algorithmic implications.
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where SP(n) indicates the group of signed permutations. As we see, symmetries

of the observation models become symmetries in the objective function of the

associated optimization problems.

If we are judicious in our choice of ϕ(·), we can hope that the true x is a (near)

global minimizer; our task becomes one of solving the optimization problem

(7.1.3) to global optimality. In contrast to certain applications of optimization

(e.g., in finance, logistics, etc.), we care not just about decreasing the objective

function, but about obtaining the physical ground truth. As such, we are forced

to care not just about ensuring that our algorithms converge, but that they

converge to global minimizers.

In applied optimization, a time-honored approach to guaranteeing global opti-

mality is to seek formulations that are convex. The global minimizers of a convex

function form a convex set. Moreover, every local minimizer (indeed, every criti-

cal point) of a convex function is global. As a result, many convex problems can

be efficiently solved to global optimality by local methods. This makes the area

of convex analysis and optimization a model for how geometric understanding

can support practical computation, as we have practiced extensively for sparse

and low-rank models in the previous chapters.

Unfortunately, as alluded to above, symmetric programs we encounter in statis-

tics, signal processing and related areas are typically nonconvex [SQW15,JK+17,

CLC19, Sun19a], and they do not admit any obvious or meaningful convex re-

laxation. So we need to look for other geometric principles that will enable us

to guarantee high-quality (preferably globally optimal) solutions. Indeed, these

problems exhibit multiple global minimizers, which may be disjoint (due to per-

mutation symmetry) or may reside on a continuous nonconvex set (due to ro-

tation or phase symmetry). Any optimization formulation that inherits these

symmetries will be most likely nonconvex.5

Worst Case Obstructions to Nonconvex Optimization.
This observation might suggest a certain pessimism: nonconvex optimization is

impossible in general. There are simple classes of nonconvex problems (e.g., in

polynomial optimization) that are already NP-hard. At a more intuitive level,

there are two geometric obstructions to solving nonconvex problems globally.

First, nonconvex problems can exhibit spurious local minimizers, i.e. local min-

imizers that are not global. Local descent methods can get trapped; finding the

global optimum is hard in general. Perhaps surprisingly, even finding a local min-

imizer can be NP-hard in general [MK87, Nes00]. Figure 7.1 (right) illustrates

one of the challenges: it is possible to construct objective functions that are so

flat that it is impossible to efficiently determine a direction of descent.

Of course, it is possible to find global optima under minimal assumptions by

5 Disclaimer: Not every symmetric problem is nonconvex. Indeed, the objective function

ϕ(z) = 1
2
‖z‖22 is rotationally symmetric ϕ(Rz) = ϕ(z) for all R ∈ O(n), z ∈ Rn and

convex. It is easy to construct additional examples of this type. However, the symmetric
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Spurious local minimizers Flat saddle points

Figure 7.1 Two Geometric Obstructions to Nonconvex Optimization. Descent
methods can become trapped near local minimizers (left) or stagnate near flat saddle
points (right).

exhaustively exploring the space of optimization, e.g., by discretization of the

space [EMS18] or by random search [Haj90, BLO05]. The worst-case obstruc-

tions described above still rear their heads, in the form of search times that

are exponential in dimension. Such a brute force approach is only applicable to

problems in which the dimension of the search space is not so-high.

Calculus and the Local Geometry of Optimization.
Because of these worst-case obstructions, the classical literature on efficient non-

convex optimization6 has focused on guaranteeing

1 convergence to some critical point (z̄ such that ∇ϕ(z̄) = 0),

2 or convergence to some local minimizer, for functions ϕ which are not too flat.

The curvature of a smooth function ϕ(·) around a critical point z̄ can be studied

through the Hessian∇2ϕ(z̄). If∇2ϕ(z̄) is nonsingular, the signs of its eigenvalues

completely determine whether z̄ is a minimizer, maximizer or saddle point – see

Figure 7.2 (right). In particular, if z̄ is a saddle point or a maximizer, there is a

direction of negative curvature – a direction along which the second derivative

is negative. This information can be used to escape saddles and converge to a

local minimizer, either explicitly (using the Hessian) or implicitly (using gradient

information to approximate the negative curvature direction).

In Chapter 9, we will introduce a variety of iterative methods that trade-off

in various ways between the amount of computation used to determine a good

problems encountered in statistics, signal processing, and related areas are typically

nonconvex; moreover their nonconvexity can be directly attributed to symmetry.
6 We will systematically study representative algorithms for nonconvex optimization in

Chapter 9 and characterize what kind of guarantees they can provide and the associated

computational complexity.
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Noncritical Point (∇ϕ 6= 0) Critical Points (∇ϕ = 0)

∇2ϕ � 0

Minimizer

λmin∇2ϕ < 0

λmax∇2ϕ > 0

Saddle

∇2ϕ ≺ 0

Maximizer

Figure 7.2 Calculus and the Local Geometry of Optimization. The gradient ∇ϕ
captures the slope of the function ϕ. At critical points z̄, ∇ϕ(z̄) = 0. The type of
critical point (minimizer, maximizer, saddle) can often be determined from the
curvature of ϕ at z̄, which is captured by the Hessian ∇2ϕ(z̄).

direction of negative curvature at a given iteration and the number of iterations

required to converge [Gol80, CGT00, NP06, LSJR16, JNJ18, LPP+19]. However,

the high-level message of these methods is consistent: if all critical points are

nondegenerate7, we can escape them and efficiently converge to a local minimizer.

In fact, slightly less is required: it is enough that every non-minimizing critical

point have a direction of strict negative curvature8 [JGN+17, JNJ18, LPP+17,

LSJR16].

Results of this nature control the worst-case behavior of methods over very

broad classes of problems. In such a general setting, it is not possible to provide

strong guarantees on what local minimizer methods converge to, and whether

that minimizer is global. Nevertheless, it is difficult to overstate the impact of

this kind of thinking for stimulating the development of useful methods and

elucidating their properties. Moreover, methods developed to guarantee good

worst-case performance often outperform their worst-case guarantees on prac-

tical problem instances – witness longstanding “folk theorems” on the ease op-

timizing neural networks [CHM+14, Kaw16, SJL18, AZLS19, DLL+19, Sun19b],

solving problems in quantum mechanics [KKP+18, STDV18, HLWY19] or clus-

tering separated data [QZC19, KQC+19, QZC20, WYD20]. Delineating prob-

lem classes that capture the difficulty (or ease!) of naturally occurring opti-

mization problems is a pressing challenge for the mathematics of data science

[SQW15,JK+17,CLC19,Sun19a].

7 In the language of differential topology, if the function ϕ is Morse [Mil63,Bot82].
8 In the recent literature, this is called a “strict saddle” property [GHJY15,SQW15].

Concrete rates of convergence are typically stated in terms of quantitative versions of this

property, which explicitly control the size of the gradient and the smallest eigenvalue of
the Hessian uniformly over the domain of optimization.
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Rotational symmetry Discrete symmetry

Figure 7.3 Symmetry and the Global Geometry of Optimization. Model
problems with continuous (left) and discrete (right) symmetry. For these particular
problems, and others we will study, every local minimizer is global.

7.1.2 Symmetry and the Global Geometry of Optimization

The goal of this chapter is to illustrate a particular family of nonconvex problems

associated with low-dimensional models which, under surprisingly mild condi-

tions, can be solved globally with efficient methods. This family includes a num-

ber of contemporary problems in signal processing, data analysis and related

fields [SQW15,JK+17,CLC19,Sun19a]. The most important high-level property

of these problems is that they are all symmetric – in slightly more formal lan-

guage:

Definition 7.1 (Symmetric Function). Let G be a group acting on Rn. A func-

tion ϕ : Rn → Rn
′

is G-symmetric if for all z ∈ Rn, g ∈ G, ϕ(g ◦ z) = ϕ(z).

As argued above, symmetry forces us to grapple with properties of nonconvex

functions. On the other hand, the particular symmetric nonconvex functions

encountered in practice are often quite benign. Figure 7.3 shows two examples

– one with rotational symmetry (G an orthogonal group) and one with discrete

symmetry (G a discrete group, such as the signed permutations). We will develop

these examples in more mathematical detail below. For now, we simply observe

that these two instances do not exhibit spurious local minimizers or flat saddles.

The absence of these worst-case obstructions can be attributed to symmetry. In

slogan form, we shall see that:

Slogan 1: the (only!) local minimizers are symmetric versions of the ground truth.
Slogan 2: a local critical point has negative curvature in directions that break symmetry.

When these two slogans are in force, efficient (local) methods produce global

minimizers. Moreover, symmetry constrains the global layout of the critical

points, leading to additional structure that facilitates efficient optimization. We

will show examples where the saddle points of symmetric problems “cascade”,
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Nonconvex Problems with Rotational Symmetries

Eigenspace Computation

minX∗X=I − 1
2

trace [X∗AX].

Compute the principal subspace
of a symmetric matrix.

Symmetry: X 7→XR

G = O(r)

Generalized Phase Retrieval

minx
1
2
‖y2 − |Ax|2‖22.

Recover a complex vector xo from
magnitude measurements y = |Axo|.

Symmetry: x 7→ xeiφ

G = S1 ∼= O(2)

Matrix Recovery

Recover a low-rank matrix X = UV ∗

from incomplete/corrupted observations

minU,V L(Y −A[UV ∗]) + ρ(U ,V ).

Symmetry: (U ,V ) 7→ (UΓ,V Γ−∗)

G = GL(r) or G = O(r)

Figure 7.4 Three examples of nonconvex optimization problems with rotational
symmetries (Section 7.2). Each of these three tasks can be reduced to optimization
problems in various ways; for each, we give a representative formulation and discuss
its symmetries.

with negative curvature directions feeding into negative curvature directions, a

property which appears to prevent first order methods from stagnating [GBW19].

Before we embark, a few disclaimers are in order. First, slogans 1 and 2 are

only slogans. As we will see, they have been established rigorously for specific

problems under specific (restrictive) technical hypotheses. We hope to convey a

sense of the beauty and robustness of certain observed phenomena in optimiza-

tion, while also making clear that the existing mathematics supporting these

claims is, in places, lacking uniformity and simplicity. There is a need for more

unified analysis and better technical tools. We highlight some potential avenues

for this in Section 7.4. The second, more fundamental, disclaimer is that not

all symmetric problems have benign global geometry. It is easy to construct

counterexamples. Nevertheless, as we will see, symmetry provides a lens through

which one can understand the geometric properties that enable efficient opti-

mization for our particular family of problems. Moreover, when we study these

problems through their symmetries, common structures and common intuitions

emerge: problems with similar symmetries exhibit similar geometric properties

and behaviors.

7.1.3 A Taxonomy of Symmetric Nonconvex Problems

In this chapter, we identify two families of symmetric nonconvex problems, which

exhibit similar geometric characteristics.

• The first family of problems exhibit continuous rotational symmetries: the
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Nonconvex Problems with Discrete Symmetries

Eigenvector Computation

maxx∈Sn−1
1
2
x∗Ax.

Maximize a quadratic form
over the sphere.

Symmetry: x 7→ −x
G = {±1}

Dictionary Learning

Approximate a given matrix Y
as Y = AX, with X sparse

minA∈A,X
1
2
‖Y −AX‖2F + λ‖X‖1.

Symmetry: (A,X) 7→ (AΓ,XΓ∗)

G = SP(n)

Tensor Decomposition

Determine components ai of an orthogonal
decomposable tensor T =

∑
i ai ⊗ ai ⊗ ai ⊗ ai

maxX∈O(n)

∑
i T (xi,xi,xi,xi).

Symmetry: X 7→XΓ

G = P(n)

Short-and-Sparse Deconvolution

Recover a short a and a sparse x
from their convolution y = a ~ x.

mina,x
1
2
‖y − a ~ x‖22 + λ‖x‖1.

Symmetry: (a,x) 7→ (αsτ [a], α−1s−τ [x])

G = Zn × R∗ or G = Zn × {±1}

Figure 7.5 Four examples of problems with discrete symmetries. We discuss this
family of problems in more detail in Section 7.3.

group G is O(n) or SO(n). The phase retrieval problem described above is a

canonical example; Figure 7.4 illustrates this family.

• The second family of problems exhibit discrete symmetries: signed permuta-

tions SP(n), signed shifts Zn × {±1}, or products of these. The dictionary

learning problem discussed above is a canonical example; Figure 7.5 shows

several others.

In the remainder of this chapter, we explore the geometry of these two families

of problems in more depth. Section 7.2 studies problems with rotational symme-

tries, beginning with a very simple model problem in which the goal to recover

a single complex scalar from magnitude measurements. The analysis helps ex-

tract conclusions that carry over to more complicated measurement models for
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phase recovery [CESV13,CLS15b,SEC+15,SQW18,FS20] and related problems

in low-rank matrix factorization and recovery [GLM16,GJZ17,CLC19].

Section 7.3 studies problems with discrete symmetries, starting again from an-

other simple model problem and extracting conclusions that carry over to prob-

lems such as dictionary learning [SQW17a, SQW17b, GBW19, QZL+19], blind

deconvolution [LS17, ZKW18, KZLW19, LQK+19, LB18, QLZ19] and tensor de-

composition [GHJY15,GM17].

As mentioned above, this area is rich with open problems; we highlight a

few of these in Section 7.4. These open problems span both geometry and algo-

rithms. Nevertheless, our main focus throughout this survey is geometric: we will

concentrate on the connection between symmetry and geometry. As described

above, these geometric analyses have strong implications: in many cases, they

guarantee that problems can be solved globally in polynomial time. In order to

keep the development focused on geometric intuitions, we will only treat com-

putational issues at a high level. We recommend the survey paper [CLC19] for a

more detailed exposition of issues at the interface of statistics and computation,

for problems with rotational symmetry. Section 7.4 also briefly discusses similar

considerations for problems exhibiting discrete symmetries, where we refer read-

ers to the paper [QZL+20b] for more computational and application aspects on

these problems.

7.2 Nonconvex Problems with Rotational Symmetries

In this section, we study the first main class of problems in our taxonomy of

symmetric nonconvex problems: problems with continuous rotational symmetry.

This class includes important model problems in phase recovery [SEC+15,FS20]

and low-rank estimation [CLC19]. We begin by developing a few basic intuitions

through a toy phase retrieval problem; we then show how these intuitions help to

explain the geometry of a range of problems from imaging to machine learning.

7.2.1 Minimal Example: Phase Retrieval with One Unknown

We first consider a model problem, in which our goal is to recover a single complex

scalar xo ∈ C from m magnitude measurements

y1 = |a1xo| , . . . , ym = |amxo| , (7.2.1)

where a1, . . . , am ∈ C are known complex scalars. Collecting our observations yi
into a single vector y ∈ Rm and collecting the ai into a single vector a ∈ Cm, we

can express this measurement model more compactly as

y = |axo| . (7.2.2)

Our goal is to determine xo, up to a phase. This is a heavily simplified (indeed,

trivialized!) version of the generalized phase retrieval problem [CSV13,CLS15b,
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2

0

Maximizer

Minimizers

Nodes: critical points

n (n: # negative
eigenvalues)

Figure 7.6 Phase Retrieval with a Single Unknown. Left: we plot the objective
function ϕ(x) for phase retrieval with a single complex unknown. All local minimizers
(red) are symmetric copies xoe

iφ of the ground truth xo ∈ C. There is also a local
maximizer (green) at x = 0; at this point, ϕ exhibits negative curvature in directions
that break symmetry. Right: critical points arranged according to objective function
ϕ, labelled according to their index (number of negative eigenvalues).

SQW18], which we will describe in more detail in Section 7.2.2. Here our goal is

simply to understand the consequences of the phase symmetry of the measure-

ment model (7.2.2) for optimization. To this end, we study a model optimization

problem,

min ϕ(x)
.
= 1

4

∥∥y2 − |ax|2
∥∥2

2
, (7.2.3)

which minimizes the sum of squared differences between the squared magnitudes

of ax and those of axo. Note that

ϕ(x) = 1
4‖a‖44

(
|x|2 − |xo|2

)2
. (7.2.4)

This is a function of a complex scalar x = xr + ixi. We can study its geometry

by identifying x with a two-dimensional real vector x̄ = (xr, xi). The slope and

curvature of the function ϕ(x̄) are captured by the gradient and Hessian,

∇ϕ(x̄) = ‖a‖44
(
|x|2 − |xo|2

)[ xr
xi

]
, (7.2.5)

∇2ϕ(x̄) = ‖a‖44
((
|x|2 − |xo|2

)
I + 2x̄x̄∗

)
. (7.2.6)

Figure 7.6 visualizes the objective ϕ(·) and its critical points. By setting ∇ϕ = 0,

and inspecting the Hessian, we obtain that there exist two families of critical

points: global minimizers at x = xoe
iφ, and a global maximizer at x = 0. We

notice that:

• Symmetric copies of the ground truth are minimizers. The points

xoe
iφ are the only local minimizers. In problems with phase ambiguities, we

expect a circle O(2) ∼= S1 of minimizers. In addition, the Hessian is positive
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semidefinite, but rank deficient at the global minimizers: the zero curvature

direction (along which the objective ϕ is flat) is precisely the direction that is

tangent to the set of equivalent solutions g ◦ x? at x? with g ∈ S1. Normal to

this set, the objective function exhibits positive curvature – a form of restricted

strong convexity.

• Negative curvature in symmetry breaking directions. There is a local

maximizer at x = 0, which is equidistant from the target solutions
{
xoe

iφ
}

.

At this point ∇2ϕ ≺ 0; there is negative curvature in every direction, and

movement in any direction breaks symmetry.

7.2.2 Generalized Phase Retrieval

The univariate phase retrieval problem is an extreme idealization of a basic

problem in imaging: recovering a signal from phaseless measurements [CESV13,

SEC+15]. This problem arises in many application areas, including electron

microscopy [MIJ+02], diffraction and array imaging [BDP+07, CMP10], acous-

tics [BCE06, Bal10], quantum mechanics [Cor06, Rei65] and quantum informa-

tion [HMW13], where the goal is to image complex molecular structures. Illu-

minating a sample with coherent light produces a diffraction pattern, which is

approximately the Fourier transform of the sample’s density. If we could measure

this diffraction pattern, we could recover an image of the sample with atomic res-

olution, simply by inverting the Fourier transform. However, there is a wrinkle:

typically, the magnitude of the Fourier transform is much easier to measure than

the phase – the magnitude can be measured by aggregating energy over time,

whereas measuring the phase of a high frequency signal requires the detector to

be sensitive to very rapid changes. The Fourier phase retrieval problem asks us

to reconstruct a complex signal from magnitude measurements only:

find x such that |F [x]| = y.

This problem is widespread in scientific imaging [Mil90, Rob93, Wal63, DF87].

It is also challenging: it is ill-posed in one dimension, and in higher dimensions

even the most effective numerical methods remain sensitive to initialization and

tuning [Fie13]. We refer readers to recent survey papers [SEC+15,JEH15,FS20]

for more details. We like to emphasize here that one main reason for this difficulty

resides in the symmetries of the measurement operator |F [·]|: in addition to

phase symmetry, the mapping x 7→ |F [x]| is invariant under shifts and conjugate

reversal of the signal x. We will discuss more challenges and open problems

around Fourier measurements in later sections.

In recent years, the applied mathematics community has investigated variants

of the above problem in which the Fourier transform F is replaced by a more gen-

eral linear operator A(·) [CSV13,CESV13,CLS15a]. A “generic” map x 7→ |A[x]|
has simpler symmetries – typically only a phase symmetry, |A[xejφ]| = |A[x]|.
This makes generic phase recovery problems easier to study and easier to solve.

While the Fourier model is more widely applicable to physical imaging, the
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Figure 7.7 Generalized Phase Retrieval. We plot two slices of the landscape of the
generalized phase retrieval problem with Gaussian measurements. Left: slice
containing symmetric copies of the ground truth xoe

iφ. Middle slice containing
minimizers xo, −xo and one orthogonal direction. Notice that at both the maximizer
and saddle points, there is negative curvature in the direction that breaks symmetry
between xo and −xo. Right: critical points arranged according to objective E[ϕ],
labeled with their indices (number of negative eigenvalues). Connections between
critical points are “dispersive”: downstream negative curvature directions are the
image of upstream negative curvature directions under gradient flow.

generic phase retrieval model does capture aspects of certain less conventional

imaging setups, including ptychography [YDZ+15, JEH16, Pfe18] (i.e., A(·) is

the Short Time Fourier Transform), coded illuminations [TW15,KBRW19], and

coded diffraction patterns [CLS15b]. A model m-dimensional version of the gen-

eralized phase retrieval problem can be formulated as follows:

find x ∈ Cn such that |Ax| = y, (7.2.7)

where A ∈ Cm×n is a matrix which represents the measurement process.

As in univariate phase retrieval, we can attempt to recover xo by minimizing

the misfit to the observed data, e.g., by solving

min
x∈Cn

ϕ(x) ≡ 1

4m

m∑

k=1

(
y2
k − |a∗kx|2

)2

, (7.2.8)

where a1, . . . ,am ∈ Cn are the rows of A. We saw above that the univariate

version of this function has a very simple landscape, which is dictated almost

entirely by phase symmetry, and that it has no spurious local minimizers. Should

we expect similar behavior in this higher dimensional setting?

Geometry of Generalized Phase Retrieval
One way of generating intuition is to assume that the sampling vectors ai are

chosen at random, and analyze ϕ(x) using tools from statistics. Figure 7.7 vi-

sualizes ϕ(x) when the ak are Gaussian vectors9 and m is large. As m → ∞,

ϕ(x) converges to its expectation E[ϕ], which can be calculated in closed form.

In Figure 7.7 (left), we can see the characteristic phase symmetry, identical to

9 Formally, ak are independent random vectors, with ak = ark + iaik with ark and aik
independent iid N (0, 1

2
).
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our univariate example above. However, this problem is higher dimensional. Fig-

ure 7.7 (center) plots the objective over a two-dimensional slice containing the

ground truth and an orthogonal direction. We observe:

• Symmetric copies of the ground truth are minimizers. All the local

minimizers are on the circle of points xoe
iφ, which corresponds to the ground

truth up to the (rotational) phase symmetry. Problems with higher dimen-

sional symmetries will have larger sets of minimizers – e.g., O(r) symmetry

leads to a manifold of minimizers that is isometric to O(r).

• Negative curvature in symmetry-breaking directions. In higher dimen-

sional examples, we encounter a variety of local maximizers, saddle points,

etc. Nevertheless, these critical points occur near balanced superpositions of

equivalent solutions, and exhibit negative curvature in directions ±xo, which

breaks symmetry.

• Cascade of saddle points. As shown schematically in Figure 7.7, the critical

points can be graded based on the number of negative eigenvalues of the Hes-

sian10: critical points with higher objective have more negative eigenvalues.

Moreover, the objective has a “dispersive” property: upstream negative cur-

vature discourages stagnation near the stable manifold of downstream critical

points.

Practical Variations and Extensions
The exposition in the previous section is still quite idealized: the measurements

are Gaussian, and we have infinitely many of them. Moreover, we have assumed

a particular objective ϕ(x), which is not widely used in practice. Fortunately, the

qualitative conclusions of the previous subsection carry over to more structured

and challenging settings for generalized phase retrieval.11 We briefly describe

these extensions, while noting technical caveats and open problems.

Practical Sample Complexity.
Phase retrieval is a sensing problem; measurements cost resources. It is important

to minimize the number of measurements m required to accurately reconstruct

x. Under the Gaussian model, the particular loss function ϕ(·) in (7.2.8) is a sum

of independent heavy-tailed random variables. Relatively straightforward consid-

erations show that when m & n2, gradients and Hessians concentrate uniformly

about their expectations, and the objective has no spurious local minimizers.

This number of samples is clearly suboptimal – n2 measurements to recover

about n complex numbers. The challenge is that the objective function (7.2.8)

contains fourth moments of Gaussian variables, and is therefore somewhat heavy-

tailed. Using arguments that are tailored to this situation, the required number

of samples can be improved to m & n log3 n [SQW18]. Moreover, modifying the

10 In differential geometry, or more specifically in the Morse theory [Mil63,Bot82], the
number of negative eigenvalues is also known as the index of the critical point.

11 But not to the Fourier model, which has different symmetries. We discuss challenges and
open problems around Fourier measurements in Section 7.3 and Section 7.4.
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objective (7.2.8) to remove large terms (a la robust statistics) can improve this

to essentially optimal (m & n) [CC17].12

Different Objective Functions.
The “squares of the squares” formulation in (7.2.8) is smooth and hence sim-

ple to analyze, but is typically not preferred in practice, especially when ob-

servations are noisy. Alternatives include ϕ(x) =
∑
i

∣∣y2
i − |a∗ix|2

∣∣ [WGE17],

ϕ(x) =
∑
i |yi − |a∗ix||

2
[DDP17], and maximum likelihood formulations that

model (Poisson) noise in the observations yi [CC17]. Although these formulations

differ in details, the major features of the objective landscape are independent

of the choice of ϕ. For Gaussian ai, the expectation E[ϕ] has no spurious mini-

mizers; moreover, all objectives have a minimizer at zero and a family of saddle

points orthogonal to xo. On the other hand, proving (or disproving) that these

objectives have benign global geometry for small m is an open problem. Exist-

ing small sample analyses [CC17, WGE17, DDP17] control the behavior of the

objective in a neighborhood of xoe
iφ, and initialize in this neighborhood using

statistical properties of the measurement model.

Structured Measurements.
Geometric intuitions for Gaussian A carry over to several models that are more

closely connected with imaging practice. Examples include convolutional models,

in which we observe the modulus of the convolution y = |a~x| of the unknown

signal x with a known sequence a [QZEW17] and coded diffraction patterns,

in which we make multiple observations yl = |F [dl � x]|, where � denotes an

element-wise product [CLS15a]. If the filter a or the masks dl are chosen at ran-

dom from appropriate distributions, these structured measurements yield the

same asymptotic objective function E[ϕ]. In particular, in the large sample limit

(a being long in the convolutional model, or many diffraction patterns in the

coded diffraction model), these measurements still lead to optimization prob-

lems with no spurious local minimizers. Similar to the situation with nonsmooth

objective functions, the best known theoretical sample complexities are obtained

by initializing near the ground truth, using statistical properties of A. Globally

analyzing structured measurements in the small sample regime is a challenging

open problem.

The above discussion only scratches the surface of the growing literature on

generalized phase retrieval, we refer readers to [SEC+15,JEH15,FS20] for a more

comprehensive survey on recent developments. The main purpose of this chapter

is to reveal that the unifying thread through all of these models, objectives and

problems is the simple model geometry in Figure 7.7. In the next section, we

12 Other approaches to producing analyses with small sample complexity include restricting

the analysis to a small neighborhood of the ground truth, and initializing in this
neighborhood using spectral methods that leverage the statistics of the measurement

model [CLS15b,WdM15], or forgoing uniform geometric analysis and directly reasoning
about trajectories of randomly initialized gradient descent [MWCC18].
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will see a similar phenomenon with low-rank matrices: a model geometry from

matrix factorization recurs across a sequence of increasingly challenging matrix

recovery problems.

7.2.3 Low Rank Matrix Recovery

As we have discussed and studied in great detail in Chapter 4, the problem of

recovering a low-rank matrix from incomplete and unreliable observations finds

broad applications in robust statistics, recommender systems, data compression,

computer vision, and so on [DR16]. In matrix recovery problems, the goal is to

estimate a matrixXo ∈ Rn1×n2 from incomplete or noisy observations. Typically,

this problem is ill-posed without some assumptions on the matrix Xo. In many

applications, Xo can be assumed to be low rank, or approximately so:

r = rank(Xo)� min {n1, n2} . (7.2.9)

Any rank-r matrix can be expressed as a product of a tall n1 × r matrix and a

wide r × n2 matrix:

Xo = UV ∗, U ∈ Rn1×r,V ∈ Rn2×r. (7.2.10)

A very popular strategy for recoveringXo is to start with some objective function

ψ(X) that enforces consistency with observed data, and then parameterize X

in terms of the factors U , V [BM03], yielding the optimization problem

min
U ,V

ϕ(U ,V ) ≡ ψ(UV ∗). (7.2.11)

Symmetries of Low Rank Models
Formulations like (7.2.11) are almost always nonconvex, due to symmetries of

the factorization (7.2.10). Indeed, for any invertible r × r matrix Γ,

UV ∗ = UΓΓ−1V ∗ = (UΓ)
(
V Γ−∗

)∗
. (7.2.12)

Because of this ambiguity, the problem (7.2.11) always possess a general linear

(invertible matrix) symmetry:

(U ,V ) ≡ (UΓ,V Γ−∗), ∀Γ ∈ GL(r). (7.2.13)

Because a general linear matrix Γ can have a determinant arbitrarily close to

zero, and hence be arbitrarily ill-conditioned, the equivalence class of solutions

(U ,V ) has somewhat complicated geometry, as a subset of Rn1×r × Rn2×r.13

Fortunately, it is not difficult to reduce this general linear symmetry to a simpler

and better conditioned orthogonal symmetry O(r), either by using information

about the target Xo, or by adding additional penalty terms to (7.2.11).

13 For example, it is neither closed nor bounded.
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Rotational Symmetries for Symmetric Xo.
If the target solution Xo is symmetric and positive semidefinite, then it admits

factorization of the form Xo = UoU
∗
o, and so we can take U = V . This gives a

slightly simpler problem

min
U

ϕ(U) ≡ ψ(UU∗), (7.2.14)

with a smaller symmetry group. For any Γ ∈ O(r), UU∗ = UΓΓ∗U∗ =

(UΓ) (UΓ)
∗
, and so the problem (7.2.14) exhibits an orthogonal symmetry

ϕ(U) ≡ ϕ(UΓ), for all Γ ∈ O(r).

Rotational Symmetries for General Xo via Penalization.
For general (non-symmetric) matrices X, it is possible to additional penalties to

(7.2.11) in such a way that the general linear symmetry reduces to an orthogonal

symmetry. At a high level, the idea is to add a penalty ρ(U ,V ) that enforces

U∗U ≈ V ∗V ; this prevents U and V from having vastly different scales.14 The

penalty ρ can be chosen such to be O(r)-symmetric, such that the combined

problem

min
U ,V

ϕ(U ,V ) ≡ φ(U ,V ) + ρ(U ,V ), (7.2.15)

possesses an O(r) symmetry: ϕ(U ,V ) ≡ ϕ(UΓ,V Γ), for all Γ ∈ O(r).

Model Problems and the Matrix Recovery Zoo.
There are many variants of matrix recovery, which are motivated by differ-

ent applications and impose different assumptions on the observations and the

noise [DR16,GJZ17,CLC19]. Although these problems have their own technical

challenges, they have certain qualitative features in common. At a slogan level,

“matrix recovery problems act like matrix factorization problems” [GJZ17]. In

the next section, we will begin by describing in detail the geometry of matrix fac-

torization, and then describe how these intuitions carry over to matrix recovery

from incomplete or unreliable observations.

Geometry of Matrix Factorization
Our first model problem starts with a complete, noise-free observation Y = Xo

of a symmetric, positive semidefinite matrix Xo ∈ Rn×n of rank r < n, and

attempts to factor it as Xo = UU∗ by minimizing the misfit to the observed

data [LLA+19]:

min
U∈Rn×r

ϕ(U)
.
= 1

4 ‖Y −UU
∗‖2F . (7.2.16)

This is a nonconvex optimization problem, with orthogonal symmetry ϕ(U) ≡
ϕ(UΓ). Figure 7.8 visualizes the the objective landscape for this problem. It

14 For example, ρ(U ,V ) = 1
2
‖U∗U − V ∗V ‖F accomplishes this.
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Figure 7.8 Geometry of Matrix Factorization. Geometry of a model problem in
which the target Xo is a symmetric matrix of rank two, with eigenvalues 3

4
and 1

2
.

Left: plot of the objective ϕ over a slice of the domain containing all optimal
solutions. Center: two families of saddle points, corresponding to rank-one
approximations. Right: objective value ϕ versus index for the four families of critical
points in this problem. Again the critical points are graded, in the sense that ϕ
decreases with decreasing index, and the paths between them are dispersive, in the
sense that downstream negative curvature directions are the image of upstream
negative curvature directions under gradient flow.

turns out that the critical points of ϕ are dictated by the eigenvalue decom-

position of the symmetric matrix Xo – every critical point U is generated by

selecting and appropriately scaling a subset of the eigenvectors of Xo, and then

applying a right rotation U 7→ UR. At a slogan level, critical points correspond

to “under-factorizations” of the ground truth. Inspecting the Hessian, we find

that:

• Symmetric copies of the ground truth are minimizers. Local minimiz-

ers are the critical points which select all of the top r eigenvectors, which

correspond to the ground truth up to rotation symmetry;

• Negative curvature in symmetry-breaking directions. At a saddle point,

there is strict negative curvature in any direction which increases the number

of top eigenvectors that participate.

• Cascade of saddle points. Saddle points are critical points selecting subsets

of the top r eigenvectors. These saddle points can be graded based on number

of selected eigenvectors. 15

Figure 7.8 (center) visualizes these effects.

This model geometry carries over to non-symmetric matrices. For example,

considering a penalized low-rank estimation problem

min
U∈Rn1×r,V ∈Rn2×r

ϕ(U ,V )
.
= 1

4 ‖Y −UV
∗‖2F + ρ(U ,V ), (7.2.17)

we obtain a problem with O(r) symmetry. Critical points are generated by ap-

propriately scaling subsets of the singular vectors of Y . We leave the details to

the reader as an exercise.

15 A natural descent algorithm only visit at most r saddle points whose trajectory depends

on the containment of the active eigenvectors at those saddle points.
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From Factorization to Matrix Recovery and Completion
We next describe how precise geometric analyses of matrix factorization extend

to the more realistic problem of recovering a low-rank matrix from incomplete

and unreliable observations, which we have studied in Chapter 4 via convex

optimization. As we shall see, with their natural nonconvex formulations, the

matrix recovery problems often retain important qualitative features of matrix

factorization. We will illustrate this phenomenon through several instances of a

model recovery problem, in which we observe m linear functions of an unknown

matrix Xo ∈ Rn1×n2 :

yi = 〈Ai,Xo〉 , 1 ≤ i ≤ m, (7.2.18)

and the goal is to recover Xo. This model is flexible enough to represent matrix

completion from missing entries [CR09], as well as more exotic sensing problems

[RFP10,DR16]. We can write this observation model more compactly by defining

a linear operator A : Rn1×n2 → Rm with A(X) := [〈Ai,X〉]1≤i≤m. In this

notation,

y = A(X). (7.2.19)

Ifm < n1n2, the number of observations is smaller than the number of unknowns,

and the recovery problem is ill-posed. Fortunately, matrices encountered in ap-

plications have low-complexity structures; for instance, they are usually low-rank

or approximately so. As above, a rank-r Xo admits a factorization Xo = UoV
∗
o,

so that that we can enforce this low-rank structure by directly recovering the

factors U ∈ Rn1×r and V ∈ Rn2×r, up to symmetry.16 A natural approach is to

minimize the misfit to the observed data:

min
U ,V

ϕ(U ,V )
.
=

1

4m

m∑

i=1

(yi − 〈Ai,UV
∗〉)2

+ ρ(U ,V )

=
1

4m
‖y −A(UV ∗)‖2F + ρ(U ,V ), (7.2.20)

where as above ρ is a regularizer that encourages the factors to be balanced.

Matrix Sensing.
If A = I is the identity operator, (7.2.20) is simply the factorization problem. In

this special situation, the measurement operator A exactly preserves the geome-

try of all n1×n2 matrices, in the sense that ‖A[X]‖F = ‖X‖F for all X. When

the number of measurements is small (m < n1n2), this is impossible. Fortunately,

(7.2.20) still “behaves like factorization”, and hence can be used to recover Xo,

as long as A approximately preserves the geometry of the low-rank matrices

16 For simplicity, we here and below assume the rank r is known. As it turns out this is not

so crucial: When r is not known, one may simply over-parameterize the matrix with larger
factors U ∈ Rn1×n and V ∈ Rn2×n where n can be much larger than the true r. Then one

can show that, gradient descent algorithms in general converge the correct low-rank
solution. We leave the details as exercises to the reader.
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– a much lower dimensional set [PKCS16, BNS16, ZLTW18, LZT18, LLA+19].17

When this approximation is sufficiently accurate, there is a bijection between the

critical points of the sensing problem (7.2.20) and those of factorization, which

preserves the index (number of negative eigenvalues). Under this condition, every

local minimum of the sensing problem is global [BNS16].

Matrix Completion.
The most practical and important instance of the general sensing model (7.2.20)

is the matrix completion problem [CR09], in which the goal is to recover a low-

rank matrix from a subset of m < n1n2 entries, supported on say Ω. This model

problem arises e.g., in collaborative filtering [RS05,Kor09], where the goal is to

predict users’ preferences for various products based a few observed preferences.

Variants of this problem also appear in sensor networks (determining positions of

sensors from a few distance measurements) [BLWY06,SY07], imaging (recovering

shape from illumination18) [WGS+10, ZYZY14], and the geosciences [YMO13,

KDSA+15], just to name a few.

We have studied the matrix completion problem in great detail in Chapter 4

via the convex approach. Here, for its natural nonconvex formulation:

min
1

4m
‖y − PΩ(UV ∗)‖2F + ρ(U ,V ), (7.2.21)

matrix completion also inherits the geometry of matrix factorization, with several

technical caveats, which are consequences of the fact that it is challenging to

recover Xo that are concentrated on a small number of entries: if we fail to

sample these important entries, we will fail to recoverXo. This basic issue affects

both for the well-posedness of the matrix completion problem and for our ability

to solve it globally using nonconvex optimization. Local optimization methods

could potentially become trapped in the region of the space in which UV ∗ is

nearly sparse, since the measurements do not effectively sense such matrices.

One simple fix is to add an additional regularizer on the rows ui and vi of the

factors, which encourages them to have small norm. This forces the energy of

UV ∗ to be spread across many entries.19 Ge et al. [GLM16] proved that the

resulting problem has benign global geometry whenever we observe a sufficiently

large random subset Ω and the target matrix Xo is not too concentrated on a

few entries, in a precise technical sense.20

17 This intuition can be formalized through the rank restricted isometry property (rank
RIP) [RFP10,DR16], which we have also studied in Chapter 4.

18 We will feature this particular application thoroughly in Chapter 14.
19 In detail, one can add a penalty

ρmc(U ,V ) = λ1
∑n1
i=1

(∥∥e∗iU∥∥ − α1

)4
+

+ λ2
∑n2
j=1

(∥∥∥e∗jV ∥∥∥ − α2

)4

+
to (7.2.20).

20 Formally, Xo is µ-incoherent, in the sense that for its compact SVD Xo = UoΣoV
∗
o, we

have ‖e∗iUo‖2 ≤
√
µr/n1 and ‖e∗jV o‖2 ≤

√
µr/n2.
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Robust Matrix Recovery.
Many data analysis problems confront the analyst with data sets that are not

only incomplete, but also corrupted. Robust matrix recovery is the problem

of estimating low-rank matrix Xo from such an unreliable observation (as we

have seen in Chapter 5). Different models of corruption may be applicable

in different application scenarios. For example, in imaging and vision, indi-

vidual features (entries of the matrix) may be corrupted, e.g., due to occlu-

sion [CLMW11,PGW+12]. This can be modeled as a sparse error: Y = Xo+So,

with both Xo = UoV
∗
o and So unknown. We may start from the natural for-

mulation:

min
U ,V ,S

1
2‖UV

∗ + S − Y ‖2F + gs(S) + ρr(U ,V ), (7.2.22)

where gs(S) is a regularizer that encourages S to be sparse. Partially minimizing

with respect to S, we obtain

min
U ,V

ψ(UV ∗ − Y ) + ρr(U ,V ), (7.2.23)

where ψ(·) is a new function that measures data fidelity. For example, if gs is a

weighted `1 penalty λ‖ · ‖1, then ψ entry-wise is of the form:

hλ(u)
.
= min

x

1
2 (u− x)2 + λ|x|.

One can show that so-defined hλ is given by the so-called Huber function [Hub92]:

hλ(u) =

{
λ|u| − λ2/2 |u| > λ,

u2/2 |u| ≤ λ.
(7.2.24)

We leave the verification as an exercise to the reader.

The problem (7.2.23) is again a matrix factorization problem, but with a

different loss ψ(UV ∗ − Y ). While there are a number of open issues around

the global (and even local! [LZMCSV20, CCD+19]) geometry of this problem,

known results again suggest that for certain choices of gs and ρr it indeed inherits

the geometry of factorization [CLC19]. Similar to matrix completion, technical

issues arise due to the possibility of encountering low-rank matrices UV ∗ that

are themselves sparse. If the regularizer ρr is chosen to discourage such solutions,

it is possible to prove that the resulting objective function has no spurious local

minimizers, and negative curvature at every non-minimizing critical point.

Equation (7.2.22) is just one model for matrix recovery from unreliable obser-

vations. Versions in which entire columns of Y are corrupted are also of interest

for robust statistical estimation (see e.g., [XCS10]), where they model outlying

data vectors. Certain variants of this problem also inherit the geometry of fac-

torization – local minimizers are global, saddle points are generated by partial

factorizations of the ground truth, and exhibit negative curvature in directions

that introduce additional ground truth factors [LM18]. It is also possible to for-

mulate this version of the robust matrix recovery problem as one of finding a

hyperplane that contains the majority of the data points. This dual viewpoint
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leads to nonconvex problems with a sign symmetry, which again have benign

geometry under certain conditions on the input data [TV18,ZWR+18].

7.2.4 Other Nonconvex Problems with Rotational Symmetry

Other Low-Rank Recovery Problems.
There are a number of nonlinear inverse problems that can be converted to rank-

one recovery problems, and hence inherit the good geometry of low-rank recov-

ery. Examples include subspace deconvolution [ARR14,LLB16,LS17], phase syn-

chronization [Bou16, LXB18, MMMO17, ZB18], community detection [BBV16],

amongst others.

Deep and Linear Neural Networks.
Most neural network learning problems are nonconvex. Neural network prob-

lems arising in practical deep learning typically exhibit complicated symmetries,

which include compositions of permutations. For example, for a fully connected

network, if we arbitrarily permute the order of the nodes in each intermedi-

ate layer, the network can represent the same function. Linear neural networks,

whose predictions

y ≈ f(x) = WLWL−1 · · ·W 0x

are a linear function of the input x, have attracted attention as a more approach-

able object of theoretical investigation. This model exhibits rotational symme-

tries at each layer. Using similar considerations to those described above, [Kaw16]

and related work prove that every local minimum is global. As with matrix fac-

torization, critical points of natural optimization models correspond to “under-

factorizations.” However, in contrast to matrix factorization, this problem does

possess “flat” saddle points at which the Hessian has no negative eigenvalues –

this is the result of the compound effect of symmetries at multiple layers. We will

study more general and practical deep networks in Chapter 16. In particular, we

will see how certain (symmetric) structural regularization, such as orthogonal-

ity for each layer W , would be crucial for ensuring good performance of deep

networks in practice.

7.3 Nonconvex Problems with Discrete Symmetries

In this section, we study nonconvex problems with discrete symmetry groups

G. Canonical examples include sparse dictionary learning (signed permutation

symmetry) [SQW17a, SQW17b, QZL+19, ZYL+20], sparse blind deconvolution

(signed shift symmetry) [ZLK+17, ZKW18, KZLW19, LQK+19, QLZ19, LB18],

tensor decomposition [GHJY15,GM17] and clustering (permutation symmetry).

Problems of this type are not easily amenable to convexification; understanding

nonconvex optimization landscapes becomes critical. Design choices, such as the
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choice of objective function and constraints, also seem to play a critical role: many

of the examples we review below are formulated as constrained optimization

problems over compact manifolds such as spheres or orthogonal groups.21 We

again begin by studying a very simple model problem: dictionary learning with

one-sparse data. We extract several key intuitions for problems with discrete

symmetries, and then examine how these intuitions carry over to less idealized

(and more useful!) problem settings.

7.3.1 Minimal Example: Dictionary Learning with One Sparsity

We introduce some basic intuitions through a model problem, which is a highly

idealized version of dictionary learning. In this model problem, we observe a

matrix Y which is the product of an orthogonal matrix Ao ∈ O(m) (called a

dictionary) and a matrix Xo ∈ Rm×n whose columns are one-sparse, i.e., each

column of Xo has one nonzero entry:

Y 0
data

= Ao
orthogonal dictionary

Xo.
1-sparse coefficients

(7.3.1)

This observation model exhibits a signed permutation symmetry (G =

SP(n)): for a given pair (Ao,Xo), and any Γ ∈ SP(n), the pair (AoΓ,Γ
∗Xo)

also reproduces Y . The goal is to recover Ao and Xo, up to this symmetry.

A natural approach for recovering Ao is to search for an orthogonal matrix A

such that A∗Y is as sparse as possible:

min h(A∗Y ) such that A ∈ O(m), (7.3.2)

where h(X) =
∑
ij h(Xij) is a function that promotes sparsity. There are many

possible choices for h [ZYL+20,LCD+19,SXZ+20] (and we will explore some in

the exercises); for concreteness, here we take h to be the Huber function

hλ(u) =

{
λ|u| − λ2/2 |u| > λ,

u2/2 |u| ≤ λ.
(7.3.3)

This can be viewed as a differentiable surrogate for the (sparsity promoting) `1

norm.

In (7.3.2), we solve for the entire dictionary A = [a1, . . . ,am] at once. An even

simpler model problem can be formulated by instead solving for the columns ai
one at a time:

min hλ (a∗Y ) such that a ∈ Sm−1. (7.3.4)

Here, the goal is to recover a signed column ±ai of the dictionary A.22 This

problem asks us to minimize an `1-like function over the sphere.23

21 Optimization algorithms that exploit structures of such manifolds will be studied in
Section 9.6 of Chapter 9.

22 The entire dictionary can be recovered by solving a sequence of problems of this type;

see [SWW12,SQW17a,SQW17b].
23 The problem (7.3.4) can also be interpreted geometrically as searching for a sparse vector

in the linear subspace row(Y ); see also [QSW14,QZL+20b].
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Figure 7.9 A Model Problem with Discrete Symmetry. The huber function
hλ(u) is a differentiable approximation to the `1 norm. Minimizing hλ encourages
sparsity. Left: hλ(u) as a function on the sphere S2. Local minimizers (red) are signed
standard basis vectors ±ei. These are the maximally sparse vectors on S2. Right:
graph of hλ; notice the strong negative curvature at points that are not sparse.

To further simplify matters, we assume that the true dictionary Ao is the

identity matrix. This does not change our geometric conclusions – changing to

another Ao simply rotates the objective function. Similarly, since in this model

problem each column of Xo has one nonzero entry, we lose little generality in

taking Xo = I. With these idealizations, the problem simply becomes one of

minimizing a sparsity surrogate over the sphere

min ϕ(a) ≡ hλ (a) such that a ∈ Sm−1. (7.3.5)

Here, recovering a signed column of the true dictionary Ao = I corresponds to

recovering one of the signed standard basis vectors ±e1, . . . ,±em in this model

problem.

Geometry of the Model Problem.
The 1-sparse dictionary learning model problem also exhibits a signed permuta-

tion symmetry: for any Γ ∈ SP(m), ϕ(Γa) = ϕ(a). The set of target solutions

±e1, . . . ,±em is also symmetric. Figure 7.9 plots the objective function, and

these target solutions, in a three dimensional example. Clearly, in this example,

these target solutions are the only local minimizers.

To study this phenomenon more formally, we need to understand the slope

(gradient) and curvature (Hessian) of ϕ as a function over the sphere Sm−1.

Recall that as we have encountered an optimization problem over the sphere
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in Section 4.2.1 of Chapter 4 when we characterize the computation of singular

value decomposition (SVD). The sphere is a smooth manifold; its tangent space

at a point a can be identified with a⊥:

TaSm−1 = { δ | a∗δ = 0 } .
The orthogonal projector onto the tangent space is simply given by P a⊥ =

I − aa∗. The slope of ϕ over the sphere (formally, the Riemannian gradient) is

simply the component of the standard gradient that is tangent to the sphere:

grad[ϕ](a) = P a⊥∇ϕ(a). (7.3.6)

The curvature of ϕ over the sphere is slightly more complicated. For a direction

δ ∈ TaSm−1, the second derivative of ϕ along the geodesic curve (great circle)24

γ(t) = expa(tδ) = a cos(t) + δ sin(t)

is given by δ∗Hess[ϕ](a)δ, where Hess[ϕ] is the Riemannian Hessian25

Hess[ϕ](a) = P a⊥
(

∇2ϕ(a)
curvature of ϕ

− 〈∇ϕ(a),a〉 I
curvature of the sphere

)
P a⊥ .

(7.3.7)

This expression contains two terms. The first is the standard (Euclidean) Hessian

∇2ϕ, which accounts for the curvature of the objective function ϕ. The second

term accounts for the curvature of the sphere itself. Analogous to the case in

Euclidean space, critical points are characterized by grad[ϕ](a) = 0; curvature

can be studied through Hess[ϕ](a).26

To study the critical points, we begin by calculating the Euclidean gradient of

ϕ given in (7.3.5):

∇ϕ(a) = λ sign(a)� 1|a|>λ + a� 1|a|≤λ, (7.3.8)

where � denotes element-wise multiplication. Using this expression, we can show

that the Riemannian gradient vanishes (grad[ϕ](a) = 0) if and only if ∇ϕ(a) ∝
a (here, ∝ denotes proportionality, i.e., ∃s such that ∇ϕ(a) = sa). This occurs

whenever

a ∝ sign(a). (7.3.9)

We can therefore index critical points by the support I and sign pattern σ of a,

writing aI,σ. To understand which critical points are minimizers or saddles, we

can study the Hessian Hess[ϕ](a). The Euclidean Hessian is ∇2ϕ(a) = 1|a|≤λ;

its Riemannian counterpart is

Hess[ϕ](aI,σ) = P a⊥I,σ

(
P |aI,σ|≤λ − λ|I|I

)
P a⊥I,σ . (7.3.10)

24 Here exp(·) represents the exponential map from a tangent vector, here δ, to a geodesic
curve on a manifold, here the great circle on the sphere.

25 This expression can be derived in a simple way by letting ‖δ‖ = 1, and calculating
d2

dt2

∣∣∣
t=0

ϕ
(
a cos t+ δ sin t

)
. We leave this as an exercise to the reader.

26 For a more general reference to extending the notion of gradient and Hessian to

optimization on manifolds, we refer readers to [AMS09].
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At critical points aI,σ the Hessian exhibits (|I| − 1) negative eigenvalues, and

n− |I| positive eigenvalues. Based on these calculations, we obtain the following

conclusions about the geometry of ϕ:

• Symmetric copies of the ground truth are minimizers. Local minimiz-

ers are the signed standard basis vectors a = ±ei with the positive Rieman-

nian Hessian; the objective function is strongly convex in the vicinity of local

minimizers.

• Negative curvature in symmetry breaking directions. Saddle points

are balanced superpositions of target solutions: aI,σ = 1√
|I|
∑
i∈I σiei for I ⊆

{1, . . . ,m} and signs σi ∈ {±1}. There is negative curvature in directions

δ ∈ span({ei | i ∈ I}) that break the balance between target solutions.

• Cascade of saddle points. Saddle points are graded: points aI,σ with larger

objective value have more directions of negative curvature. Moreover, similar

to the examples discussed in the last section, the objective function exhibits

a “dispersive” structure: downstream negative curvature directions are the

image of upstream negative curvature directions under gradient flow. This

means that negative curvature upstream helps to prevent local gradient descent

methods from stagnating near downstream saddle points.

The above phenomena are exactly opposite to the worst-case scenarios in which

gradient descent may take exponential time to escape saddle points. For instance,

the work [DJL+17] has constructed the so-called “octopus” function whose up-

stream unstable manifold is channeled into stable manifolds of downstream sad-

dle points. As we see here natural nonconvex programs associated with low-

dimensional structures are far from such worst case scenarios. In the following

subsections, we will see how these basic phenomena recur in more practical non-

convex problems with discrete symmetries, including general dictionary learning

(Section 7.3.2), blind deconvolution (Section 7.3.3), and others.

7.3.2 Dictionary Learning

The one-sparse dictionary learning problem is an extreme simplification of basic

modern data processing problem: seeking a concise representation of data. The

goal of dictionary learning is to produce a sparse model for an observed dataset

Y =
[
y1, . . . ,yp

]
∈ Rm×p. Namely, we seek matricesAo ∈ Rm×n andXo ∈ Rn×p

such that

Y ≈ Ao
dictionary

Xo
sparse coefficients

(7.3.11)

with Xo as sparse as possible. Sparsity is desirable for data compression, and

to facilitate tasks such as sensing, denoising, super-resolution, etc. [WMM+10,

Ela10]

In the representation (7.3.11), the data points yj are approximated as su-

perpositions yj ≈ Aoxoj of a few columns of the matrix Ao = [a01, . . . ,a0n].
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This matrix is sometimes called a dictionary. Clearly, the size of the dictionary,

n, has an impact on the accuracy, sparsity, and utility of this data representa-

tion. The appropriate dictionary size depends on application: for learning from

a single image, a complete (n = m) dictionary may suffice, whereas for learning

from larger collections of images, an overcomplete (n > m) dictionary may be

more appropriate [MKD06, EA06, YWHM10]. Below, we discuss how our basic

intuitions from the orthogonal, one-sparse case, carry over to each of these more

realistic model problems.

Complete Dictionary Learning.
Let us first consider the complete case n = m, in which Ao ∈ Rn×n is a square

invertible matrix. There are two basic issues in moving from one-sparse dictionary

learning problem to more general complete dictionary learning problems. First,

the target dictionary Ao may not be orthogonal. Second, the columns of the

coefficient matrix Xo are generally not one-sparse. For theoretical purposes,

both of these issues can be addressed using probabilistic properties of Xo. First,

using the statistics of Y = AoXo it is possible to reduce the problem of learning

a general invertible Ao ∈ GL(n) to one of learning an orthogonal matrix Ā =

(AoA
∗
o)
−1/2

Ao. Concretely, if Xo is a sparse random matrix with independent

symmetric entries,

Ȳ = (Y Y ∗)−1/2
Y ∝ ĀXo

satisfies a sparse model with orthogonal dictionary Ā ∈ O(n).

Similar to our discussion above, one can recover the columns of A by solving

the optimization problem for a sparsity-promoting function h:

min ϕ(a) ≡ h
(
a∗Ȳ

)
such that a ∈ Sn−1. (7.3.12)

This is essentially to find a sparse vector a∗Ȳ in the row space of Xo. If we

repeat this process m times, we in principle can recover all the n sparse rows of

Xo. Although the columns ofXo are not one-sparse, when the number samples is

large, this objective function retains all of the qualitative properties observed in

the one-sparse problem, including local minimizers near symmetric solutions and

saddle points near balanced superpositions of symmetric solutions, with negative

curvature in symmetry breaking directions. The proofs of these properties rely

heavily on probabilistic reasoning: one argues that the “population” objective

function E[ϕ] has benign structure, and then argues that when the number p of

samples is large, gradients and Hessians of ϕ are uniformly close to those of E[ϕ],

and hence ϕ has the same benign properties [SQW17a,SQW17b].

In early chapters, we have studied `1 norm extensively as it is the (unique)

convex envelope of the sparse `0 norm. Nevertheless, once we consider nonconvex

surrogates, there are many more choices of sparse promoting functions. Some can

be extremely effective when the optimization domain is confined to a structured

space such as the sphere. For example, it is easy to show that the maximizers of
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`1

`2

`4

Figure 7.10 Illustration of the `1-ball, `2-ball, and `4-ball in R2.

`4 norm of a vector x ∈ Rn over the sphere Sn−1 are equivalent to minimizers of

`0 norm over the sphere:

argmax
x∈Sn−1

‖x‖4 = argmin
x∈Sn−1

‖x‖0 . (7.3.13)

Figure 7.10 illustrates the relationships of `1, `2 and `4 balls. Notice that for

points on the sphere (the `2 ball), points that minimize `1 norm coincide with

those maximize `4 norm.

Hence given Ȳ in order to find the orthogonal dictionary Ā, we may con-

sider solving the following (nonconvex) `4 norm maximization problem over the

orthogonal group O(n):

max ‖A∗Ȳ ‖44 subject to A∗ ∈ O(n). (7.3.14)

It has been shown that with sufficient samples, say p in the order of O(n2 log n),

the global maximizers of the above program are the correct dictionary [ZYL+20].

The overall landscape of is rather benign and leads to a very efficient power-

iteration like algorithm [ZYL+20,ZMZM20].27 We will leave the algorithmic de-

tails as an exercise for the readers and study it more in Chapter 9.

27 The algorithm has been shown to converge superlinearly locally and overwhelming
empirical evidences show it always converges to the globally optimal solution. However, a

rigorous proof of its global optimality remains an open problem [ZYL+20]. The authors of
the book is offering a thousand dollars for anyone who could provide such a proof.
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Overcomplete Dictionary Learning.
In practice, overcomplete dictionaries, in which the number of dictionary atoms

n is larger than the signal dimension m, are often favored compared to complete

dictionaries. Overcomplete dictionaries have greater expressive power, yielding

sparser coefficient matrices X. Our current theoretical understanding of the ob-

jective landscape associated with overcomplete dictionary learning is still de-

veloping. One suggestive result shows that when the dictionary is moderately

overcomplete (n ≤ 3m), under appropriate technical hypotheses, a formulation

based on maximizing the `4 norm exhibits benign global geometry [QZL+19]:

again, every local minimizer is global and saddle points exhibit strict negative

curvature.28 These results suggest that overcomplete dictionary learning prob-

lems can exhibit benign global geometry; there are a number of open questions

around

1 the degree of overcompleteness n/m that this structure can tolerate and

2 the extent to which similar properties hold in more conventional synthesis

dictionary learning formulations, in which one optimizes over both A and X

simultaneously.

7.3.3 Sparse Blind Deconvolution

Convolutional models arise in a wide range of problems in imaging and data

analysis. The most basic convolutional data model expresses an observation y as

the convolution of two signals ao and xo. Blind deconvolution aims to recover ao
and xo from the observation y = ao~xo, up to certain intrinsic symmetries that

we describe below. This problem is ill-posed in general – there are infinitely many

(ao,xo) that convolve to produce y. To make progress, some low dimensional

priors about ao and xo are essential. Different priors yield different nonconvex

optimization problems; in this section, we will focus on several variants of blind

deconvolution with sparsity priors on xo, and then briefly mention other popular

variants of blind deconvolution.

Short and Sparse (SaS) Blind Deconvolution
Analyzing signals comprised of repeated motifs is a common task in areas such

as neuroscience, materials science, astronomy, and natural and scientific imag-

ing [SPM02, PSG+16, CSL+20, LQK+19]. Such signals can be modeled as the

convolution of a short motif ao and a sparse coefficient signal xo, which encodes

where the motif occurs in time/space. Mathematically, the observation y ∈ Rm

28 When the dictionary is overcomplete, dictionary atoms ai are correlated and a∗Ȳ is no
longer sparse, even if a is chosen as one of the atoms ai. Rather, at a = ai, a

∗Ȳ is spiky,

with a few large entries amongst many small ones. `4 maximization is well-suited to
encouraging this kind of spikiness. The most widely used practical dictionary learning

algorithms are based on synthesis sparsity. Understanding the global geometry of this kind
of formulation remains an important open problem
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is the windowed29 convolution of the short ao, which is supported on k (k � m)

consecutive entries and the sparse xo:

y = Pm [ao ~ xo] . (7.3.15)

Here, ~ denotes linear convolution and Pm(·) retains the entries supported on

indices 0, . . . ,m− 1.

The inverse problem of recovering ao and xo from y is called short and sparse

blind deconvolution (SaS-BD) [ZLK+17,ZKW18,KZLW19]. The linear convolu-

tion ~ exhibits a signed shift symmetry:

ao ~ xo = αsτ [ao] ~ α−1s−τ [xo]. (7.3.16)

Here α is some nonzero scalar and sτ [v] denotes a shift of vector v by τ entries, i.e.

sτ [v](i) = v(i−τ). As with the other nonconvex problems we have studied up to

this point, we should expect this symmetry to play an critical role in shaping the

landscape of optimization – in particular, we would expect the global minimizers

to be symmetric copies of the ground truth.30

Symmetry Breaking?
However, there is a wrinkle: in order to obtain a finite dimensional optimiza-

tion problem, one typically constrains the length-k signal ao to be supported

on {0, . . . , k − 1}. This constraint appears to remove the shift symmetry: now

only a scaled version (αao, α
−1xo) of the truth exactly reproduces the observa-

tion. Perhaps surprisingly, even with this constraint, symmetry still shapes the

landscape of optimization. However, instead of dictating the global minimizers,

in constrained formulations, symmetry dictates the local minimizers. The reason

is simple: a shift of ao by τ samples is not supported on {0, . . . , k − 1}, and

hence is not feasible. However, its truncation to {0, . . . , k − 1} is feasible, and

still approximates y:

y ≈ Pk [sτ [ao]] ~ s−τ [xo]. (7.3.17)

Because this approximation is not perfect, truncated shifts are not global mini-

mizers. However, they are very close to local minimizers [ZLK+17,ZKW18]. These

points have suboptimal objective value and do not exactly reproduce (ao,xo).

Despite this, the optimization landscape is still sufficiently benign31 that it is

possible to exactly recover (ao,xo) with efficient methods – one can, e.g., first

find a local minimizer that is close to a truncated shift of ao, and then refine it

to exactly recover ao.

29 Rather than having complete access to the convolved signal (which could be infinitely
long), we observe m consecutive entries of it.

30 Notice that the scale and shift symmetries are intrinsic to the convolution operator in
(7.3.15). Although we focus on sparse deconvolution, these symmetries will persist in

deconvolution with any shift-invariant structural model for ao and xo. Moreover, as we
will see below, they persist even in the presence of artificial symmetry-breaking

mechanisms, in the sense that they still dictate the local minimizers.
31 In particular, there is negative curvature in symmetry breaking directions.
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This problem illustrates how hard it is to avoid symmetry in studying deconvo-

lution problems: even with an explicit symmetry breaking constraint, symmetry

still shapes the landscape of optimization! The main motivation for studying this

more complicated deconvolution model is its applicability (as we will see in Chap-

ter 12 for an application in scientific imaging). Giving formulations that better

respect the symmetry structure, and hence have no spurious local minimizers,

remains an important open problem.

Multi-Channel Sparse (MCS) Blind Deconvolution
The problem of multi-channel sparse blind deconvolution assumes access to mul-

tiple observations yi = ao ~ xi ∈ Rk generated from circular convolution (also

denoted by ~) of ao ∈ Rk and distinct sparse signals xi [LB18,QLZ19,QZL+19,

SC19]. Here, shift symmetry becomes a cyclic shift symmetry: there exist k

equivalent solutions corresponding to k different cyclic shifts. The resulting opti-

mization landscape exhibits similar characteristics to that of complete dictionary

learning, described in Section 7.3.1 and Figure 7.9. In particular, any local min-

imizer is a scaled cyclic shift of the ground truth [LB18,QLZ19,SC19].

Geometry of Sparse Blind Deconvolution
Despite the technical difference of the convolution operator in MCS and SaS

blind deconvolution problems, their optimization landscapes share the following

key phenomena:

• Symmetric copies of the ground truth are minimizers. In above two

variants of sparse blind deconvolution problems, the local minimizers are either

a cyclic shifted or shifted truncation of the ground truth under conditions.

Both can be viewed as a result of the inherent shift symmetry.

• Negative curvature in symmetry breaking directions. Near saddle points,

there is negative curvature in the direction of any particular (truncated) shifted

copy of the ground truth, and the objective value decreases by moving towards

this symmetry breaking direction.

• Cascade of saddle points. The saddle points are approximately balanced

superpositions of several shifts of the ground truth. The more shifts participate,

the larger the objective value and the more negative eigenvalues the Hessian

exhibits.

Other Blind Deconvolution Variants
Subspace blind deconvolution is another widely studied variant of blind deconvolu-

tion that leverages a low dimensional model for the pair (ao,xo). In this variant,

ao and xo are assumed to lie on known low-dimensional subspaces [ARR14].

This problem can be cast as a rank-one matrix recovery problem, which exhibits

a similar geometry to the problems studied in Section 7.2.

Convolutional dictionary learning extends the basic convolution model by allow-

ing for multiple basic motifs a1, . . . ,aN [GCW18]. More precisely, we observe
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one or more signals of the form y =
∑N
i=1 ai ~ xi, and the goal is to recover

all the ai and xi. In addition to the symmetries inherited from the convolution

operator, this problem processes an additional permutation symmetry: permut-

ing the index i does not change the approximation to y. Despite this additional

complexity, empirically local minimizers remain symmetric copies of the ground

truth [ZLK+17,LQK+19]; under certain technical hypotheses, one can prove that

natural first order algorithms always recover one such symmetric copy [QZL+19].

In fact, one may model natural images to be (sparsely) generated by such a

convolutional dictionary. In some applications, it may not be necessary to recover

the dictionary {ai} and sparse codes {xi} precisely. For example, we only want

to classify similar images into the same category. But the assumption of such

a model is crucial for obtaining an (approximately) correct solution, say via a

deep network. We will discuss the connection of this type of models to deep

(convolutional) networks in Chapter 16.

7.3.4 Other Nonconvex Problems with Discrete Symmetry

Symmetric Tensor Decomposition.
Tensors can be regarded as high dimensional generalization of matrices. Tensor

decomposition problems find many applications in statistics, data science, and

machine learning [KB09,AGH+14,SDLF+17,JGKA19]. Although we can usually

generalize algebraic notions from matrices to tensors, their counterpart in tensors

are often not as well-behaved or easy to compute [KB09]. In fact, many natural

tensor problems are NP-hard in the worst case [HL13].

Nonetheless, recent results suggest that certain appealing special cases of ten-

sor decomposition are tractable [AGH+14,GHJY15,JGKA19]. This is especially

true for orthogonal tensor decomposition, where the task is to decompose a p-th

order symmetric tensor into this orthogonal components. More specifically, an

orthogonal tensor T can be presented in the following form

T =

r∑

k=1

a⊗pk , r ≤ n, (7.3.18)

with {ak}rk=1 are a collection of orthogonal vectors, and a⊗p denotes the p-way

outer product of a vector a. The orthogonal tensor decomposition shares many

similarities with the other nonconvex problems with discrete symmetry discussed

above:

• the problem exhibits a signed permutation symmetry which is similar to dictio-

nary learning: given T we can only hope to recover the orthogonal components

{ak}rk=1 up to order permutation;

• when p is even order, as shown in Figure 7.5, a natural nonconvex formulation

min
x∈Sn−1

−T (x, . . . ,x) = −‖A∗x‖pp with A =
[
a1 · · · ar

]
(7.3.19)

manifests a similar optimization landscape, for which every local minimizer
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is close to one of the signed orthogonal components and other critical points

exhibit strict negative curvature.

These results have inspired further endeavors beyond orthogonal tensors [QZL+19,

SBRL19,GM17]. One particular case of interest is decomposing a symmetric ten-

sor T in (7.3.18) with r > n and nonorthogonal {ak}rk=1, which is often referred

as overcomplete tensor decomposition. In particular, when p = 4, r ∈ O(n1.5)

and {ak}rk=1 are i.i.d. Gaussian, [GM17] shows that (7.3.19) has no bad local

minimizer over a level set whose measure geometrically shrinks w.r.t. the prob-

lem dimension; for p = 4, r < 3n, and incoherent {ak}rk=1, [QZL+19] presented a

global analysis for overcomplete tensor decomposition, disclosing its connection

to overcomplete dictionary learning. Nonetheless, these results are still far from

providing a complete understanding of overcomplete tensor decomposition. One

interesting question remains largely open is when bad local minimizers exist for

large rank r � n in the nonorthogonal case.

Clustering.
Clustering is arguably the most fundamental problem in unsupervised learning.

This problem possesses a permutation symmetry: one can generate equivalent

clusters by permuting the indices for cluster centers. Popular nonconvex algo-

rithms include the Lloyd algorithm and variants of Expectation Maximization.

Despite the broad applications and empirical success of these methods, few the-

oretical guarantees have been obtained until recently. The problem of demixing

two balanced, identical data clusters manifests global convergence to (a symmet-

ric copy of) the ground truth [BWY17, XHM16, DTZ16, QZC19, KQC+19]. We

see similar geometric properties hold here: symmetric copies of the ground truth

are minimizers and saddle points exhibit directions of strict negative curvature.

Moreover, the saddle points are also located at balanced superpositions of lo-

cal minimizers. Sometimes, these saddle points may contain redundant cluster

estimates. In this case, the redundant cluster estimates can be interpreted as a

under-parametrized solution (with a smaller k specified).

However, in general clustering problems with more than two clusters, local

minimizers provably exist [DS07, JZB+16]. When the clusters are sufficiently

separated, these local minimizers possess characteristic structures [QZC20]: they

correspond imbalanced segmentations of the data, in which a subset of the true

clusters are optimally under-segmented and another subset is optimally over-

segmented.

Deep Neural Networks.
Deep neural networks have more complicated symmetry groups than the prob-

lems described above. For example, natural objective functions associated with

fitting a fully connected neural network are invariant under simultaneous permu-

tations of the features at each layer. We currently lack tools for reasoning about

the global geometry of such problems. However, progress has been made on cer-

tain special cases: for example, certain problems associated with fitting shallow
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networks share similar geometry to tensor decomposition [JSA15,MM18]. With

varying technical assumptions, all local solutions have been shown to be global

in a 1-layer neural network [HV17,FJZT17,GLM17,GMOV18,SJL18]. However,

general deep nonlinear neural networks can exhibit flat saddles and spurious

local minimizers [SS17, VBGS17]. We refer interested readers to [Sun19b] for

more comprehensive development on optimization theory and algorithm of deep

learning.

In Chapter 16, we will study deep learning from the perspective of learning

discriminative low-dimensional representations. We will see how data clustering

and representation learning can be naturally unified in a nonconvex objective

function that inherits the rich symmetric structures of both deep networks and

data clustering.

Fourier Phase Retrieval.
The problem of Fourier phase retrieval is crucial to scientific imaging. In this

problem, the goal is to recover xo from observation y = |F(xo)|. Apart from the

rotational (phase) symmetry, the problem of Fourier phase retrieval manifests

two additional symmetries 32: (cyclic)-shift symmetry |F(x)| = |F(sτ [x])| and

conjugate inversion symmetry |F(x)| = |F(x̌)|, where x̌(n) = x̄(−n) [BBE17].

This complicated symmetry structure is reflected in a complicated optimization

landscape, which is challenging to study analytically. Many basic problems in

the algorithmic theory of Fourier phase retrieval remain open.

7.4 Notes and Open Problems

In this chapter, we have reviewed recent advances in provable nonconvex methods

for signal processing and machine learning, through the lens of symmetry. It is an

exciting time to work on both the theory and practice of nonconvex optimization.

For complementary perspectives on the area, we refer interested readers to other

recent review papers [JK+17, Sun19a, CLC19, QZL+20b]. In the following, we

close by discussing several methodological points and general directions for future

work.

Convexification.
In the past decades, convex relaxation has been demonstrated a powerful tool

for solving nonconvex problems such as sparse recovery (Chapters 2–3), low-

rank matrix completion (Chapters 4–5), and even more general atomic structures

(Chapter 6). For these problems, convex relaxation achieves near-optimal sam-

ple complexity. Which nonconvex problems are amenable to convex relaxation?

There are general results that suggest that unimodal functions (i.e., functions

32 When x is one dimensional, the problem becomes even more pessimistic — there exist

multiple one dimensional signals with the same Fourier magnitude, but not related by an

obvious symmetry.
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with one local minimizer) on convex sets can be convexified, by endowing the

space with an appropriate geometry [RC93].33 The symmetric problems encoun-

tered in this survey are not unimodal. The degree to which they are amenable

to convex relaxation varies substantially:

• Problems with rotational symmetry. Many problems with rotational symmetry

can be convexified by lifting to a higher dimensional space [CR09, CLMW11,

CSV13], e.g., by replacing the factor U with a matrix valued variable X =

UU∗. This collapses the O(r) symmetry; the resulting problems can often be

converted to semidefinite programs and solved globally. Typically, nonconvex

formulations are still preferred in practice, due to their scalability to large

datasets. Section 7.2 and the references therein describe alternative geometric

principles that help to explain the success of these methods.

• Problems with discrete symmetry. Most of the discrete symmetric problems

described in Section 7.3 do not admit simple convex relaxations. For exam-

ple, complete dictionary learning can be reduced to a sequence of linear pro-

grams [SWW12], but only in the highly sparse case, in which the target sparse

representation has O(
√
n) nonzero entries per length-n data vector. This lim-

itations are attributable in part to the more complicated discrete symmetry

structure. Natural ideas, such as taking a quotient by the symmetry group, en-

counter obstacles at both the conceptual and implementation levels. One gen-

eral methodology which does meet with success in this setting is sum-of-squares

relaxation, which for variants of dictionary learning and tensor decomposition

leads to quasipolynomial or even polynomial time algorithms [BKS15].

Efficient First-Order Algorithms.
In this chapter, we have described families of symmetric nonconvex optimization

problems with benign global geometry: local minimizers are global and saddle

points exhibit strict negative curvature. Although we have not emphasized al-

gorithmic aspects of these problems, this geometric structure does have strong

implications for computation – a variety of methods the key is leveraging neg-

ative curvature to efficiently obtain minimizers. We will provide a systematic

introduction to nonconvex optimization algorithms and their convergence and

complexity properties in Chapter 9.

One class of methods explicitly models negative curvature, e.g., using a sec-

ond order approximation to the objective function. Methods in this class in-

clude trust region methods [CGT00], cubic regularization [NP06], and curvi-

linear search [Gol80]. These methods can be challenging to scale to very large

problems, since they typically require computation and storage of the Hessian.

It is also possible to leverage negative curvature using more scalable first-order

33 These are existence results; their direct implications for efficient computation are limited,
since they apply to NP-hard problems. It is also worth noting that many of our discrete
symmetric problems in Section 7.3 are formulated over compact manifolds such as Sn−1;
the only continuous geodesically convex function on a compact Riemannian manifold is a

constant [BO69,Yau74].
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methods such as gradient descent. In the vicinity of a saddle point, the gradi-

ent method essentially performs a power iteration which moves in directions of

negative curvature. Although this scheme can stagnate at or near saddle points,

it is possible to guarantee efficient escape by perturbing the iterates with an

appropriate amount of random noise [GHJY15,JGN+17,JNJ18,CB19,SFF19].

The methods described above are efficient across the broad class of strict saddle

functions [GHJY15, SQW15], i.e., functions whose saddle points all have direc-

tions of strict negative curvature. This is a worst case performance guarantee.

Perhaps surprisingly, the most widely used first order method, gradient descent,

is not efficient for worst case strict saddle functions: although randomly initialized

gradient descent does obtain a minimizer with probability one [LSJR16,LPP+19],

for certain functions it can take time exponential in dimension [DJL+17]. These

challenging functions have a large numbers of saddle points, which are conspic-

uously arranged such that upstream negative curvature directions align with

positive curvature directions for downstream saddle points.

This worst case behavior is in some sense the opposite of what is observed in

the type of highly symmetric functions studied here: functions encountered in

generalized phase retrieval [CCFM18], dictionary learning [GBW19], deconvolu-

tion [QLZ19,SC19], etc., exhibit a global negative curvature structure, in which

upstream negative curvature directions align with negative curvature directions of

downstream saddle points. In this situation, randomly initialized gradient descent

is efficient. This points to another gap between naturally occurring nonconvex

optimization problems and their worst case counterparts. There is substantial

room for future work in this direction.

Disciplined Formulations and Analysis.
Our understanding of nonconvex optimization is still far from satisfactory –

analyses are delicate, case-by-case, and pertain to problems with elementary

symmetry (e.g., rotation or permutation) and simple constraints (e.g., the sphere

or simple homogeneous spaces).

• A Unified Theory. Analogous to the study of convex functions [BV04], there

is a pressing need for simpler analytic tools, to identify and generalize be-

nign properties for new nonconvex problems, despite some recent endeav-

ors [QZL+19, LCD+19] of identifying general conditions and operations pre-

serving benign geometric structures. Unlike the convex case in which convex

surrogates are typically unique, one can have multiple nonconvex surrogates

for the same problem. For instance, to promote low-rankness of a matrix, one

could choose to use the log det function [FHB03], random dropout in training

deep neural networks [SHK+14], or over-parameterization with matrix prod-

ucts (see the exercises). Nevertheless, as we will see, those surrogates are fun-

damentally related to the convex surrogates (such as the nuclear norm) and

yet offer other benefits such as simpler implementation or broader range of

working conditions.
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• Complicated Symmetries and Constraints. Practical nonconvex problems often

involve multiple symmetries (e.g., Fourier phase retrieval and deep neural net-

works) and/or complicated manifolds (e.g., Stefiel manifolds [HLWY19]). We

need better technical tools to understand the impact of compound symmetries

(especially compound discrete symmetries) on the optimization landscape, de-

spite some steps in this directions [LCD+19, HLWY19, ZYL+20]. More inter-

esting and challenging phenomena arise when the symmetry of the problem

and manifold/group structure of the domain are intertwined. For instance, in

dictionary learning via `4 maximization, we have both the signed permutation

symmetry SP(n) and the orthogonal group O(n). In Section 9.6 of Chapter 9,

we will see power-iteration or fixed-point type algorithms are very natural and

effective in exploiting such manifold structures. However, unified analyses and

understandings for broader problem classes are still lacking.

• Nonsmoothness. In many scenarios we encounter nonconvex problems with

nonsmooth functions [DDMP18,DD18,LZMCSV20,LCD+19,BJS19,ZWR+18,

CDDD19, CCD+19], for better promoting solution sparsity or robustness. As

we will see in Chapter 8, in the convex setting, nonsmoothness usually can

be dealt very effectively. However, in the nonconvex setting, most of our

current analysis is local [CDDD19, LCD+19], and (subgradient) optimiza-

tion [LCD+19,BJS19,ZWR+18] could be slow to converge. Attempts to obtain

global analyses and fast optimization methods might benefit from more sophis-

ticated tools from variational analysis [RW09] and development of efficient

second-order or higher-order methods [DR19].

7.5 Exercises

7.1. In this section, we study how to derive the Huber function given in (7.2.24).

First, find a closed-form solution to the problem:

x?(u) = arg min
x

1
2 (u− x)2 + λ|x|.

Then, show that the function defined below:

hλ(u)
.
= min

x

1
2 (u− x)2 + λ|x| = 1

2 (u− x?)2 + λ|x?|

has the same form as the Huber function (7.2.24).

7.2 (Complete Dictionary Learning via `4 Norm Maximization). In this exercise,

we derive and practice an algorithm to solve `4 norm maximization problem

(7.3.14) for complete dictionary learning.

1 Derive the gradient ϕ(A∗) = ‖A∗Ȳ ‖44 with respective to A∗.

2 Derive a projected gradient ascent algorithm for maximizing ϕ(A∗):

A∗k+1 = PO(n)[A
∗
k + γ · ∇ϕ(A∗k)].



7.5 Exercises 303

3 Conduct simulation of the algorithm and play with different step size γ of the

gradient ascent. What happens if you make the step size to be infinite? That

is,

A∗k+1 = PO(n)[∇ϕ(A∗k)].

7.3 (Sparsity Regularization via Over-parameterization and Gradient Descent).

Given a vector y ∈ Rm and a matrix A ∈ Rm×n, consider the optimization

problem

min
{u,v}⊆Rm

f(u,v)
.
=

1

4
‖y −A(u� u− v � v)‖22, (7.5.1)

where � denotes the Hadamard (i.e., entry-wise) product between two vectors.

Let (ut(γ),vt(γ)) be given by the gradient flow dynamics (i.e., gradient descent

with infinitesimally small step size) of (7.5.1):

{
u̇t(γ) = −∇f (ut(γ),vt(γ)) = − (A∗rt(γ))� ut(γ),

v̇t(γ) = −∇f (ut(γ),vt(γ)) = (A∗rt(γ))� vt(γ),
(7.5.2)

with the initial condition uo(γ) = vo(γ) = γ · 1 (i.e., a vector with all entries

being γ), and rt(γ)
.
= A (ut(γ)� ut(γ)− vt(γ)� vt(γ))− y. Let

xt(γ) = ut(γ)� ut(γ)− vt(γ)� vt(γ), (7.5.3)

and assume that the following conditions hold:

• the limit x∞(γ) := lim
t→∞

xt(γ) exists and satisfies Ax∞(γ) = y for all γ;

• the limit x∞ := lim
γ→0

x∞(γ) exists.

Then, show that x∞ is a global solution to the following optimization problem

min
x
‖x‖1 subject to Ax = y. (7.5.4)

(Hint: Note that from Chapter 3, the conclusion holds if and only if there exists a

λ ∈ Rm, a dual certificate, such that the condition A>λ ∈ ∂‖x∞‖1 holds. Then,

show that λ = lim
γ→0

− lim
t→∞

∫ t
0
rτ (γ)dτ

log(1/γ) provides such a dual certificate.)

Conceptually, this phenomenon is the same as the one we have seen in Exercise

2.10 of Chapter 2: The gradient descent with proper initialization introduces

implicit bias on which solution (among all infinitely-many optimal solutions) it

eventually converges to.

7.4 (Low-rank Regularization via the log det(·) Function). When a matrix X ∈
Rn×n is symmetric and positive semi-definite, the nuclear norm ‖X‖∗ is the

same as its trace of the matrix. In this exercise, we try to study the connection

of the convex nuclear norm (or the trace norm) with another popular smooth but
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nonconvex surrogate for minimizing rank (X) is to minimize the quantity34

min
X∈C

f(X)
.
= log det(X + δI), (7.5.5)

where δ > 0 is a small regularization constant and X belongs to some constraint

set C. To see how this objective is related to the trace norm:

1 First, show that ∇Xf(X) = (X + δI)−1.

2 Second, the first-order expansion of f(X) around a point Xk is given by:

f(X) ≈ f(Xk) + trace
(
(Xk + δI)−1(X −Xk)

)
+ o(‖X −Xk‖).

Then to minimize f(X), we can use a greedy descent algorithm with the iteration

Xk+1 = arg min
X∈C

trace
(
(Xk + δI)−1X

)
. (7.5.6)

Notice that when Xk is initialized around Xo = I, then the above iteration

becomes minimizing the trace norm Xk+1 = arg minX∈C trace (X) .

7.5 (Low-rank Regularization through Matrix Product). Given a matrix Y ∈
Rm×n, we may consider to compute a low-rank approximation to it through the

proximal operator of the nuclear norm:

min
X
‖Y −X‖22 + λ‖X‖∗.

Use Proposition 4.6 to show that if we parametrize X as matrix product: X =

UV ∗
.
=
∑
k ukv

∗
k, then the above convex program is equivalent to the following

non-convex program:

min
U ,V
‖Y −UV ∗‖22 + λ

∑

k

‖uk‖2‖vk‖2. (7.5.7)

7.6 (Stochastic Matrix Factorization). Consider approximate a given matrix Y ∈
Rm×n by a random superposition of a set of rank-1 factors:

Y ≈ 1

θ

d∑

k=1

rkukv
∗
k,

where rk ∼ Ber(θ) are i.i.d Bernoulli variables, and uk are columns from a

matrix U ∈ Rm×d, similarly for vk. The goal is to minimize the expected error:

E
∥∥∥Y − 1

θ
Udiag(r)V ∗

∥∥∥
2

F
,

with respect to r, the vector of all the d Bernoulli variables. Show that

E
∥∥∥Y − 1

θ
Udiag(r)V ∗

∥∥∥
2

F
=
∥∥Y −UV ∗

∥∥2

F
+

1− θ
θ

d∑

k=1

‖uk‖22‖vk‖22. (7.5.8)

34 For example, the log det(·) function arises in the context of lossy data
compression [MDHW07] as a good measure of the binary coding length for encode data
that span a low-dimensional subspace. As we will see in Chapter 16, this nonconvex

measure plays a crucial role in a principled approach to derive and interpret modern deep

neural networks. In that context, the convex nuclear norm becomes inadequate.
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Notice that the second term is very similar to that in the previous exercise, ex-

cept for the square. The stochastic factorization can be used to model the so-

called “dropout” techniques used in training deep neural networks, introduced

by [SHK+14].

7.7. Consider the factorization of a matrix X = UV ∗
.
=
∑d
k=1 ukv

∗
k and the

associated quantity:

ρ(U ,V )
.
=

d∑

k=1

‖uk‖22‖vk‖22.

Show that if we may allow the factor to be of arbitrarily large size, that is, d can

be arbitrarily large, then we have

inf
d,X=UV ∗

ρ(U ,V ) = 0.

This property shows that the second term in the previous exercise prefers redun-

dant factorization if we allow d to be free.

7.8 (Dropout as Low-rank Regularization). Now in the stochastic matrix fac-

torization exercise above, consider the sampling probability θ of the Bernoulli

random variables is a function of the number d of columns in U and V : for a

given p, 0 < p < 1,

θ(d) =
p

d− (d− 1)p
. (7.5.9)

Then show that

inf
d,X=UV ∗

1− θ(d)

θ(d)

d∑

k=1

‖uk‖22‖vk‖22 =
1− p
p
‖X‖2∗. (7.5.10)

Conclude that with the above choice of sampling rate, the above dropout technique

is equivalent to:

min
d,U ,V

E
∥∥∥Y − 1

θ(d)
Udiag(r)V ∗

∥∥∥
2

F
= min

X
‖Y −X‖22 +

1− p
p
‖X‖2∗. (7.5.11)

7.9 (Nuclear Norm Squared as a Regularizer). The above exercise shows that

the dropout technique used in deep learning is essentially equivalent to regularize

parameters of two adjacent layers through a nuclear norm square penalty. Given

a matrix Y with singular value decomposition Y = UΣV ∗, show that the optimal

solution to the following program:

min
X
‖Y −X‖22 + λ‖X‖2∗

is of the form X? = USµ(Σ)V ∗ where Sµ is a shrinkage operator with cer-

tain threshold depending on both λ and Σ. This concludes that stochastic matrix

factorization (a.k.a. dropout in deep learning) is essentially imposing low-rank

regularization on the resulting matrix.
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7.10 (Low-rank Regularization through Over-parameterization and Implicit Bias).

In this exercise, we reconsider the affine rank minimization problem studied in

Chapter 4:

min
X

rank(X) subject to A[X] = y. (7.5.12)

Here y = A[Xo] ∈ Rm is the observation, and we consider the special case that

X ∈ Rn×n is a symmetric matrix and A is a linear map: Rn×n → Rm. Hence

each measurement is of the form yi = 〈Ai,X〉 for some matrix Ai ∈ Rn×n, see

also (4.3.2). For simplicity, we here further assume the measurement matrices

Ai are commutable, i.e., AiAj = AjAi for all i, j.

To recover the low-rank solution Xo, we over-parameterize X as X = UU∗

with U ∈ Rn×n and consider solving the following nonconvex program:

min
U

f(U)
.
= ‖A[UU∗]− y‖22. (7.5.13)

Obviously the above program does not have a unique solution as X is over-

parameterized by U . We are interested in how we can still recover the correct

solution Xo by taking a special optimization strategy. Let us construct U(t) as

the solution to the gradient flow of f(U):

U̇(t) = −∇f(U(t)) = −A∗[A[U(t)U∗(t)]− y]U(t), (7.5.14)

where A∗ is the adjoint of the linear map A. Let e(t)
.
= A[U(t)U∗(t)]−y ∈ Rm.

1 Show that, under the above flow of U(t), X(t) = U(t)U∗(t) satisfies the fol-

lowing differential equation:

Ẋ(t) = −A∗[e(t)]X(t)−X(t)A∗[e(t)]. (7.5.15)

2 Starting from X(0) = Xo, derive the solution to X(t) for the special case of

m = 1.

3 Assume the following limits exist 35

X∞(Xo) = lim
t→∞

X(t), and X̂ = lim
ε→0

X∞(εXo).

Show that X̂ is the optimal solution to the following (familiar) program:

min
X
‖X‖∗ subject to A[X] = y, (7.5.16)

where here A[X] = 〈A1,X〉 since m = 1.

4 Now generalize this to the case of m measurements, show that X̂ is the op-

timal solution to the above convex program as long as Ai, i = 1, . . . ,m are

commutable.

One may view this as an extension of the over-parameterization for sparsity in

Exercise 7.3 to the case for low-rank matrices.

35 We leave the conditions under which such limits exist for students as extra bonus

questions.
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8 Convex Optimization for Structured
Signal Recovery

“In our opinion, convex optimization is a natural next topic after advanced linear
algebra (topics like least-squares, singular values), and linear programming.”

– Stephen Boyd and Lieven Vandenberghe, Convex Optimization

In the previous theoretical Part I of the book, we showed that under fairly

broad conditions on the number of measurements needed, many important classes

of structured signals can be recovered via computationally tractable optimization

problems, such as `1 minimization for recovering sparse signals and nuclear norm

minimization for recovering low-rank matrices. As we will see in Part III of this

book, many of these structures are essential for modeling high-dimensional data

that arise in a wide variety of applications. Hence, from a practical perspective,

it is important that we develop efficient and scalable algorithms for these classes

of optimization problems. We take on this task in the coming two chapters.

In this chapter, we mainly focus on the convex approach for structured sig-

nal recovery (and leave nonconvex optimization to the next Chapter 9). There

are two compelling reasons to study the convex approach first. First, the previ-

ous chapters have established very precise conditions under which convex pro-

grams give correct solutions to the recovery problems. Second, as we will see

through this chapter, the class of convex programs we are dealing with have

unique properties that lend themselves to faster and more scalable solutions

than generic convex programs. Although we will primarily use `1 norm or nu-

clear norm minimization as working examples, the techniques that we introduce

are fairly general, extending to a much broader class of convex programs with

similar structure.

This chapter (or book) is not intended to give a comprehensive introduction to

convex analysis and optimization, for which there are already excellent references

such as [BV04,BNO03,N+18]. Instead, this chapter will focus mainly on showing

how one can exploit special structures of the problems so as to develop more

efficient and scalable algorithms than generic convex optimization methods. To

make the book self-contained, we briefly survey related concepts and properties

of convex functions as well as generic optimization methods in Appendices B-D.
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8.1 Challenges and Opportunities

In this chapter, we will describe a few basic ideas which go a long way towards

achieving this, by leveraging special properties of the particular convex optimiza-

tion problems that arise in structured signal recovery. Our discussion will center

around four model problems: basis pursuit (i.e., equality constrained `1 mini-

mization), its regularized version (basis pursuit denoising), principal component

pursuit, and its regularized version. We recap these four optimization problems

below:

Recall the problem of recovering a sparse vector xo ∈ Rn from observations

y = Axo ∈ Rm via convex program, also known as basis pursuit (BP):

minx ‖x‖1
subject to Ax = y.

(8.1.1)

A variant of the problem considers the noisy case, in which the observations y

are contaminated by moderate Gaussian noise y = Axo + z, also known as the

Lasso:

min
x

1

2
‖y −Ax‖22 + λ‖x‖1, (8.1.2)

where λ is a scalar weight parameter.

In robust PCA, the goal is to recover a low-rank matrix Lo from sparsely

corrupted observations Y = Lo + So ∈ Rm×n. A natural approach suggested

in earlier chapters is to solve the so called principal component pursuit (PCP)

program:

minL,S ‖L‖∗ + λ ‖S‖1
subject to L+ S = Y ,

(8.1.3)

where λ > 0 is a scalar weight. Again, if the data are noisy we could also consider

to solve a stable version of the PCP program:

min
L,S

‖L‖∗ + λ ‖S‖1 +
µ

2
‖Y −L− S‖2F , (8.1.4)

to produce stable estimates L̂ and Ŝ, where λ, µ > 0 are two scalar weights.

Challenge of Scale.
When the dimension of the problem is not so high, one could simply apply

classical second-order convex optimization algorithms, such as the interior-point

methods (see e.g. [BV04]), to solve the above convex programs. These powerful

methods, under favorable conditions such as for smooth strongly convex func-

tions, need only very few iterations to converge to a highly accurate solution:

O(log(1/ε)), where ε is the target accuracy. However, for problems in n vari-

ables, each iteration requires the solution to a system of linear equations of size

n×n, incurring a typical per-iteration cost of O(n3). For applications in modern

signal processing, the number of variables n can be quite high – in the case of

image processing, it is typically of the same magnitude as the number of pixels,
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easily in the range of millions. For such problems, the cost of a single iteration is

prohibitively large. As a result, we will need to consider simple alternatives with

cheaper iterations.

Example 8.1 (Solving large-scale BP problems via interior-point methods). Just

to motivate yourself from a practical perspective, construct a simulation to plot

the average run time of BP on CVX from 100 to 1,000 dimensions. See how a

generic convex optimization solver (that is mainly based on second-order, interior

point method) scales for this class of optimization problems.

Difficulty with Nonsmoothness.
The large scale of the problems forces us to consider simple, scalable algorithms

that use only first-order information about the objective function. The proto-

typical first-order method is gradient descent. However, one technical difficulty

arises though as the objective functions may contain nonsmooth terms that are

not differentiable. For instance, the `1 norm ‖x‖1 in the BPDN problem does

not have a gradient in the normal sense. In such cases, the simplest solution is to

employ a generic subgradient method, as we did in Chapter 2. Although the sub-

gradient method has very simple and efficient iterations, its rate of convergence

is very poor, typically O(1/
√
k).1 That means it usually takes many (thousands

of) iterations for the algorithm to converge to the optimal solution. In this chap-

ter, we will show how to exploit some important properties of structured signal

recovery. Such properties allow us to develop gradient descent algorithms as if

the objective is smooth, the so called Proximal Gradient (PG) method (Sec-

tion 8.2). The same properties also allow us to utilize acceleration techniques

that were designed for smooth functions and lead to much more scalable and

fast-converging algorithms, with convergence rates much better than the generic

situation (Section 8.3).

Enforcing Equality Constraints.
To solve the basis pursuit problem (8.1.1), we need to ensure that the final solu-

tion x satisfies the equality constraint y = Ax exactly. A naive way to enforce

the equality constraint is to incorporate it as a penalty term and minimize:

minx ‖x‖1 + µ
2 ‖y −Ax‖22. This is a similar optimization problem as the BPDN

except that we need to solve a series of problems of this type for an increasing

sequence of µi →∞ so as to enforce the equality constraint in the end. However,

as the weight µi increases, the corresponding BPDN problem becomes increas-

ingly ill-conditioned and hence algorithms converge slower. In Section 8.4, we

will see how to employ the augmented Lagrange multiplier (ALM) technique to

alleviate this difficulty.

Exploiting Separable Structures.
Often the structured signal that we are recovering is a superposition of multiple

structured terms. This is the case for the principal component pursuit (PCP)

1 See [Nem95,Nem07] for a characterization of typical subgradient methods.
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program that we have mentioned earlier:

min
L,S
‖L‖∗ + λ‖S‖1 subject to Y = L+ S. (8.1.5)

As we will show in Section 8.5, such separable structures of the objective func-

tion can be naturally exploited through methods such as alternating direction

of multipliers method (ADMM). We end up with more simple and efficient algo-

rithms for solving this class of convex programs as ADMM converts the global

optimization to several subproblems of much smaller dimension.

Finally, in Section 8.6, we will study how to exploit additional structures either

in the objective function or in the constraint set to further improve the scalability

of the optimization algorithms against the problem dimension or the sample size.

8.2 Proximal Gradient Methods

As one can see, the optimization problems we are dealing with can be reduced

to solve the structured convex minimization problems with objective functions

of the form:

F (x)
.
= f(x) + g(x), (8.2.1)

where f(x) is a smooth convex term and g(x) is a convex but nonsmooth term.

For instance, in the Lasso problem (8.1.2), we could set f(x)
.
= 1

2‖y − Ax‖22
and g(x)

.
= λ‖x‖1 with λ > 0. We want to develop both scalable and efficient

algorithms for this type of problems.

Since the composite objective function F (x) is not differentiable, generic gra-

dient algorithms do not apply. The first recourse in this situation is to replace

the gradient with a subgradient, yielding the simple subgradient method with

the iteration:

xk+1 = xk − γkgk, gk ∈ ∂F (xk). (8.2.2)

The main disadvantage to this approach is its relatively poor convergence rate.2

Let x? be the (global) minimizer of F (x). In general, the convergence rate of

subgradient method for nonsmooth objective functions, in terms of function value

F (xk)− F (x?), is (see [Nes03]):

O(1/
√
k). (8.2.3)

The constants in the big-O notation depend on various properties of the problem.

The important point is that for even a moderate target accuracy

F (xk)− F (x?) ≤ ε,

we will have to set k = O(ε−2) very large.

2 Also, the step size γk can be challenging to set.
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8.2.1 Convergence of Gradient Descent

We can compare the behavior of the subgradient method with the behavior of

the simple gradient descent method for minimizing a smooth function. Consider,

briefly, the simpler problem

min
x

f(x), (8.2.4)

with f convex and differentiable. The gradient descent iteration for this problem

is

xk+1 = xk − γk∇f(xk). (8.2.5)

This iteration comes from a first-order approximation to f at x = xk:

f(x′) ≥ f(x) + 〈∇f(x),x′ − x〉 . (8.2.6)

Because f is convex, this first-order approximation provides a global lower bound

on f . Nevertheless, we expect this lower bound to be more accurate in a neighbor-

hood of x. The size of this neighborhood depends substantially on the properties

of f . For example, if f is relatively smooth, and its gradient does not vary much

from point to point, we might imagine that the first-order approximation at x

would be accurate over a relatively large region. To make this more formal, we

say that a differentiable function f(x) has L-Lipschitz continuous gradients if

‖∇f(x′)−∇f(x)‖2 ≤ L‖x′ − x‖2, ∀x′,x ∈ Rn (8.2.7)

for some L > 0. The quantity L is known as the Lipschitz constant of ∇f .

When the Lipschitz condition holds, a bit of calculus shows that we can com-

plement the linear lower bound (8.2.6) with a corresponding quadratic upper

bound:

Lemma 8.2. Suppose that f is differentiable, and ∇f is L-Lipschitz. Then for

every x,x′ ∈ Rn,

f(x′) ≤ f(x) + 〈∇f(x),x′ − x〉+
L

2
‖x′ − x‖22 . (8.2.8)
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Proof We calculate:

f(x′) = f(x+ t(x′ − x))|t=1 (8.2.9)

= f(x) +

∫ 1

t=0

d

dt
f(x+ t(x′ − x)) dt (8.2.10)

= f(x) +

∫ 1

t=0

〈∇f(x+ t(x′ − x)),x′ − x〉 dt (8.2.11)

= f(x) + 〈∇f(x),x′ − x〉

+

∫ 1

t=0

〈∇f(x+ t(x′ − x))−∇f(x),x′ − x〉 dt (8.2.12)

≤ f(x) + 〈∇f(x),x′ − x〉

+

∫ 1

t=0

‖∇f(x+ t(x′ − x))−∇f(x)‖2‖x′ − x‖2 dt

≤ f(x) + 〈∇f(x),x′ − x〉+

∫ 1

t=0

tL ‖x′ − x‖22 dt (8.2.13)

= f(x) + 〈∇f(x),x′ − x〉+
L

2
‖x′ − x‖22 , (8.2.14)

giving the claim.

Thus, when ∇f is Lipschitz, we have a matching quadratic upper bound

f(x′) ≤ f̂(x′,x)
.
= f(x) + 〈∇f(x),x′ − x〉+

L

2
‖x′ − x‖22 (8.2.15)

=
L

2

∥∥x′ − (x− 1
L∇f(x))

∥∥2

2
+ h(x), (8.2.16)

for some function h(x) that does not depend on x′. This upper bound agrees

with f at the point x at which it is formed: f(x) = f̂(x,x). Suppose that we

minimize this upper bound, with respect to x′. By inspecting the second identity

above, the minimizer has a very familiar form:

arg min
x′

f̂(x′,x) = x− 1

L
∇f(x). (8.2.17)

This is simply a gradient descent step, taken from x, with a special choice of

step size γ = 1/L. Moreover, because f̂(x,x) = f(x), this minimization does

not increase the objective function: if x′? ∈ arg minx′ f̂(x′,x), then

f(x′?) ≤ f̂(x′?,x) ≤ f̂(x,x) = f(x). (8.2.18)

Thus, if we apply the gradient descent method with step size 1/L, we are guar-

anteed to produce a monotone sequence of function values f(xk). Furthermore,

we can show convergence3 to the optimal function value at a rate of O(1/k):

f(xk)− f(x?) ≤
L ‖x0 − x?‖22

2k
= O(1/k). (8.2.19)

3 We will not prove (8.2.19) here, since we will obtain a more general result below which

implies it.
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This is still not a particularly fast rate of convergence, but it is much better than

the O(1/
√
k) rate of convergence experienced by the subgradient algorithm on

nonsmooth functions.

8.2.2 From Gradient to Proximal Gradient

Can we draw inspiration from the gradient method to produce a more efficient

algorithm for minimizing the composite function F (x) = f(x) + g(x), with f

differentiable? Again, the gradient method does not directly apply, since F is

nondifferentiable. Nevertheless, if the gradient ∇f of the smooth term is Lips-

chitz, we can still make a simpler upper bound to F , by upper bounding f , say

around the current iterate xk, by a quadratic and leaving the nonsmooth term

g intact:

F̂ (x,xk) = f(xk) + 〈∇f(xk),x− xk〉+
L

2
‖x− xk‖22 + g(x). (8.2.20)

Since above repeatedly minimizing f̂ of (8.2.15) produced the gradient method,

resulting in a better convergence rate, let us try minimizing the upper bound F̂

around xk:

xk+1 = arg min
x

F̂ (x,xk). (8.2.21)

For commonly encountered g, this minimization often takes on a very simple

form. Completing the square in (8.2.20), we obtain that

F̂ (x,xk) =
L

2

∥∥x− (xk − 1
L∇f(xk))

∥∥2

2
+ g(x) + h(xk), (8.2.22)

where h(xk) is a term that depends only on xk.

Hence, the iteration (8.2.21) becomes

xk+1 = arg min
x

L

2

∥∥x− (xk − 1
L∇f(xk))

∥∥2

2
+ g(x) (8.2.23)

= arg min
x
g(x) +

L

2
‖x−wk‖22 , (8.2.24)

where for convenience we define wk
.
= xk − (1/L)∇f(xk). Thus, at each step

of the iteration (8.2.21), we have to minimize the function g plus a separable

quadratic L
2 ‖x−wk‖22. In a sense, this problem asks us to make g as small as

possible, while not straying too far from the point wk. Because ‖ · ‖22 is strongly

convex, this problem always has a unique solution. So, the sequence xk defined

recursively by (8.2.21) is well-defined.

In fact, the operation of minimizing a convex function g plus a separable

quadratic ‖x−wk‖22 recurs so frequently in convex analysis and optimization

that it has its own name. This is known as the proximal operator for the convex

function g(x):
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Definition 8.3 (Proximal Operator). The proximal operator of a convex func-

tion g is

proxg[w]
.
= arg min

x

{
g(x) +

1

2
‖x−w‖22

}
. (8.2.25)

In this language, iteration (8.2.21) can be written as

xk+1 = proxg/L[wk]. (8.2.26)

Fortunately, many of the convex functions (or norms) that we encounter in struc-

tured signal recovery either have closed-form proximal operators or proximal op-

erators that can be computed very efficiently via numerical means. We give a

few examples below:

Proposition 8.4. Proximal operators for the indicator function, `1 norm, and

nuclear norm are given by:

1 Let g(x) = ID be the indicator function for a closed convex set D, namely,

ID(x) = 0,x ∈ D otherwise ID(x) = ∞. Then proxg[w] is the projection

operator:

proxg[w] = arg min
x∈D
‖x−w‖22 = PD[w].

2 Let g(x) = λ‖x‖1 be the `1 norm. Then proxg[w] is the soft-thresholding

function applied element-wise:

(proxg[w])i = soft(wi, λ)
.
= sign (wi) max(|wi| − λ, 0).

3 Let g(X) = λ‖X‖∗ be the matrix nuclear norm. Then proxg[W ] is the singular-

value soft thresholding function:

proxg[W ] = Usoft(Σ, λ)V ∗,

where (U ,Σ,V ) are the singular value decomposition (SVD) of W . In other

words, proxg[W ] applies component-wise soft thresholding on the singular val-

ues of W .

Proof We prove the second assertion and leave the rest to the reader as ex-

ercises. The objective function reaches minimum when the subdifferential of

λ‖x‖1 + 1
2‖x−w‖22 contains zero,

0 ∈ (x−w) + λ∂‖x‖1 =





xi − wi + λ, xi > 0

−wi + λ[−1, 1], xi = 0

xi − wi − λ, xi < 0

, i = 1, . . . , n.

Therefore, the solution to this optimality condition is the soft-thresholding func-

tion applied element-wise:

xi? = soft(wi, λ)
.
= sign (wi) max(|wi| − λ, 0), i = 1, . . . , n.

See Figure 8.1 left for an illustration of the soft-thresholding function. We leave
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x

y = soft(x, τ)

0 τ−τ
x

y = soft(x, τ), y ≥ 0

0 τ

Figure 8.1 Illustrations of soft-thresholding (or shrinkage) operators associated with
proximal operators of the `1 norm (left) and the nuclear norm (right), respectively.
Note that singular values are always nonnegative. Typically the threshold τ ≥ 0 is a
small value.

the first and third assertions as exercises to the reader. [Hint: for the first, use

the definition; for the third, use the subdifferential of ‖ · ‖∗.]

Example 8.5 (Proximal Operators for Powers of Nuclear Norm). In problems

such as high-order low-rank tensor completion [ZZWM14] or stochastic matrix

factorization [CMH+17] (also known as “dropout” in deep learning, see Exercise

7.8 of Chapter 7), we may need to find the proximal operator for a given matrix

W :

proxg[W ]
.
= arg min

X

{
g(X) +

1

2
‖X −W ‖2F

}
, (8.2.27)

for g(X) as certain powers of nuclear norm or its exponential,4 say

g(X) = λ‖X‖2∗ or g(X) = λe‖X‖∗ . (8.2.28)

For each of these two cases, one can show that the proximal operator takes the

form:

proxg[W ] = Usoft(Σ, τ)V ∗,

where τ is certain threshold that depends on λ and the singular values of W .

See Figure 8.1 right for an illustration of the soft-thresholding function on the

singular values. In fact, this is true if g(X) = f(‖X‖∗) for any monotonic

convex function f . The only question is whether the associated threshold τ can

be solved in closed-form or efficiently computed numerically. We explore some

of these extensions in the exercises (see Exercise 8.4). The reader may further

explore whether the same property holds for any unitary invariant matrix norm

(introduced in Appendix A.9).

Thus, for the problems of our interest, we can compute the proximal operator

4 The reader may refer to [ZM20] for the more general case.
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Proximal Gradient (PG)

Problem Class:

min
x
F (x) = f(x) + g(x)

f, g : Rn → R are convex, ∇f L-Lipschitz and g (maybe) nonsmooth.

Basic Iteration: set x0 ∈ Rn.
Repeat:

wk ← xk −
1

L
∇f(xk),

xk+1 ← proxg/L[wk].

Convergence Guarantee:

F (xk)− F (x?) converges at a rate of O(1/k).

Figure 8.2 An overview of the Proximal Gradient Method.

efficiently. In this setting, it provides an alternative replacement for the gradient

step. Unlike the subgradient method, this proximal gradient algorithm enjoys a

convergence rate of O(1/k) – exactly the same as if the nonsmooth term was not

present! More formally:

Theorem 8.6 (Convergence of Proximal Gradient). Let F (x) = f(x) + g(x),

where f is a convex, differentiable function with L-Lipschitz continuous gradi-

ents, and g a convex function. Consider the following iterative update scheme:

wk ← xk −
1

L
∇f(xk), xk+1 ← proxg/L[wk].

Assume F (x) has a minimum at x?. Then for any k ≥ 1,

F (xk)− F (x?) ≤
L‖x0 − x?‖22

2k
.

We will give a detailed proof to this theorem in Section 8.2.4. Thus, for a com-

posite nonsmooth convex function, under certain conditions, we can still obtain

an efficient “gradient descent” like algorithm that has the same convergence rate

O(1/k) as that for a smooth function. As long as the nonsmooth part has an

easy-to-solve proximal operator, the proximal gradient algorithm has very cheap

iterations. Hence it is typically much more scalable than second-order methods.

We summarize properties of the iterative process that we have derived so far for

minimizing the convex composite problem in Figure 8.2, which is also known as

the proximal gradient method.
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8.2.3 Proximal Gradient for the Lasso and Stable PCP

For the rest of the section, we will see how to apply the proximal gradient algo-

rithm to several important cases of structured signal recovery problems that we

have encountered.

Proximal Gradient for the Lasso.
As the first instance, the Lasso problem (8.1.2) obviously falls into the class

of problems that can be addressed by the proximal gradient method. We can

view g to be the `1 norm function λ‖x‖1 whose proximal operator is given in

Proposition 8.4; f is simply the quadratic data term 1
2‖y−Ax‖22 whose gradient

is clearly Lipschitz: the Lipschitz constant L can be the largest eigenvalue of the

matrix A∗A, which can be computed in advance.

The resulting proximal gradient descent algorithm for Lasso is sometimes re-

ferred to as the iterative soft-thresholding algorithm (ISTA), which is summarized

in Algorithm 8.1. In terms of computational complexity, the main cost is calcu-

Algorithm 8.1 Proximal Gradient (PG) for Lasso

1: Problem: minx
1
2‖y −Ax‖22 + λ‖x‖1, given y ∈ Rm, A ∈ Rm×n.

2: Input: x0 ∈ Rn and L ≥ λmax(A∗A).

3: for (k = 0, 1, 2, . . . ,K − 1) do

4: wk ← xk − 1
LA
∗(Axk − y).

5: xk+1 ← soft(wk, λ/L).

6: end for

7: Output: x? ← xK .

lating the gradient ∇f(x) = A∗Ax −A∗y in the inner loop, which in general

takes time O(mn).

Example 8.7. We randomly generate a sparse signal x ∈ R1,000 and then add a

small Gaussian noise n to all of its coefficients, as shown in Figure 8.3 Top. With

the added Gaussian noise, the signal w = x + n is not sparse anymore. Then

we may try to recover x from w by solving the following problem minx λ‖x‖1 +
1
2‖w − x‖22, where λ is proportional to the noise level. We know the solution to

this problem is simply the soft thresholding x̂ = soft(w, λ). The result is shown

in Figure 8.3 Bottom. We see that the operator successfully removes most of the

noise in w and returns a sparse estimate for x.

Proximal Gradient for Stable PCP.
According to Proposition 8.4, the nuclear norm ‖X‖∗ also has a simple proximal

operator. Hence we could apply proximal gradient algorithm to solve low-rank

matrix recovery problems. For instance, the stable principal component pur-

suit (PCP) program is also for the form that is amenable to proximal gradient
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Figure 8.3 Top: A sparse signal x perturbed by small Gaussian noise n. Bottom:
The output from a properly chosen soft-thresholding function soft(w, λ).

method:

min
L,S
‖L‖∗ + λ‖S‖1 +

µ

2
‖Y −L− S‖2F . (8.2.29)

Notice that however, for this problem the nonsmooth term g(L,S) = ‖L‖∗ +

λ‖S‖1 now contains two nonsmooth functions ‖L‖∗ and λ‖S‖1, each having a

simple proximal operator.

We leave as an exercise for the reader to prove the following simple fact about

the proximal operator of a separable convex function, which comes handy for this

problem: Let x = [x1;x2] and g(x) = g1(x1) + g2(x2) be a separable function.

Then

proxg[w] =
(
proxg1 [w1],proxg2 [w2]

)
,

where w1 and w2 in w = [w1;w2] correspond to the variables x1 and x2 in x,

respectively.

Hence, the proximal operator for g(L,S) can be computed separately from the

proximal operators for the `1 norm for S and nuclear norm for L, respectively.

The rest of the proximal gradient algorithm for the stable principal component

pursuit program then is easy to derive (and we leave this as an exercise to the
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reader. See Exercise 8.6.). We summarize the overall algorithm below for clarity.

Algorithm 8.2 Proximal Gradient for Stable Principal Component Pursuit

1: Problem: minL,S ‖L‖∗ + λ‖S‖1 + µ
2 ‖Y −L− S‖2F , given Y , λ, µ > 0.

2: Input: L0 ∈ Rm×n, S0 ∈ Rm×n.

3: for (k = 0, 1, 2, . . . ,K − 1) do

4: W k ← Y − Sk and compute W k = UkΣkV
∗
k.

5: Lk+1 ← Uksoft(Σk, 1/µ)V ∗k.

6: Sk+1 ← soft((Y −Lk), λ/µ).

7: end for

8: Output: L? ← LK ;S? ← SK .

8.2.4 Convergence of Proximal Gradient

In this subsection, we prove Theorem 8.6. We find it convenient to do this in two

steps. In the first step, we provide an analysis of a simpler algorithm, known as

the proximal point algorithm, which only consists of repeated application of the

proximal operator. This algorithm is of independent interest, and we will reuse

its analysis when we encounter Augmented Lagrangian techniques.

Proposition 8.8 (Convergence of Proximal Point Algorithm). Let g : Rn → R
be a convex function, and x? a minimizer of g. Let x0 ∈ Rn be arbitrary, and

consider the iteration

xk+1 = proxγkg[xk], (8.2.30)

with γk ∈ R+. Then

g(xk+1)− g(x?) ≤
‖x0 − x?‖22
2
∑k
i=0 γi

. (8.2.31)

Moreover, if
∑∞
i=0 γi = +∞, then xk → x?, a minimizer of g.

Proof By construction,

0 ∈ γk∂g(xk+1) + xk+1 − xk. (8.2.32)

Equivalently, xk − xk+1 ∈ γk∂g(xk+1). Using the convexity of g(x), we have

that

〈xk − xk+1,xk − xk+1〉 ≤ γk (g(xk)− g(xk+1)) . (8.2.33)

Since left hand side is nonnegative, g(xk) ≥ g(xk+1). So, the objective function

value is nonincreasing.

Using the subgradient inequality again, we have that

〈x? − xk+1,xk − xk+1〉 ≤ γk (g(x?)− g(xk+1)) . (8.2.34)
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Let us use this fact to bound the distance of xk+1 to the optimum. Notice that

‖xk+1 − x?‖22 = ‖xk − x? + xk+1 − xk‖22
= ‖xk − x?‖22 + 2 〈xk − x?,xk+1 − xk〉+ ‖xk+1 − xk‖22
= ‖xk − x?‖22 − ‖xk+1 − xk‖22 + 2 〈xk+1 − x?,xk+1 − xk〉
≤ ‖xk − x?‖22 + 2 〈xk+1 − x?,xk+1 − xk〉
≤ ‖xk − x?‖22 + 2γk (g(x?)− g(xk+1)) . (8.2.35)

Since g(xk+1) ≥ g(x?), the distance of xk to x? also does not increase. In fact,

we can say slightly more. Summing the relationship (8.2.35), we obtain

k∑

i=0

2γi (g(xi+1)− g(x?)) ≤ ‖x0 − x?‖22 . (8.2.36)

Since g(xi) is nonincreasing, this implies that

2

(
k∑

i=0

γi

)
(g(xk+1)− g(x?)) ≤ ‖x0 − x?‖22 . (8.2.37)

This gives convergence in function values, as in (8.2.31).

Since ‖xk − x?‖2 is nonincreasing, the sequence xk is bounded, and hence has

a cluster point x̄. Since g(xk) ↘ g(x?), g(x̄) = g(x?), and hence x̄ is optimal.

Applying inequality (8.2.35) with x? replaced by x̄, we obtain that ‖xk − x̄‖2 is

also nonincreasing, whence the cluster point x̄ is a limit of the sequence {xk}.

The key idea in the above proof is to use the optimality condition (8.2.32)

for the proximal operator, together with the subgradient inequality to relate

the suboptimality g(xk+1) − g(x?) in objective function to the distance to the

feasible set. To prove Theorem 8.6, we follow a very similar program.

Proof of Theorem 8.6 Notice that by construction, there exists γ ∈ ∂g(xk+1)

such that

∇f(xk) + L(xk+1 − xk) + γ = 0. (8.2.38)

The subgradient and gradient inequalities for the convex functions f and g give

that for any x,

f(x) ≥ f(xk) + 〈x− xk,∇f(xk)〉 , (8.2.39)

g(x) ≥ g(xk+1) + 〈x− xk+1,γ〉 , (8.2.40)

whence

F (x) ≥ f(xk) + g(xk+1) + 〈x− xk,∇f(xk)〉+ 〈x− xk+1,γ〉 . (8.2.41)
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Recall the definition of an upper bound F̂ of F defined (8.2.20). So, we have

F (x)− F (xk+1) ≥ F (x)− F̂ (xk+1,xk)

≥ f(xk) + g(xk+1) + 〈x− xk,∇f(xk)〉
+ 〈x− xk+1,γ〉 − F̂ (xk+1,xk)

= −L
2
‖xk+1 − xk‖22 + 〈x− xk+1,∇f(xk) + γ〉

= −L
2
‖xk+1 − xk‖22 + L 〈x− xk+1,xk − xk+1〉

=
L

2
‖x− xk+1‖22 −

L

2
‖x− xk‖22 . (8.2.42)

Evaluating this expression at x = x?, we see that ‖xk − x?‖2 is nonincreasing.

Moreover, rearranging the relationship and summing from 0 to k− 1, we obtain

that
k−1∑

i=0

{F (xi+1)− F (x?)} ≤
L

2
‖x0 − x?‖22 . (8.2.43)

Evaluating (8.2.42) at x = xk, we obtain

F (xk)− F (xk+1) ≥ L

2
‖xk − xk+1‖22 . (8.2.44)

Hence, (8.2.43) implies that

k {F (xk)− F (x?)} ≤
L

2
‖x0 − x?‖22 . (8.2.45)

Rearranging, we get the desired conclusion.

8.3 Accelerated Proximal Gradient Methods

In the previous section, we have seen that by exploiting the fact that if the

nonsmooth part of a convex function has an easily computable proximal operator,

we are able to extend the gradient descent algorithm for smooth functions to the

special class of composite objective functions that we encounter in structured

signal recovery. The resulting algorithm enjoys the same O(1/k) convergence

rate as in the smooth case. Recognizing special structure in our problem of

interest yields a significantly more accurate and efficient algorithm.

8.3.1 Acceleration via Nesterov’s Method

With the taste of victory still on our lips, we might naturally ask whether further

improvements are still possible – is our proximal gradient algorithm optimal for

this class of functions? For the question to be meaningful, we need to restrict

our attention to methods with efficient iterations, such as gradient-like methods.

For example, we could restrict our attention to first-order methods, which base
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their future actions on the past iterates x0, . . . ,xk, objective values at these

iterates, and the gradients ∇f(x0), . . . ,∇f(xk). The corresponding question for

smooth functions was studied in great depth in the late 1970’s and early 1980’s

by Russian optimization theorists, including Polyak, Nesterov, Nemirovski, and

Yudin.5

They asked the very natural question: for minimizing a smooth function f ,

is the gradient method optimal amongst first-order methods? Again, to study

this problem one needs a model for computation. They considered a black box

model, in which the algorithm produces a sequence of iterates x0, . . . ,xk. At

each iteration, the algorithm is provided with the value f(xi) and the gradient

∇f(xi). It produces the next iterate as a function of the history of iterates,

gradients, and function values up to this time:

xk+1 = ϕk
(
x0, . . . ,xk, f(x0), . . . , f(xk),∇f(x0), . . . ,∇f(xk)

)
. (8.3.1)

With this model in mind, one can begin to study algorithms from a worst-

case perspective. To do so, we fix a class of functions F , and ask how well the

algorithm does on the “worst function” from this class:

sup
f∈F,x0

{
f(xk)− inf

x
f(x)

}
. (8.3.2)

One can study various classes of functions F . However, for our purposes, one

interesting class is the convex differentiable functions f : B(0, r)→ R, defined on

a ball of radius r, with L-Lipschitz gradients:

FL,r .
= {f : B(0, r)→R | ‖∇f(x)−∇f(x′)‖2≤L‖x−x′‖2 ∀x,x′ ∈ B(0, r)} .

(8.3.3)

The gradient method achieves a rate of O(1/k) over this class:

sup
f∈FL,r,x0

{
f(xk)− inf

x
f(x)

}
≤ CLr2

k
, (8.3.4)

where C > 0 is a constant. However, the best lower bound that anyone could

prove was of much lower order:

sup
f∈FL,r,x0

{
f(xk)− inf

x
f(x)

}
≥ cLr2

k2
, (8.3.5)

where c > 0 is some constant. Was this merely a gap in the theory? Or might

there actually exist a “faster” gradient method than gradient descent itself?

In 1983, Yurii Nesterov closed this gap, to remarkable effect [Nes83]. He demon-

strated a relatively simple first-order method, which achieved the optimal rate of

convergence, O(1/k2). The analysis of this algorithm is straightforward to read

– the 1983 paper is only five pages! However, it is not straightforward to build

intuition into how the method achieves this rate. To gain some loose appreciation

for what is going on, we start from a simpler idea.

5 For a more comprehensive introduction to this circle of ideas, see [Nes03] or [Nem95].
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Let us first consider the gradient descent method for a smooth function with

Lipschitz gradients. At each iteration, the update simply follows the direction of

the gradient:

xk+1 = xk − α∇f(xk),

where a good choice of α for an L-Lipschitz function is 1/L. The negative gradient

−∇f(xk) indicates the direction in which the function drops its value the fastest.

Instead of updating along this most greedy direction at the current estimate xk,

a slightly more conservative strategy is to update by keeping some momentum

from the previous update direction: xk − xk−1. That leads an update rule that

is known as the heavy ball method [Pol64]:

xk+1 = xk − α∇f(xk) + β
(
xk − xk−1

)
. (8.3.6)

For properly chosen parameters, the heavy ball method can reduce oscillations

in the trajectories and leads to faster convergence.

Like the heavy ball method, Nesterov’s acceleration method uses a momentum

step. It introduces an auxiliary point pk+1 of the form similar to that in the heavy

ball method:

pk+1
.
= xk + βk+1

(
xk − xk−1

)
.

At each iteration, we move to this new point, and then descend from it:

xk+1 = pk+1 − α∇f(pk+1). (8.3.7)

The weights α = 1/L and {βk+1} are carefully chosen to achieve the optimal

convergence rate:

t1 = 1, tk+1 =
1 +

√
1 + 4t2k
2

, βk+1 =
tk − 1

tk+1
. (8.3.8)

These particular values come from the convergence analysis. One can rigorously

show that with this update scheme, the resulting algorithm achieves the theoret-

ically optimal convergence rate O(1/k2) for the class of smooth functions with

Lipschitz gradient.

Accelerating the Proximal Gradient Method.
As we have seen in the previous section, convex programs that arise in the context

of structured signal recovery are often of the composite form F (x) = f(x)+g(x),

where f is a smooth term whose gradient is L-Lipschitz and g(x) is convex

but not necessarily smooth. In the proximal gradient method introduced in the

previous section, we have seen that at the k-th iteration, the value of the objective

function F (x) can be upper-bounded by

F̂ (x,xk)
.
= f(xk) + 〈∇f(xk),x− xk〉+ L

2 ‖x− xk‖22 + g(x)
.
= L

2 ‖x−wk‖22 + g(x) + terms that do not depend on x,
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Accelerated Proximal Gradient (APG)

Problem Class:

min
x
F (x) = f(x) + g(x)

f, g : Rn → R are convex, ∇f L-Lipschitz and g nonsmooth.

Basic Iteration: set x0 ∈ Rn, p1 = x1 ← x0, and t1 ← 1.
Repeat for k = 1, 2, . . . ,K:

tk+1 ←
1 +
√

1 + 4tk2

2
, βk+1 ←

tk − 1

tk+1
.

pk+1 ← xk + βk+1

(
xk − xk−1

)
.

xk+1 ← proxg/L

[
pk+1 −

1

L
∇f(pk+1)

]
.

Convergence Guarantee:

F (xk)− F (x?) converges at a rate of O(1/k2).

Figure 8.4 An overview of the Accelerated Proximal Gradient Method.

where wk = xk− 1
L∇f(xk). As we have seen in the previous section, the gradient

descent algorithm for the smooth part f(x) corresponds to directly minimizing

its quadratic approximation of f(x) at xk.

In this language, if g ≡ 0, Nesterov’s method corresponds to: extrapolating

to find the point pk+1 based on the past two iterates, and then minimizing a

quadratic upper bound f̂ to f , taken at the new point pk+1, by taking a gradient

step. Let us attempt to do the same thing for our composite function F̂ . Set

pk+1 = xk + βk+1

(
xk − xk−1

)
, (8.3.9)

instead of the current estimate xk. Then minimize F̂ (x,pk+1) to obtain the next

iterate xk+1:

xk+1 = proxg/L

[
pk+1 −

1

L
∇f(pk+1)

]
. (8.3.10)

We summarize this scheme in Figure 8.4. Theorem 8.9 establishes that with

this simple modification to the proximal gradient method, the resulting new

algorithm achieves the theoretically optimal convergence rate O(1/k2) for this

class of methods, despite the presence of a nonsmooth term in the objective

function.

Theorem 8.9 (Convergence of Accelerated Proximal Gradient). Let the sequence

{xk} be generated by the above accelerated proximal gradient scheme for the

convex composite function F (x) = f(x) + g(x), where the gradient of f is L-
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Lipschitz. Let x? be a minimizer of F (x). Then for any k ≥ 1,

F (xk)− F (x?) ≤
2L‖x0 − x?‖22

(k + 1)2
.

8.3.2 APG for Basis Pursuit Denoising

Applying the APG algorithm in Figure 8.4 to the basis pursuit denoising prob-

lem 8.1.2, we obtain Algorithm 8.3. This algorithm is also known as Fast Iter-

ative Shrinkage-Thresholding Algorithm (FISTA), coined by Beck and Teboulle

[BT09].

Algorithm 8.3 Accelerated Proximal Gradient (APG) for BPDN

1: Problem: minx
1
2‖y −Ax‖22 + λ‖x‖1, given y ∈ Rm, A ∈ Rm×n.

2: Input: x0 ∈ Rn, p1 = x1 ← x0, and t1 ← 1, and L ≥ λmax(A∗A).

3: for (k = 1, 2, . . . ,K − 1) do

4: tk+1 ← 1+
√

1+4t2k
2 ; βk+1 ← tk−1

tk+1
.

5: pk+1 ← xk + βk+1(xk − xk−1).

6: wk+1 ← pk+1 − 1
LA
∗(Apk+1 − y).

7: xk+1 ← soft(wk+1, λ/L).

8: end for

9: Output: x? ← xK .

8.3.3 APG for Stable Principal Component Pursuit

Similarly we could apply the APG algorithm in Figure 8.4 to solving the stable

principal component pursuit (PCP) problem 8.2.29. Again, notice that the APG

scheme respects the natural separable structure of the objective function.

Algorithm 8.4 Accelerated Proximal Gradient (APG) for Stable PCP

1: Problem: minL,S ‖L‖∗ + λ‖S‖1 + µ
2 ‖Y −L− S‖2F , given Y , λ, µ > 0.

2: Input: L0 ∈ Rm×n, S0 ∈ Rm×n, P S
1 = S1 ← S0, PL

1 = L1 ← L0, t1 ← 1.

3: for (k = 1, 2, . . . ,K − 1) do

4: tk+1 ← 1+
√

1+4t2k
2 , βk+1 ← tk−1

tk+1
.

5: PL
k+1 ← Lk + βk+1

(
Lk −Lk−1

)
.

6: P S
k+1 ← Sk + βk+1

(
Sk − Sk−1

)
.

7: W k+1 ← Y − P S
k+1 and compute the SVD: W k+1 = Uk+1Σk+1V

∗
k+1.

8: Lk+1 ← Uk+1soft(Σk+1, 1/µ)V ∗k+1.

9: Sk+1 ← soft((Y − PL
k+1), λ/µ).

10: end for

11: Output: L? ← LK ;S? ← SK .
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8.3.4 Convergence of APG

Our convergence analysis follows, almost verbatim, Beck and Teboulle [BT09].

Let ϕ(y) denote the operator that takes a step in the direction of the gradient

of f at y, and then applies the proximal operator of g/L:

ϕ(y) = proxg/L

[
y − 1

L
∇f(y)

]
. (8.3.11)

In this language, the accelerated proximal gradient iteration is

xk+1 = ϕ(pk+1). (8.3.12)

The following lemma allows us to compare the value of F (x) at any point x to

the value at ϕ(p) for an arbitrary point p:

Lemma 8.10. For every x,p ∈ Rn,

F (x)− F (ϕ(p)) ≥ L

2
‖ϕ(p)− p‖22 + L 〈p− x, ϕ(p)− p〉 . (8.3.13)

Proof For it, we note that from the optimality condition for the proximal prob-

lem, z = ϕ(p) if and only if there exists γ ∈ ∂g(z) such that

γ + L(z − p) +∇f(p) = 0. (8.3.14)

Using the subgradient inequalities for f and g, we obtain that

f(x) ≥ f(p) + 〈x− p,∇f(p)〉 (8.3.15)

g(x) ≥ g(ϕ(p)) + 〈x− ϕ(p),γ〉 . (8.3.16)

Hence,

F (x)− F (ϕ(p)) ≥ f(p) + g(ϕ(p)) + 〈x− p,∇f(p)〉
+ 〈x− ϕ(p),γ〉 − F (ϕ(p))

≥ f(p) + g(ϕ(p)) + 〈x− p,∇f(p)〉
+ 〈x− ϕ(p),γ〉 − F̂ (ϕ(p),p)

= −L
2
‖ϕ(p)− p‖22 + 〈x− ϕ(p),∇f(p) + γ〉

= −L
2
‖ϕ(p)− p‖22 + L 〈x− ϕ(p),p− ϕ(p)〉

=
L

2
‖ϕ(p)− p‖22 + L 〈p− x, ϕ(p)− p〉 , (8.3.17)

as desired.

Using Lemma 8.10, we obtain a relationship between the suboptimality in

function values and the distance of an interpolated point to the optimum:

Lemma 8.11. Let {(xk,pk)} be the sequence generated by the proximal gradient

method. Set

vk = F (xk)− F (x?) (8.3.18)
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and

uk = tkxk − (tk − 1)xk−1 − x?. (8.3.19)

Then
2

L
t2kvk −

2

L
t2k+1vk+1 ≥ ‖uk+1‖22 − ‖uk‖

2
2 . (8.3.20)

Proof Let us apply the previous lemma with x = xk and p = pk+1. This gives

2

L
(vk − vk+1) ≥

∥∥xk+1 − pk+1

∥∥2

2
+ 2

〈
pk+1 − xk,xk+1 − pk+1

〉
. (8.3.21)

Applying the lemma with x = x? and p = pk+1, we get

− 2

L
vk+1 ≥

∥∥xk+1 − pk+1

∥∥2

2
+ 2

〈
pk+1 − x?,xk+1 − pk+1

〉
. (8.3.22)

Multiplying the first inequality by tk+1−1 and add that to the second inequality,

we get

2

L
((tk+1 − 1)vk − tk+1vk+1)

≥ tk+1

∥∥xk+1−pk+1

∥∥2

2
+ 2

〈
xk+1 − pk+1, tk+1pk+1−(tk+1−1)xk−x?

〉
.

Multiplying both sides by tk+1, and using that t2k = tk+1(tk+1 − 1), we get

2

L

(
t2kvk − t2k+1vk+1

)

≥
∥∥tk+1

(
xk+1−pk+1

)∥∥2

2
+ 2tk+1

〈
xk+1−pk+1, tk+1pk+1−(tk+1−1)xk−x?

〉

=‖tk+1xk+1 − (tk+1−1)xk − x?‖22 −
∥∥tk+1pk+1 − (tk+1−1)xk − x?

∥∥2

2

= ‖uk+1‖22 − ‖uk‖
2
2 ,

where the last equality follows from plugging in pk+1 = xk + tk−1
tk+1

(xk − xk−1),

as per the APG algorithm.

To prove the desired result, we note two simple facts, and then perform a calcu-

lation. First,

Lemma 8.12. Let {(ak, bk)} be sequences of positive real numbers satisfying

ak − ak+1 ≥ bk+1 − bk ∀ k, a1 + b1 ≤ c. (8.3.23)

Then ak ≤ c for every k.

Second,

Lemma 8.13. The sequence {tk} generated by the accelerated proximal gradient

method satisfies

tk ≥
k + 1

2
∀ k ≥ 1. (8.3.24)

With these facts in mind, we prove Theorem 8.9.
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Proof of Theorem 8.9 Define

ak
.
=

2

L
t2kvk, bk

.
= ‖uk‖22 , c

.
= ‖x0 − x?‖22 . (8.3.25)

By Lemma 8.11, for every k,

ak − ak+1 ≥ bk+1 − bk (8.3.26)

so, provided a1 + b1 ≤ c, we obtain that ak ≤ c for every k, whence

2

L
t2kvk ≤ ‖x0 − x?‖22 . (8.3.27)

Since tk ≥ (k + 1)/2, this gives

F (xk)− F (x?) ≤
2L ‖x0 − x?‖22

(k + 1)2
. (8.3.28)

So, it just remains to check that a1 + b1 ≤ c. Since t1 = 1, a1 = 2
Lv1, while

b1 = ‖x1 − x?‖22. In Lemma 8.10, set x = x?, p = p1, to obtain

F (x?)− F (x1) ≥ L

2
‖x1 − p1‖22 + L 〈p1 − x?,x1 − p1〉 (8.3.29)

=
L

2

(
‖x1 − x?‖22 − ‖p1 − x?‖22

)
. (8.3.30)

Since ‖p1 − x?‖22 = ‖x0 − x?‖22, this gives the result.

8.3.5 Further Developments on Acceleration

Acceleration is a surprising phenomenon for gradient-based (hence first-order)

optimization methods. The previous subsection merely introduced the very ba-

sic concept and technique of acceleration, probably just enough for practitioners

to apply such methods to the low-dimensional model estimation problems. As

noted before, our derivation relies on techniques of Beck and Teboulle [BT09],

also known as momentum analysis. This is actually different from the original

construction by Nesterov based on estimation sequences. For a more detailed

description of the origin of acceleration techniques, one may refer to the clas-

sic book “Introductory Lectures on Convex Programming: A Basic Course” by

Nesterov [Nes03].

Nesterov’s original construction by estimation sequence is often viewed as an

algebra trick and thus is difficult to comprehend. Considering the great signif-

icance and impact of acceleration methods in modern large-scale optimization

problems (that arise in compressive sensing and machine learning), it is of inter-

est to explain the acceleration phenomenon in a more intuitive way so that one

could potentially design acceleration methods in a more principled way or for

broader classes of problems. To this end, there has been an increasing interest

to explain acceleration from the perspective of continuous dynamics.

It is widely known that (non-accelerated) gradient descent can be viewed as
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discretization of a first-order ordinary differential equation (ODE) associated

with the gradient flow. Recently, the work of [SBC14] (and many subsequent

work [KBB16, KBB15, WWJ16], etc.) have shown Nesterov’s accelerated gradi-

ent descent can be explained as the discretization of a second-order ODE. Similar

idea of speeding up iterative methods via discretizing second-order ODE can be

traced back to the work of Polyak [Pol64] in the 1960’s. Because of the simplicity

of continuous-time dynamics, such a point of view provides a good explanation

of the inner mechanism of acceleration. However, to obtain actual iterative al-

gorithms, such formulation requires proper discretization which is often not a

trivial problem.

Meanwhile, the recent work of “Approximate Duality Gap Technique” (ADGT)

[DO19] provides a new framework that revisits Nesterov’s original estimation se-

quence construction from a continuous-time perspective. Within this framework,

in continuous time, the estimation sequence can be viewed as a way to construct-

ing more precise lower and upper bounds for the difference between the optimal

value and the current value by exploiting the convexity of the objective function;

while in discrete time, the upper bound constructed by ADGT will incur a dis-

cretization error, which then can be canceled out by exploiting the smoothness

property of objective function (e.g., by gradient descent). As the duality gap be-

comes more precise, the optimal accelerated convergence rate can be guaranteed.

These recent developments have enriched our understanding of Nesterov’s ac-

celeration method. Nevertheless, as we have noted before, as far as first-order

methods are concerned, the Nesterov’ construction has reached the optimal iter-

ation complexity O(1/k2) for this class of methods. To achieve better iteration

complexity, one must resort to high-order information. Somewhat surprisingly,

the ADGT framework does allow us to further generalize acceleration techniques

to high-order settings and lead to accelerated algorithms that can achieve the

optimal iteration complexity [SJM19].

8.4 Augmented Lagrange Multipliers

So far, we have described how to solve certain classes of unconstrained convex

optimization problems arising in structured signal recovery. However, in some

scenarios – e.g., if the noise level is low, or if the target solution x is known ahead

of time to possess additional application-specific structure – it may be desirable

to exactly enforce equality constraints such as in the exact BP program (8.1.1)

or the PCP (8.1.5).

In this section, we describe a framework for solving equality constrained prob-

lems of the form

minx g(x),

subject to Ax = y,

(8.4.1)

where g : Rn → R is a convex function, A ∈ Rm×n is a matrix and y ∈ range(A)
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(so that the problem is feasible). One very intuitive approach to producing an

approximate solution to (8.4.1) is to simply replace the equality constraint Ax =

y with a penalty function f(x) = 1
2 ‖Ax− y‖

2
2, and solve the unconstrained

problem

min
x

g(x) + µ
2 ‖Ax− y‖

2
2 (8.4.2)

for a very large value of µ. As µ increases to +∞, the solution set of this prob-

lem approaches the solution set of equality constrained problem (8.4.1). This

is known as the penalty method in the optimization literature, and has a long

history, with many variants. Its main advantage is that it leaves us with a sim-

pler unconstrained problem, to which we can directly apply scalable first-order

methods such as the proximal gradient methods of the previous two sections.

However, there is a serious drawback to this approach. For first-order meth-

ods such as PG and APG, the rate of convergence is dictated by how quickly

the gradient ∇(µf) = µA∗(Ax − y) can change from point-to-point, which is

measured through the Lipschitz constant

L∇µf = µ ‖A‖22 .
This increases linearly with µ: The larger µ is, the harder the unconstrained

problem (8.4.2) is to solve! One practical approach to mitigating this effect is

to solve a sequence of unconstrained problems, with increasing µ, and use the

solution to each as an initial guess for the next. This continuation technique is

often valuable in practice. Nevertheless, it suffers from the same drawback: as µ

increases, accurate solutions become increasingly difficult to obtain.

Lagrange duality gives a more principled mechanism for studying and solving

the constrained problem (8.4.1) via solving unconstrained problems. In partic-

ular, it will give us a mechanism for exactly solving the constrained problem

(8.4.1) by solving a sequence of unconstrained problems whose difficulty does

not increase. The central object in Lagrange duality is the Lagrangian

L(x,λ)
.
= g(x) + 〈λ,Ax− y〉 , (8.4.3)

where λ ∈ Rm is a vector of Lagrange multipliers corresponding to the equality

constraint Ax = y. In particular, we can characterize optimal solutions (x,λ)

as saddle points of the Lagrangian

sup
λ

inf
x
L(x,λ) = sup

λ
inf
x

g(x) + 〈λ,Ax− y〉 . (8.4.4)

If we define the dual function

d(λ)
.
= inf

x
g(x) + 〈λ,Ax− y〉 , (8.4.5)

then the saddle point characterization of optimal solutions suggests a natural

computational approach to finding (x,λ):

xk+1 = arg min
x
L(x,λk), (8.4.6)

λk+1 = λk + tk+1(Axk+1 − y). (8.4.7)
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It is not difficult to show that Axk+1 − y is a subgradient6 of the dual function

d(λ). This iteration corresponds to a subgradient ascent algorithm for maxi-

mizing the dual function, and hence is called dual ascent. In (8.4.7), tk+1 is

the step size. For certain problem classes, dual ascent yields efficient, conver-

gent algorithms, which produce an optimal primal-dual pair (x?,λ?). However,

for problems arising in structured signal recovery, the straightforward iteration

(8.4.6)-(8.4.7) may fail:

Example 8.14. Show that

inf
x
‖x‖1 + 〈λ,Ax− y〉 =

{
−∞ ‖A∗λ‖∞ > 1,

−〈λ,y〉 ‖A∗λ‖∞ ≤ 1.
(8.4.8)

So, for basis pursuit, if the dual ascent step (8.4.7) happens to produce a λ such

that ‖A∗λ‖∞ > 1, the algorithm will break down. Notice, in particular, that when

‖A∗λ‖∞ > 1, we can produce arbitrarily large (in magnitude) negative values of

L(x,λ) by choosing x far away from the feasible set {x | Ax = y}.

This bad behavior occurs more generally. Thus, for structured signal recovery,

the classical Lagrangian is sufficient for characterizing optimality conditions, but

it does not penalize the equality Ax = y strongly enough for (8.4.6)-(8.4.7) to

lead to a useful algorithm. A natural remedy is to augment the Lagrangian with

an extra penalty term, by introducing the function

Lµ(x,λ)
.
= g(x) + 〈λ,Ax− y〉+

µ

2
‖Ax− y‖22 . (8.4.9)

This function is known as the augmented Lagrangian [Hes69,Roc73,Pow69]. As

before, µ > 0 is a penalty parameter. The augmented Lagrangian can be regarded

as the Lagrangian for the constrained problem

min g(x) + µ
2 ‖Ax− y‖

2
2

subject to Ax = y.

(8.4.10)

Since the penalty term ‖y −Ax‖22 is zero for all feasible x, the optimal solu-

tions of this problem coincide with the optimal solutions of the original problem

(8.4.1).

Despite this formal equivalence, augmentation has dramatic consequences for

numerical optimization. In particular, it can render the dual ascent iteration

provably convergent, under very weak assumptions on the objective function g.

To achieve this, we apply dual ascent to the regularized problem (8.4.10), and

make a very particular choice of step size, tk+1 = µ, yielding the iteration

xk+1 ∈ arg min
x
Lµ(x,λk), (8.4.11)

λk+1 = λk + µ (Axk+1 − y). (8.4.12)

This iteration, with the particular choice tk+1 = µ is known as the Method of

6 Strictly, a supergradient since the dual d(λ) is concave.
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Multipliers. The update step (8.4.11) for x is a convex optimization problem

itself and can typically be solved via the proximal gradient methods introduced

in the previous sections.

Remark 8.15. The choice tk+1 = µ is important, because it allows us to avoid

the breakdown described in Example 8.14: To see this, since xk+1 minimizes the

convex function Lµ,

0 ∈ ∂Lµ(xk+1,λk),

= ∂g(xk+1) +A∗λk + µA∗(Axk+1 − y),

= ∂g(xk+1) +A∗λk+1,

= ∂L(xk+1,λk+1).

Thus, xk+1 minimizes the unaugmented Lagrangian L(x,λk+1) with λ = λk+1

fixed. This means that d(λk+1) > −∞, and λk+1 is dual feasible for the original

problem. In particular, L(x,λk+1) is bounded below. Because λk+1 is always dual

feasible, the bad behavior in Example 8.14 cannot occur.

Under appropriate assumptions on g, the iterates xk produced by this modified

algorithm converge to an optimal solution x? to the constrained problem (8.4.1).

We state a slightly more general result that allows the penalty parameters µ to

vary from iteration to iteration, as long as they remain bounded away from zero:

Theorem 8.16 (Convergence of Augmented Lagrangian). Let g : Rn → R be a

convex, coercive function,7 A ∈ Rm×n an arbitrary matrix, and y ∈ range(A).

Then the problem

minx g(x)

subject to Ax = y,

(8.4.13)

has at least one optimal solution. Moreover, the ALM iteration

xk+1 ∈ arg min
x
Lµk(x,λk), (8.4.14)

λk+1 = λk + µk (Axk+1 − y). (8.4.15)

with sequence {µk} bounded away from zero produces a sequence {λk} that con-

verges to a dual optimal solution of the rate O(1/k). Moreover, every limit point

of the sequence {xk} is optimal for (8.4.13).

Figure 8.5 summarizes our general observations on the ALM method up to this

point.

Remark 8.17 (More general convergence theorems). The statement of Theo-

rem 8.16 represents a deliberate tradeoff between simplicity and generality. With

somewhat more technical analysis, it is possible to show convergence of ALM for

much more general classes of g. The most practically important extension allows

g to be an extended real-valued function (a function from Rn to R∪ {+∞}). For

7 A function g(x) is said to be coercive if lim‖x‖→∞ g(x) = +∞.
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Augmented Lagrange Multipler (ALM)

Problem Class:

minx g(x)
subject to Ax = y.

g : Rn → R convex, y ∈ range(A).

Basic Iteration: set

Lµ(x,λ) = g(x) + 〈λ,Ax− y〉+ µ
2
‖Ax− y‖22 .

Repeat:

xk+1 ∈ arg min
x
Lµ(x,λk),

λk+1 = λk + µ (Axk+1 − y).

Convergence Guarantee:

If g is coercive, every limit point of {xk} is optimal.

Figure 8.5 An overview of the Augmented Lagrangian Method of Multipliers.

example, if we wish to optimize a real-valued convex function g0 over the set of

x that satisfy the equality constraint Ax = y, and reside in some additional

(nonempty closed, convex) constraint set C:

minx g0(x)

subject to Ax = y, x ∈ C,

(8.4.16)

we can apply ALM to the problem

minx g(x)
.
= g0(x) + Ix∈C

subject to Ax = y

(8.4.17)

where Ix∈C is the indicator function for C:

Ix∈C =

{
0 x ∈ C,

+∞ x /∈ C.
(8.4.18)

The survey of Eckstein [Eck12] and the monograph of Bertsekas [Ber82] are good

introductory points for the more general theory, which enables such modifications.

Implementation Considerations.
The most important practical consideration is how to choose the sequence of

penalty parameters {µk}. As discussed above, this choice induces a tradeoff be-

tween the cost of solving subproblems and the overall number of outer iterations
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– larger µ leaves us with fewer outer iterations, but harder subproblems. A typical

strategy is to increase µ geometrically, up to some pre-fixed ceiling:

µk = min {βµk, µmax} ,

where β ≈ 1.25 is typical. The ceiling µmax is strongly problem dependent;

choosing it “optimally” is something of a black art.

Our description and analysis of ALM assume that each of the subproblems is

solved exactly. However, practically speaking, it may not be necessary to obtain

high-accuracy solutions to the subproblems, especially in the early iterations.

This can be justified theoretically. The choice of iterative method for solving

the unconstrained subproblems is largely problem dependent. However, because

the penalty term is quadratic, for many problems of interest in this book, the

subproblems have composite form, and the APG algorithm applies.

In using APG (or any other iterative solver) to solve the unconstrained sub-

problems, it is highly advisable to use the previous iterate xk as an initialization

to solve for the subsequent iterate xk+1. While the subproblems are convex, and

the global optimality of iterative algorithms does not depend on initialization,

choosing an appropriate initializer can drastically reduce the overall number of

iterations.

8.4.1 ALM for Basis Pursuit

We may apply ALM to the exact BP problem (8.1.1), which we summarize

as Algorithm 8.5. This algorithm was introduced by [YOGD08], where it was

interpreted as a Bregman iteration.

Algorithm 8.5 Augmented Lagrange Multipler (ALM) for BP

1: Problem: minx ‖x‖1 subject to y = Ax, given y ∈ Rm and A ∈ Rm×n.

2: Input: x0 ∈ Rn, λ0 ∈ Rm, and β > 1.

3: for (k = 0, 1, 2, . . . ,K − 1) do

4: xk+1 ← arg minLµk(x,λk) using APG.

5: λk+1 ← λk + µk(Axk+1 − y).

6: µk+1 ← min {βµk, µmax}.
7: end for

8: Output: x? ← xK .

8.4.2 ALM for Principal Component Pursuit

In Chapter 4 Section 4.4, we have presented an important application of ALM

algorithm, that is to solve the low-rank matrix completion (MC) problem (Al-

gorithm 4.1).
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We here (and the section below) discuss how to extend it to the more chal-

lenging low-rank and sparse matrix decomposition problem studied in Chapter

5. We recall principal component pursuit (PCP) (5.2.2) proposed in Chapter 5

solves the following program:

min
L,S
‖L‖∗ + λ‖S‖1 subject to L+ S = Y . (8.4.19)

First, we rewrite the above program as a standard ALM objective function:

Lµ(L,S,Λ)
.
= ‖L‖∗ + λ‖S‖1 + 〈Λ,L+ S − Y 〉+ µ

2 ‖L+ S − Y ‖2F ,

where Lµ(·) consists of a Lagrangian term with a Lagrange multiplier matrix

Λ of the same size as Y and an augmented quadratic term that encourages

the equality condition L + S = Y . The ALM algorithm for this problem is

summarized in Algorithm 8.6. However, in the step 4 of the algorithm, one is

required to solve minL,S Lµk(L,S,Λk). Unfortunately, there is no closed-form

solution for the proximal operator for the nuclear norm and `1 norm combined.

We will address this difficulty in the next section with an alternating direction

method.

Algorithm 8.6 Augmented Lagrange Multipler (ALM) for PCP

1: Problem: minL,S ‖L‖∗ + λ‖S‖1 subj to L+ S = Y , given Y and λ > 0.

2: Input: L0,S0,Λ0 ∈ Rm×n and β > 1.

3: for (k = 0, 1, 2, . . . ,K − 1) do

4: {Lk+1,Sk+1} ← arg minLµk(L,S,Λk) using APG.

5: Λk+1 ← Λk + µk(Lk+1 + Sk+1 − Y ).

6: µk+1 ← min {βµk, µmax}.
7: end for

8: Output: L? ← LK ,S? ← SK .

8.4.3 Convergence of ALM

In this subsection, we prove Theorem 8.16. The proof will actually reveal another

interpretation of the method of Augmented Lagrangian, as an application of the

proximal point algorithm to the dual problem.

Proof Let d(λ) denote the dual function

d(λ) = inf
x
g(x) + 〈λ,Ax− y〉 . (8.4.20)

The dual function is concave, and so its negative

q(λ) = −d(λ) (8.4.21)

is convex.
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Note that for any λ,

d(λ) ≤ g(xk+1) + 〈λ,Axk+1 − y〉 (8.4.22)

= g(xk+1) + 〈λk+1,Axk+1 − y〉+ 〈λ− λk+1,Axk+1 − y〉 .

Now recall from Remark 8.15 that the augmented Lagrangian method ensures

that xk+1 minimizes the unaugmented Lagrangian g(x) + 〈λ,Ax− y〉 with

λ = λk+1 fixed. Hence, by definition of the function d(λ), we have d(λk+1) =

g(xk+1) + 〈λk+1,Axk+1 − y〉 . Applying this to the above inequality, we obtain

d(λ) ≤ d(λk+1) + 〈λ− λk+1,Axk+1 − y〉 . (8.4.23)

As q(λ) = −d(λ), we have

q(λ) ≥ q(λk+1) + 〈λ− λk+1,y −Axk+1〉 . (8.4.24)

Hence y −Axk+1 is in the subgradient of q(·) at λk+1, and

λk − λk+1 = µk(y −Axk+1) ∈ µk∂q(λk+1), (8.4.25)

and so

λk+1 = proxµkq[λk]. (8.4.26)

Thus, dual ascent corresponds to the proximal point iteration applied to q(·).
Under our assumptions, the dual optimal value supλ d(λ) > −∞ is finite, hence

a dual optimal solution λ̄ exists. Proposition 8.8 then implies that λk → λ?,

where λ? is some dual optimal point. This and the fact that µk is bounded away

from zero give that

‖Axk − y‖2 =
‖λk − λk−1‖2

µk
→ 0, (8.4.27)

and so the sequence {xk} approaches the feasible set. The sequence {λk} inherits

the same convergence rate as the proximal gradient method. Hence according to

Proposition 8.8, the rate of convergence is at least O(1/k) say µk > µo for some

µo > 0.

From coercivity of g, there exists at least one primal optimal solution x?. By

optimality of xk+1, we have

g(xk+1) + 〈λk,Axk+1 − y〉+
µ

2
‖Axk+1 − y‖22 ≤ g(x?). (8.4.28)

For any cluster point x̄, continuity of g and Axk − y → 0 imply that g(x̄) ≤
g(x?), whence g(x̄) = g(x?). Hence, every cluster point is optimal.

8.5 Alternating Direction Method of Multipliers

The previous section showed how the augmented Lagrangian method (ALM)

could be used to solve equality constrained convex optimization problems, by

reducing them to a sequence of unconstrained subproblems. These subproblems
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may still be challenging optimization problems if we need to minimize against all

the variables simultaneously, as in step 4 of the Algorithm 8.6. In many situations,

though, it is possible to exploit special separable structures of the objective

function and to alleviate the difficulty by reducing the overall optimization to

multiple subproblems of smaller sizes, as the following example shows.

Example 8.18 (Principal Component Pursuit). We solve

minL,S ‖L‖∗ + λ ‖S‖1
subject to L+ S = Y .

(8.5.1)

The objective function is separable into two terms, ‖·‖∗ and ‖·‖1, each of which

has an efficient proximal operator.

In this section, we study a family of augmented Lagrangian algorithms that can

exploit this special, separable structure. We begin by treating a generic problem

of the form

minx,z g(x) + h(z)

subject to Ax+Bz = y,

(8.5.2)

where g and h are convex functions, A and B are matrices, and y ∈ range([A |
B]). The Lagrangian L(x, z,λ) associated with this problem simply is:

L(x, z,λ) = g(x) + h(z) + 〈λ,Ax+Bz − y〉 . (8.5.3)

As in the previous section, we form the augmented Lagrangian Lµ(x, z,λ)

associated with this problem:

Lµ(x, z,λ) = g(x) + h(z) + 〈λ,Ax+Bz − y〉+
µ

2
‖Ax+Bz − y‖22 . (8.5.4)

In many applications, including the examples listed above, it is easy to minimize

Lµ with respect to x, when λ and z are fixed, and also easy to minimize it with

respect to z when λ and x are fixed. This suggests a simple, alternating iteration

zk+1 ∈ arg min
z
Lµ(xk, z,λk), (8.5.5)

xk+1 ∈ arg min
x
Lµ(x, zk+1,λk), (8.5.6)

λk+1 = λk + µ (Axk+1 +Bzk+1 − y) . (8.5.7)

This is known as the alternating directions method of multipliers (ADMM). In

the numerical analysis literature, this style of updating is referred to as a Gauss-

Seidel iteration. We recommend [BPC+11] for a friendly introduction to these

methods, as well as useful recommendations on stopping criteria, parameter set-

ting, etc.

8.5.1 ADMM for Principal Component Pursuit

When applied to the principal component pursuit program (8.4.19), the ADMM

iteration takes on a particularly simple form. Here, the two groups of variables are
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the unknown low-rank matrix L and the unknown sparse error S. The augmented

Lagrangian is

Lµ(L,S,Λ) = ‖L‖∗ + λ ‖S‖1 + 〈Λ,L+ S − Y 〉+
µ

2
‖L+ S − Y ‖2F . (8.5.8)

The ADMM iteration sequentially updates L, then S, then Λ. Each of these

updates has a very simple familiar form. For example,

Lk+1 =arg min
L
Lµ(L,Sk,Λk)

=arg min
L
‖L‖∗ + 〈Λk,L+ Sk − Y 〉+

µ

2
‖L+ Sk − Y ‖2F

=arg min
L
‖L‖∗ +

µ

2

∥∥L+ Sk − Y + µ−1Λk

∥∥2

F
+ ϕ(Sk,Λk)

=proxµ−1‖·‖∗
[
Y − Sk − µ−1Λk

]
. (8.5.9)

Thus, the update step for the low-rank term can be evaluated simply by com-

puting the proximal operator for the nuclear norm.

A similar simple rule can be derived for the sparse term:

Sk+1 =arg min
S
Lµ(Lk+1,S,Λk)

=arg min
S
λ ‖S‖1 + 〈Λk,Lk+1 + S − Y 〉+

µ

2
‖Lk+1 + S − Y ‖2F

=arg min
S
λ ‖S‖1 +

µ

2

∥∥S +Lk+1 − Y + µ−1Λk

∥∥2

F
+ ϕ(Lk+1,Λk)

=proxλµ−1‖·‖1
[
Y −Lk+1 − µ−1Λk

]
. (8.5.10)

Combining these two observations, we obtain a simple, lightweight algorithm

for solving the Principal Component Pursuit program.

Algorithm 8.7 ADMM for Principal Component Pursuit

1: Problem: minL,S ‖L‖∗+λ‖S‖1 + 〈Λ,L+ S − Y 〉+ µ
2 ‖L+S−Y ‖2F , given

Y , λ, µ > 0.

2: Input: L0,S0,Λ0 ∈ Rm×n.

3: for (k = 0, 1, 2, . . . ,K − 1) do

4: Lk+1 ← proxµ−1‖·‖∗
[
Y − Sk − µ−1Λk

]
.

5: Sk+1 ← proxλµ−1‖·‖1
[
Y −Lk+1 − µ−1Λk

]
.

6: Λk+1 ← Λk + µ(Lk+1 + Sk+1 − Y ).

7: end for

8: Output: L? ← LK ;S? ← SK .

8.5.2 Monotone Operators

There has been a rich history and literature on charactering the convergence

and convergence rates of the ADMM algorithm under various conditions [DY16].
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The ADMM can be naturally viewed as an approximation to the classical ALM

method studied in the previous section: In the case the objective function is sep-

arable, one uses a single pass of “Gauss-Seidel” block minimization to substitute

for full minimization of the augmented Lagrangian in each iteration (8.4.11).

However, as pointed out in [Eck12], this interpretation does not seem to lead to

any known convergence proof for the ADMM.

In the remainder of this section, we give a rigorous proof for the convergence

of the ADMM algorithm from the perspective of monotone operators, following

the work of [HY12,GHY14,Xu17]. As we will see that this approach leads to an

alternative proof for the convergence (and convergence rate) of the ALM that

is different from the one given in the previous Section 8.4.3. To large extent,

this new approach gives a truly unified convergence analysis for both ALM and

ADMM. Many of the concepts and techniques to be introduced are very useful

in their own right. But for readers who are not immediately concerned with

convergence guarantees, they may skip the rest of the section without loss of

continuity.

Monotonicity.
A relation R on Rn is defined to be a subset of Rn×Rn. Typically, we may view

R as a set-valued mapping. If ∀x ∈ Rn, R(x) is a singleton or empty, R is then

a function in the conventional sense. Operations such as inverse, composition,

scalar multiplication, and addition can be defined as natural extensions to those

for functions.

Definition 8.19 (Monotone Relation). A relation F on Rn is monotone if

(u− v)∗(x− y) ≥ 0 ∀ (x,u), (y,v) ∈ F . (8.5.11)

Moreover, F is maximal monotone if there is no other monotone relation that

properly contains it.

From this definition, we leave as Exercise 8.14 for the reader to show that

given two monotone relations: F1,F2, their sum F1 + F2 is also monotone.

Lemma 8.20 (Monotonicity of Subgradient). Given a convex function f(x) :

Rn → R∪{∞}, we have F(x) = ∂f(x) is monotone. That is, for any x,x′,v,v′ ∈
Rn such that v ∈ ∂f(x) and v′ ∈ ∂f(x′), we have

〈x− x′,v − v′〉 ≥ 0. (8.5.12)

Proof From the definition of subgradient, we have

f(x′) ≥ f(x) + 〈v,x′ − x〉, f(x) ≥ f(x′) + 〈v′,x− x′〉. (8.5.13)

Adding these two inequalities together we obtain:

f(x) + f(x′) ≥ f(x) + f(x′) + 〈v − v′,x′ − x〉. (8.5.14)
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Canceling f(x) + f(x′) from both sides obtains the desired result.

Now consider the linear equality constrained convex problems of the form

min g(x),

subject to Ax = y,

(8.5.15)

where g : Rn → R is a convex function, A ∈ Rm×n is a matrix and y ∈ range(A).

The associated Lagrangian is

L(x,λ)
.
= g(x) + 〈λ,Ax− y〉 , (8.5.16)

where λ ∈ Rm. Now consider the relation defined on Rn × Rm by the KKT

operator:

F(x,λ) =

[
∂xL(x,λ)

−∂λL(x,λ)

]
=

[
∂g(x) +A∗λ
y −Ax

]
. (8.5.17)

Lemma 8.21 (Monotonicity of the KKT Operator). The KKT operator asso-

ciated with the linear equality constrained convex optimization problem (8.5.15)

gives a monotone relation.

Proof We leave the proof to the reader as part of Exercise 8.14.

Mixed Variational Inequality (MVI).
To simplify notation, let us define w = ( xλ ) ∈ Rn × Rm. Then we have:

Lemma 8.22. The linear equality constrained optimization problem (8.5.15) is

equivalent to the problem of solving the mixed variational inequality (MVI): find-

ing w? ∈ Rn × Rm such that ∀w

g(x)− g(x?) + (w −w?)
∗F(w?) ≥ 0, (8.5.18)

where F is a monotone operator:

F(w) = F(x,λ) =

[
A∗λ
y −Ax

]
=

[
0 A∗

−A 0

] [
x

λ

]
+

[
0

y

]
. (8.5.19)

Proof The Lagrangian of (8.5.15) is

L(x,λ)
.
= g(x) + 〈λ,Ax− y〉 , (8.5.20)

It is equivalent to finding a pair (x?,λ?) such that

(x?,λ?) = argmin
x∈Rn

argmax
λ∈Rm

L(x,λ), (8.5.21)

which is a saddle point of L(x,λ) and thus satisfies: ∀x ∈ Rn,λ ∈ Rm,

L(x?,λ) ≤ L(x?,λ?) ≤ L(x,λ?), (8.5.22)

which is equivalent to: ∀x ∈ Rn,λ ∈ Rm,

〈λ− λ?,y −Ax?〉 ≥ 0, (8.5.23)

g(x)− g(x?) + 〈λ?,Ax−Ax?〉 ≥ 0. (8.5.24)
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By the definition of F(w?), on one hand, summing (8.5.23) and (8.5.24), we

obtain (8.5.18). On the other hand, in (8.5.18), by setting x = x∗, we obtain

(8.5.23); by setting λ = λ?, we obtain (8.5.24). Therefore (8.5.23) and (8.5.24)

are equivalent to (8.5.18).

The above Lemma establishes a fundamental connection between constrained

convex optimization (8.5.15) and mixed variational inequality (MVI) of the type

(8.5.18). As it turns out, it is much easier to characterize convergence of such

algorithms, including ALM and ADMM, using MVI. As we will soon see, their

iterations can all be interpreted as solving the associated mixed variational in-

equality approximately. MVIs also arise in a variety of other settings hence it is

of independent value to understand their properties and how to solve them.

To this end, let us consider the general mixed variational inequality problem.

Problem 8.23 (Mixed Variational Inequality Problem). Find w? = (x?,λ?)

such that in certain closed convex set Ω ⊆ Rn×m, we have

∀w ∈ Ω, θ(u)− θ(u?) + (w −w?)
∗F(w?) ≥ 0, (8.5.25)

where F is monotone, u is a sub-vector of w, and θ(u) is a general convex

function in u.

It is easy to show that (8.5.25) is equivalent to the following condition:

∀w ∈ Ω, θ(u)− θ(u?) + (w −w?)
∗F(w) ≥ 0. (8.5.26)

We leave the proof as an exercise to the reader and others may find one in [HY12,

Theorem 2.1].

To find a solution to (8.5.26), a natural approach is to find approximate solu-

tion w̃ that is an ε-accurate solution. Or more precisely, ∀w ∈ Ω,

θ(u)− θ(ũ) + (w − w̃)∗F(w) ≥ −ε, (8.5.27)

or equivalently

θ(ũ)− θ(u) + (w̃ −w)∗F(w) ≤ ε. (8.5.28)

To find an ε-accurate solution w̃ for (8.5.28), a popular method is the following

proximal point algorithm (PPA): in the k-th iteration (k ≥ 1), generating the

new iterate wk+1 ∈ Ω such that

θ(u)− θ(uk+1) + (w−wk+1)∗(F(wk+1)+Q(wk+1−wk)) ≥ 0, (8.5.29)

where Q is symmetric and positive semidefinite. This objective is intended to

emulate the proximal method that we have introduced earlier: while in each

iteration we try to achieve the objective, say (8.5.27), but we do not want to

deviate from the previous wk too much. If we are able to find such iterate wk+1,

then we have the following nice convergence result for the PPA:
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Theorem 8.24 (Convergence of the Proximal Point Algorithm). For all integers

k ≥ 1, define w̃k
.
= 1

k

∑k
i=1wi, where wi is generated by (8.5.29), then we have

w̃k ∈ Ω and ∀w ∈ Ω,

k∑

i=1

(θ(ui)− θ(u) + (wi −w)∗F(wi)) ≤
1

2
‖w −w0‖2Q (8.5.30)

and

θ(ũk)− θ(u) + (w̃k −w)∗F(w) ≤ 1

2k
‖w −w0‖2Q, (8.5.31)

where ũk (resp. u) is the corresponding subvector of w̃k (resp. w).

Proof By (8.5.29), we have

θ(u)−θ(uk+1)+(w−wk+1)∗F(wk+1) ≥ (w−wk+1)∗Q(wk−wk+1). (8.5.32)

Meanwhile, we have the following relation

(w −wk+1)∗Q(wk −wk+1)

=
1

2

(
‖w −wk+1‖2Q − ‖w −wk‖2Q

)
+

1

2
‖wk −wk+1‖2Q

≥ 1

2
(‖w −wk+1‖2Q − ‖w −wk‖2Q). (8.5.33)

By combining (8.5.32) and (8.5.33), we have

θ(u)−θ(uk+1)+(w−wk+1)∗F(w) ≥ 1

2

(
‖w−wk+1‖2Q−‖w−wk‖2Q

)
. (8.5.34)

Summing (8.5.34) over i = 1, 2, . . . , k, we have

k

((
θ(u)−

k∑

i=1

1

k
θ(ui) +

(
w −

k∑

i=1

1

k
wi

)∗F(w)
))

≥ 1

2
(‖w −wk‖2Q − ‖w −w0‖2Q) ≥ −1

2
‖w −w0‖2Q. (8.5.35)

By the convexity of θ(u), we have

θ

(
k∑

i=1

1

k
ui

)
≤

k∑

i=1

1

k
θ(ui). (8.5.36)

Combining (8.5.35) and (8.5.36) leads to the statement of the theorem.

Notice the theorem implies that the convergence rate of PPA is at least O(1/k).

8.5.3 Convergence of ALM and ADMM

Reducing ALM and ADMM to PPA.
Now let us use the above result to show the convergence (and convergence rate)

of the ALM algorithm that we have previously studied in Section 8.4.3.
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Theorem 8.25 (Reducing ALM to PPA). The update rule of ALM in (8.4.11)

and (8.4.12) reduces to the following PPA problem: in the k-th iteration, finding

a wk+1
.
= (xk+1,λk+1) such that ∀w ∈ Rn × Rm ,

g(x)−g(xk+1) + (w−wk+1)∗
(
F(wk+1)+Q(wk+1 −wk)

)
≥ 0, (8.5.37)

where

F(w)
.
=

[
A∗λ
y −Ax

]
and Q

.
=

[
0 0

0 1
µIm

]
. (8.5.38)

Proof By the optimality condition (8.4.11), we have ∀x ∈ Rn,

g(x)− g(xk+1) + 〈x− xk+1,A
∗λk + µA∗(Axk+1 − y)〉 ≥ 0. (8.5.39)

By (8.4.12), (8.5.39) is equivalent to ∀x ∈ Rn,

g(x)− g(xk+1) + 〈x− xk+1,A
∗λk+1〉 ≥ 0. (8.5.40)

The update rule for λ (8.4.12) itself is also equivalent to ∀λ ∈ Rm

〈λ− λk+1, (y −Axk+1) +
1

µ
(λk+1 − λk)〉 = 0. (8.5.41)

Then by the definition of F(wk+1) and Q in (8.5.38), combining (8.5.40) and

(8.5.41), gives (8.5.37).

This theorem gives another proof for the convergence of the ALM based on

PPA, which is different from the proximal-gradient based proof given in Sec-

tion 8.4.3. According to Theorem 8.24, the convergence rate of ALM is at least

O(1/k), the same as the previous proof. The reason for going through this new

approach is that this leads to a unified proof for the convergence for the ADMM

algorithm, at least its symmetric version below.

Now let us consider the ADMM method for the problem (8.5.2). Recall that

the associate augmented Lagrangian is

Lµ(x, z,λ)
.
= g(x) + h(z) + 〈λ,Ax+Bz − y〉+

µ

2
‖Ax+Bz − y‖22.

Then in the k-th iteration, consider the following ADMM update rules:8

xk+1 = argmin
x
Lµ(x, zk,λk), (8.5.42)

λk+1 = λk + µ(Axk+1 +Bzk − y), (8.5.43)

zk+1 = argmin
z
Lµ(xk+1, z,λk+1). (8.5.44)

8 Notice that these update rules are in slightly different order than those in (8.5.5) - (8.5.7).
The rules here are also known as a symmetric version of ADMM. The proof of convergence

for the symmetric version is relatively simpler. The proof for the conventional ADMM

rules can follow a similar strategy but the analysis is a little more involved.
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Theorem 8.26 (Reducing ADMM to PPA). The update rules of ADMM in

(8.5.42) to (8.5.44) can be reduced to the following PPA problem: in the k-th

iteration, finding a wk+1
.
= (xk+1, zk+1,λk+1) such that ∀w,

(g(x) + h(z))− (g(xk+1) + h(zk+1)) +

(w −wk+1)∗
(
F(wk+1) +Q(wk+1 −wk)

)
≥ 0, (8.5.45)

where

F(w)
.
=




A∗λ
B∗λ

y −Ax−Bz


 and Q

.
=




0 0 0

0 µB∗B −B∗
0 −B 1

µIm


 � 0. (8.5.46)

Proof By the optimality condition (8.5.42), we have ∀x,

g(x)− g(xk+1) + 〈x− xk+1,A
∗λk + µA∗(Axk+1 +Bzk − y)〉 ≥ 0.

By (8.5.43), (8.5.47) is equivalent to ∀x

g(x)− g(xk+1) + 〈x− xk+1,A
∗λk+1〉 ≥ 0. (8.5.47)

The update rule (8.5.43) is also equivalent to ∀λ

〈λ−λk+1, (y−Axk+1−Bzk+1)+B(zk+1−zk)+
1

µ
(λk+1−λk)〉 = 0. (8.5.48)

By the optimality condition of (8.5.44), we have ∀z,

h(z)− h(zk+1) + 〈z − zk+1,B
∗λk+1 + µB∗(Axk+1 +Bzk+1 − y)〉 ≥ 0,

which is equivalent to ∀z

h(z)− h(zk+1)

+ 〈z − zk+1,B
∗λk+1 +B∗(λk+1 − λk) + µB∗B(zk+1 − zk)〉

≥ 0, (8.5.49)

Then with the definition of F(wk+1) and Q in (8.5.46), by combining (8.5.47),

(8.5.48) and (8.5.49), we obtain (8.5.45).

This theorem implies that ADMM can be reduced to PPA hence it inherits

the O(1/k) convergence rate established earlier for PPA.

Convergence of ALM and ADMM.
Notice that the convergence in terms of PPA only guarantees the sum of objective

function value and the constraint, i.e., left hand side of (8.5.31), converges.9 As

it turns out, in our context, the constraints are mostly linear equalities. By

exploiting nice properties of such constraints, it is possible to ensure that the

objective function value and the constraint accuracy converge separately [Xu17].

This only requires minor modification to the above proofs.

9 So rigorously speaking, there is no guarantee that each of the term would necessarily
converge separately.
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Theorem 8.27 (Convergence of ALM). Assume (x?,λ?) is the optimal solution

of (8.4.9). Then the update rules of ALM in (8.4.11) and (8.4.12) have the

following guarantee that letting x̃k
.
= 1

k

∑k
i=1 xi and given ρ > ‖λ?‖2, we have

‖Ax̃k − y‖2 ≤
1

2(ρ− ‖λ∗‖2)k
‖w −w0‖2Q, (8.5.50)

and

− ‖λ?‖2
2(ρ− ‖λ?‖2)k

‖w −w0‖2Q ≤ g(x̃k)− g(x?) ≤
1

2k
‖w −w0‖2Q, (8.5.51)

with w
.
=

[
x?

ρ(Ax̃k−y)
‖Ax̃k−y‖2

]
, w0

.
=

[
x0

λ0

]
.

Proof For ALM, let w
.
=

[
x?
λ

]
, where x? is the global minimum with Ax? = y

and λ ∈ Rm is to be determined. Then for the F(w) defined in (8.5.38), we have

(w −wk+1)∗F(wk+1)

= 〈x? − xk+1,A
∗λk+1〉+ 〈λ− λk+1,y −Axk+1〉

= 〈λk+1,Ax? − y〉+ 〈λ,y −Axk+1〉
= 〈λ,y −Axk+1〉, (8.5.52)

which is a linear function with respect to xk+1.

Then combining the (8.5.30) of Theorem 8.24, and Theorem 8.25, we have

k∑

i=1

(g(xi)− g(x) + (wi −w)∗F(wi)) ≤
1

2
‖w −w0‖2Q. (8.5.53)

So by out setting of w, applying the convexity of g(x), and combining (8.5.52)

and (8.5.53), it follows that

k(g(x̃k)− g(x?) + 〈λ,Ax̃k − y〉)

≤
k∑

i=1

(g(xi)− g(x) + (wi −w)∗F(wi))

≤ 1

2
‖w −w0‖2Q, (8.5.54)

where x̃k
.
= 1

k

∑k
i=1 xi. By setting λ

.
= ρ(Ax̃k−y)
‖Ax̃k−y‖2 with ρ > 0 to be determined,

we have

g(x̃k)− g(x?) + ρ‖Ax̃k − y‖2 ≤
1

2k
‖w −w0‖2Q. (8.5.55)

Assume that (x?,λ?) is the optimal solution of (8.4.9), then by the KKT

condition we have: ∀x

g(x)− g(x?)− 〈λ?,Ax− y〉 ≥ 0. (8.5.56)
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So we have

g(x̃k)− g(x?) ≥ −‖λ?‖2‖Ax̃k − y‖2. (8.5.57)

By combining (8.5.55) and (8.5.57), with the setting ρ > ‖λ?‖2, we have

‖Ax̃k − y‖2 ≤
1

2(ρ− ‖λ∗‖2)k
‖w −w0‖2Q, (8.5.58)

and

− ‖λ?‖2
2(ρ− ‖λ?‖2)k

‖w −w0‖2Q ≤ g(x̃k)− g(x?) ≤
1

2k
‖w −w0‖2Q. (8.5.59)

Theorem 8.28 (Convergence of ADMM). Assume (x?,λ?) is the optimal solu-

tion of (8.5.4). Then the update rules of ADMM (8.5.42) to (8.5.44) have the

following guarantee that letting x̃k = 1
k

∑k
i=1 xi and given ρ > ‖λ?‖2, we have

‖Ax̃k − y‖2 ≤
1

2(ρ− ‖λ?‖2)k
‖w −w0‖2Q, (8.5.60)

and

− ‖λ?‖2
2(ρ− ‖λ?‖2)k

‖w−w0‖2Q ≤ g(x̃k)+h(z̃k)− (g(x?)+h(z?)) ≤
1

2k
‖w−w0‖2Q,

with w =




x?
z?

ρ(Ax̃k+Bz̃k−y)
‖Ax̃k+Bz̃k−y‖2


, w0 =



x0

z0

λ0


.

Proof For ADMM, by setting w
.
=



x?
z?
λ


, where (x?, z?) is the global minimum

of the equality constrained convex problem that satisfies Ax? + Bz? − y = 0

and λ ∈ Rm is to be determined. Then we have

(w −wk+1)∗F(wk+1)

= 〈x?−xk+1,A
∗λk+1〉+〈z?−zk+1,B

∗λk+1〉+〈λ−λk+1,y−Axk+1−Bzk+1〉
= 〈λk+1,Ax? +Bz? − y〉+ 〈λ,y −Axk+1 −Bzk+1〉
= 〈λ,y −Axk+1 −Bzk+1〉, (8.5.61)

which is a linear function with respect to xk+1 and zk+1.

Then combining the (8.5.30) of Theorem 8.24, and Theorem 8.26, we have

k∑

i=1

(g(xi) + h(zi)− (g(x?) + h(x?)) + (wi −w)∗F(wi)) ≤
1

2
‖w −w0‖2Q.

(8.5.62)
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So applying the convexity of g(x) and h(z), and combining (8.5.61) and (8.5.62),

it follows that

k(g(x̃k) + h(z̃k)− (g(x?) + h(z?)) + 〈λ,Ax̃k +Bz̃k − y〉)

≤
k∑

i=1

(g(xi)− g(x?) + h(xi)− h(x?) + (wi −w)∗F(wi))

≤ 1

2
‖w −w0‖2Q, (8.5.63)

where x̃k
.
= 1

k

∑k
i=1 xi. By setting λ

.
= ρ(Ax̃k+Bz̃k−y)
‖Ax̃k+Bz̃k−y‖2 with ρ > 0 to be deter-

mined, we have

(g(x̃k)+h(z̃k))−(g(x?)+h(z?))+ρ‖y−Ax̃k−Bz̃k‖2 ≤
1

2k
‖w−w0‖2Q. (8.5.64)

Assume that (x?, z?,λ?) is the optimal solution of (8.5.4), then by the KKT

condition, we have: ∀x, z,

g(x) + h(z)− (g(x?) + h(z?))− 〈λ?,Ax+Bz − y〉 ≥ 0. (8.5.65)

So we have

g(x̃k) + h(z̃k)− (g(x?) + h(z?)) ≥ −‖λ?‖2‖Ax̃k +Bz̃k − y‖2. (8.5.66)

By combining (8.5.64) and (8.5.66), with the setting ρ > ‖λ?‖2, we have

‖Ax̃k +Bz̃k − y‖2 ≤
1

2(ρ− ‖λ?‖2)k
‖w −w0‖2Q,

and

− ‖λ?‖2
2(ρ− ‖λ?‖2)k

‖w−w0‖2Q ≤ g(x̃k)+h(z̃k)− (g(x?)+h(z?)) ≤
1

2k
‖w−w0‖2Q.

The above convergence rate O(1/k) is actually optimal for first-order meth-

ods, according to [OX18]. However, when the linear constraint Ax = y satisfies

certain special properties, one may achieve convergence rate faster than O(1/k),

as we will discuss more in the Notes section.

Alternating among Multiple Separable Terms.
Finally, we want to point out that, more generally, separable structures also arise

in many large scale learning problems, where the goal is to fit a parametric model

to a collection of observation vectors y1, . . . ,yp. Typically, we are provided with

a loss L(y,x), which could be, e.g., the log likelihood of observation y given

parameters x or the logistic loss in training a classifier with a deep network. Our

goal is to minimize
∑
i L(yi,x) over x.

In very large scale applications, it may be prohibitively expensive to store

the yi centrally, or to transmit them during the operation of an iterative al-

gorithm. Rather, we can assume that they are stored in a distributed fashion,
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in N locations: the j-th location stores {yi, i ∈ Ij}. The loss on this subset is

fj(x) =
∑
i∈Ij

L(yi,x). Our overall goal is then to solve

min
x

N∑

j=1

fj(x). (8.5.67)

Again, this objective function appears to separate into independent terms. To

exploit this structure, we can introduceN additional parameter vectors xj , which

are constrained to coincide with x:

min{xj}
∑N
j=1 fj(xj)

subject to xj = x, j = 1, . . . , N.

(8.5.68)

It is common practice that people apply similar alternating schemes to optimize

this class of problems. But the convergence and complexity analysis for ADMM

with multiple terms are much more difficult, as we will discuss more in Notes.

8.6 Leveraging Problem Structures for Better Scalability

In the previous sections, we showed how the special structure of optimization

problems arising in sparse and low-dimensional data analysis can be leveraged

to obtain efficient and scalable algorithms. One key piece of structure was the

existence of an easy-to-compute proximal operator. For example, for nuclear

norm minimization we showed that at a point Z = UΣV ∗,

proxλ‖·‖∗ [Z] = Usoft(Σ, λ)V ∗, (8.6.1)

where soft(·, λ) is the soft thresholding operator on the singular values. Us-

ing the proximal operator, we obtain proximal gradient methods that enjoy

the same convergence rate as if the objective was smooth, even though it is

nonsmooth. Each iteration consists of simple linear operations, followed by the

application of proxλ‖·‖∗ [·]. Each iteration can be computed in time polynomial

in the size of the target matrix: the proximal operator can be computed in

time O(n1n2 max {n1, n2}) in the worst case. This is sufficient for moderate-

sized datasets where n1 and n2 are each in the thousands.

Nevertheless, many problems in data science, scientific imaging, and machine

learning require even more scalable solutions. The Frank-Wolfe method and

Stochastic Gradient Descent (SGD) are two such methods. The two meth-

ods exploit two complementary types of structures that are common in high-

dimensional optimization problems on large-scale datasets. The Frank-Wolfe ex-

ploits structures in the constraints or in the data (e.g. the atomic structures)

so as to reduce the dependency of an algorithm’s complexity on the dimension

n, typically from linear to sublinear. Roughly speaking, SGD exploits finite-sum

structure in the objective function, say a sum of errors or losses for a large num-

ber of samples. By leveraging gradients computed from small random batches of
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samples instead of the full set, SGD can reduce the dependency of an algorithm’s

complexity on the sample size m, again from linear to sublinear. In this section,

we illustrate basic ideas behind both methods and illustrate their connections to

our problems.

8.6.1 Frank-Wolfe for Structured Constraint Set

In this section, we introduce a classical method from optimization, known as the

Frank-Wolfe or conditional gradient algorithm, which is scalable enough to solve

extremely large sparse and low-rank recovery problems. The key property of this

method is that in each iteration, it solves a subproblem which is simpler and

easier to compute than the proximal operator.

In its classical form, the Frank-Wolfe algorithm, originally proposed in [FW56],

applies to the problem of optimizing a smooth, convex function over a compact

convex set:

minx f(x),

subject to x ∈ C.

(8.6.2)

Here, the objective function f is assumed to be a convex,10 differentiable function

whose gradient ∇f(x) is L-Lipschitz. The constraint set C is assumed to be a

compact (hence closed and bounded) convex set with a diameter

diam(C)
.
= max {‖x− x′‖2 | x,x′ ∈ C} . (8.6.3)

Constrained Formulations of Sparse and Low-rank Recovery.
Many of the sparse and low-rank recovery problems that we have considered thus

far can be reformulated in terms of (8.6.2). For example, for sparse recovery, we

can choose C = {x | ‖x‖1 ≤ τ} to be an `1 ball, and solve

minx
1
2 ‖Ax− y‖

2
2 ,

subject to ‖x‖1 ≤ τ.
(8.6.4)

Similarly, for low-rank matrix completion, we can choose C to be a nuclear norm

ball and solve

minX
1
2 ‖PΩ[X]− Y ‖2F ,

subject to ‖X‖∗ ≤ τ.
(8.6.5)

Exercises 8.10 – 8.11 explore further reformulations of unconstrained sparse and

low-rank optimization in the form (8.6.2).

Similar to the other methods we have discussed thus far, Frank-Wolfe is an

iterative method, which generates a sequence of iterates x0,x1, . . . ,xk, . . . as

follows. At each iteration, we generate a new point vk by solving a constrained

optimization problem

vk ∈ arg min
v∈C

〈v,∇f(xk)〉 . (8.6.6)

10 The Frank-Wolfe algorithm can also work when f(x) is nonconvex. One can show that it

also converges but has a convergence rate O(1/
√
k) [LJ16].
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Frank-Wolfe Method (FW)

Problem Class:

minx f(x),
subject to x ∈ C.

f : Rn → R convex, differentiable, ∇f(x) L-Lipschitz.
C a compact convex set.

Basic Iteration: Repeat

vk ∈ arg min
v∈C

〈v,∇f(xk)〉 ,

xk+1 = xk + γk(vk − xk),

with γk = 2
k+2

.

Convergence Guarantee:

f(xk)− f(x?) ≤
2Ldiam2(C)

k + 2
.

Figure 8.6 An overview of the Frank-Wolfe Method.

We then set

xk+1 = (1− γk)xk + γkvk ∈ C, (8.6.7)

where γk ∈ (0, 1) is a specially chosen step size. Figure 8.6 summarizes the

properties of this method.

Interpretation as Minimizing a First-Order Approximation.
The Frank-Wolfe method can be interpreted as follows. At a given point xk, we

form a first-order approximation to the objective function f :

f(v) ≈ f̂(v,xk)
.
= f(xk) + 〈v − xk,∇f(xk)〉 . (8.6.8)

We minimize the approximation f̂(v,xk) over v ∈ C to produce vk. We then

take a step in the direction wk = vk − xk:

xk+1 = xk + γkwk. (8.6.9)

Computing the Step Direction.
The crucial subproblem in the Frank-Wolfe method involves minimizing a linear

function over a compact convex set C:

min
v∈C
〈v,∇f(x)〉 . (8.6.10)

Depending on the constraint set C, this could itself be a challenging (or even

intractable!) optimization problem. Fortunately, for the problems of interest in
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this book, this subproblem can be solved in an efficient and scalable manner. We

give two examples below:

Example 8.29 (Frank-Wolfe Subproblem over an `1 Ball). Given a vector g,

consider the problem

min
v
〈v, g〉 subject to ‖v‖1 ≤ τ. (8.6.11)

Let i be any index for which gi = ‖g‖∞, and σi = sign(gi). Then (8.6.11) has a

solution

v? = −τσiei, (8.6.12)

where ei is the i-th standard basis vector. The solution v? can be computed in

linear time, simply by finding the largest magnitude entry of g.

Example 8.30 (Frank-Wolfe Subproblem of a Nuclear Norm Ball). Given a

matrix G, consider the problem

min
V
〈V ,G〉 subject to ‖V ‖∗ ≤ τ. (8.6.13)

Let G = UΣV ∗ =
∑n1

i=1 uiσivi denote the singular value decomposition of G.

Then (8.6.13) has an optimal solution

V ? = −τu1v
∗
1. (8.6.14)

This optimal solution can be computed in time O(n1n2) by computing (only) the

leading singular vector pair (u1,v1) of G, see Section 4.2.1 of Chapter 4 for

details.

The latter example illustrates the special virtue of the Frank-Wolfe method

in nuclear norm minimization: the key subproblem only requires us to compute

one singular value/vectors triple. For a problem involving n1×n2 matrices, this

can be done in time O(n1n2) – a dramatic improvement over proximal gradient

methods, which require a full singular value decomposition in each iteration.

This scalability comes at a price, though. Compared to accelerated proximal

gradient methods, which converge at a rate of O(1/k2) in function values, the

Frank-Wolfe method only achieves a rate of O(1/k).11 The following theorem

gives a precise bound on the worst-case rate of convergence for Frank-Wolfe over

the class of convex functions with Lipschitz gradient.

Theorem 8.31 (Convergence of Frank-Wolfe). Let x0,x1, . . . denote the se-

quence of iterates generated by the Frank-Wolfe method, with step size γk = 2
k+2 .

Then

f(xk)− f(x?) ≤
2Ldiam2(C)

k + 2
. (8.6.15)

11 When the function is nonconvex, the worst convergence rate reduces to O(1/
√
k) [LJ16].
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Proof For ease of notation, write d = diam(C)2, x = xk, x+ = xk+1, γ = γk,

and v = vk. Note that

x+ − x = γ (v − x) . (8.6.16)

Because ∇f(x) is L-Lipschitz, we can use the upper bound (8.2.8) to obtain

f(x+) ≤ f(x) +
〈
∇f(x),x+ − x

〉
+ L

2

∥∥x+ − x
∥∥2

2

≤ f(x) + γ 〈∇f(x),v − x〉+ γ2L
2 ‖v − x‖

2
2

≤ f(x) + γ 〈∇f(x),v − x〉+ γ2L
2 d2. (8.6.17)

Meanwhile, by convexity,

f(x?) ≥ f(x) + 〈∇f(x),x? − x〉
≥ f(x) + 〈∇f(x),v − x〉 , (8.6.18)

where the final line follows because v is chosen to minimize 〈∇f(x),v〉. Com-

bining these two inequalities, we find that

〈∇f(x),v − x〉 ≤ −
(
f(x)− f(x?)

)
, (8.6.19)

whence, plugging into (8.6.17) and subtracting f(x?) from both sides, we obtain

f(x+)− f(x?) ≤ (1− γ)
(
f(x)− f(x?)

)
+ γ2

2 Ld
2. (8.6.20)

We use this basic relationship together with an inductive argument to bound the

rate of convergence of the Frank-Wolfe method. Let εk denote the suboptimality

(in function values) at iteration k:

εk = f(xk)− f(x?). (8.6.21)

Set γk = 2
k+2 , so γ0 = 1. Applying (8.6.20), we find that

ε1 ≤ 1
2Ld

2. (8.6.22)

Suppose now that for ` = 1, . . . , k, ε` ≤ 2
`+2Ld

2. Applying (8.6.20) again, we

find that

εk+1 ≤
k

k + 2
εk +

2

(k + 2)2
Ld2

≤ k + 1

(k + 2)2
× 2Ld2

≤ 2Ld2

(k + 1) + 2
. (8.6.23)

Hence, the relationship ε` ≤ 2
`+2Ld

2 holds for all iterations `, as claimed.
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8.6.2 Frank-Wolfe for Stable Matrix Completion

In the context of nuclear norm minimization, the above result can be viewed as

follows: Frank-Wolfe allows us to derive methods that produce moderate-quality

solutions to extremely large problems, for which methods with better worst cases

rates simply take too long to compute even a single iteration. To be more specific,

we in this section illustrate the general Frank-Wolfe method for the particular

problem of recovering a low-rank matrix from incomplete and noisy observations

Y = PΩ[Xo +Z], (8.6.24)

where Xo ∈ Rn1×n2 has low rank, Z ∈ Rn1×n2 is a matrix of small, dense noise,

and Ω ⊆ [n1]× [n2] is the set of observed entries. One approach to approximately

recovering Xo is to minimize the reconstruction error over the set of all matrices

of small nuclear norm:

min f(X) ≡ 1
2 ‖PΩ[X]− Y ‖2F ,

subject to ‖X‖∗ ≤ τ.
(8.6.25)

Here, the constraint ‖X‖∗ ≤ τ encourages X to have low rank. The constraint

set C = {X | ‖X‖∗ ≤ τ} is closed and bounded. Moreover, the gradient

∇f(X) = PΩ [X − Y ] (8.6.26)

is 1-Lipschitz, and so the Frank-Wolfe method indeed applies to this problem.

The key step in the Frank-Wolfe method is to minimize a linear function

〈V ,∇f(X)〉 over the constraint set C. As described above, this problem can be

solved in closed form: if

∇f(X) =

n1∑

i=1

uiσiv
∗
i (8.6.27)

is the singular value decomposition of ∇f , then

− τu1v
∗
1 ∈ arg min

V ∈C
〈V ,∇f(X)〉 . (8.6.28)

The leading singular value/vectors can be extracted from the matrix ∇f(X)

efficiently, without computing the entire SVD (8.6.27). Typically, this is done

using the power method, which was described in some detail in Chapter 4 and

Exercise 4.6.12 To cleanly describe the method, we simply let

(u1, σ1,v1)
.
= LeadSV(G) (8.6.29)

denote the operation which extracts a leading singular value/vectors triple from

a matrix G. Using this notation, the complete Frank-Wolfe algorithm for stable

matrix completion is described in Algorithm 8.8.

The Frank-Wolfe method requires only a single singular value/vectors triple

12 Or by the more efficient Lanczos method to be introduced in Section 9.3.2 of the next
Chapter.
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Algorithm 8.8 Frank-Wolfe for Stable Matrix Completion

1: Problem: given Y ∈ Rn1×n2 and Ω ⊆ [n1]× [n2],

min
X

1
2 ‖PΩ[X]− Y ‖2F subject to ‖X‖∗ ≤ τ.

2: Input: X0 ∈ Rn1×n2 satisfying ‖X0‖∗ ≤ τ .

3: for (k = 0, 1, 2, . . . ,K − 1) do

4: (u1, σ1,v1)← LeadSV (PΩ [Xk − Y ]).

5: V k ← −τu1v
∗
1.

6: Xk+1 ← k
k+2Xk + 2

k+2V k.

7: end for

8: Output: X? ←XK .

at each iteration. Moreover, since V k = −τu1v
∗
1 has rank one, the rank of Xk

increases by at most one at each iteration. In this sense, Frank-Wolfe can be

viewed as a greedy method. It constructs a low-rank matrix X? by adding on one

(optimally chosen) rank-one factor at a time.

8.6.3 Connection to Greedy Methods for Sparsity

In sparse and low-rank approximation, greedy methods are sometimes favored

for their simplicity and scalability. For sparse approximation, the Frank-Wolfe

method gives one such greedy algorithm. Consider the problem

minx f(x) ≡ 1
2 ‖Ax− y‖

2
2 ,

subject to ‖x‖1 ≤ τ.
(8.6.30)

Notice that

∇f(x) = A∗(Ax− y). (8.6.31)

The Frank-Wolfe subproblem

min
v
〈v,∇f(x)〉 subject to ‖v‖1 ≤ τ. (8.6.32)

has an especially simple solution: letting i be the index of the largest magnitude

entry of ∇f , and σ its sign,

v? = −τσei. (8.6.33)

Algorithm 8.9 describes in detail the Frank-Wolfe method for problem (8.6.30).

At each iteration, it increases the number of nonzero entries in the vector x by

at most one, by adding on a multiple of eik . Let

Ik = {i1, . . . , ik−1} = supp(xk) (8.6.34)

denote the collection of indices that have been chosen up to time k. We generate
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Algorithm 8.9 Frank-Wolfe for Noisy Sparse Recovery

1: Problem: given y ∈ Rm, A ∈ Rm×n,

min
x

1
2 ‖Ax− y‖

2
2 subject to ‖x‖1 ≤ τ.

2: Input: x0 ∈ Rn satisfying ‖x0‖1 ≤ τ .

3: for (k = 0, 1, 2, . . . ,K − 1) do

4: rk ← Axk − y.

5: ik ← arg maxi |a∗i rk|.
6: σ ← sign

(
a∗ikrk

)
.

7: vk ← −τσeik .

8: xk+1 ← k
k+2xk + 2

k+2vk.

9: end for

10: Output: x? ← xK .

Ik+1 from Ik by introducing a (potentially) new index

Ik+1 = Ik ∪ {ik} . (8.6.35)

This new index is chosen according to the largest-magnitude entry in the gradient

∇f . Write

A = [a1 | · · · | an] (8.6.36)

for the columns of A, and let

rk = Axk − y (8.6.37)

denote the measurement residual at point xk. Since ∇f(xk) = A∗rk, the Frank-

Wolfe method chooses the index ik corresponding to the column aik that is most

correlated with the residual rk.

Matching Pursuit.
A number of classical greedy methods for sparse approximation have this basic

structure. A canonical example is the Matching Pursuit algorithm [MZ93]. This

algorithm generates a sequence of iterates x0 = 0,x1,x2, . . . , by repeatedly

choosing a column of aik of A that is most correlated with the residual rk.

Similar to Frank-Wolfe, Matching Pursuit13 sets

ik = arg max
i

∣∣ [∇f(xk)]i
∣∣ = arg max

i

∣∣a∗i rk
∣∣. (8.6.38)

However, rather than stepping a predetermined length in the eik direction,

Matching Pursuit chooses the step size tk by solving a one-dimensional mini-

13 Despite the strong parallels to the Frank-Wolfe method, Matching Pursuit was motivated

independently from a rather different perspective for solving a more specific class of signal
processing tasks [MZ93].
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Algorithm 8.10 Matching Pursuit for Sparse Approximation

1: Problem: find a sparse x such that f(x) ≡ 1
2 ‖Ax− y‖

2
2 is small.

2: x0 ← 0.

3: for (k = 0, 1, 2, . . . ,K − 1) do

4: rk ← Axk − y.

5: ik ← arg maxi |a∗i rk|.
6: tk ← −〈

aik ,rk〉
‖aik‖22

.

7: xk+1 ← xk + tkeik .

8: end for

9: Output: x? ← xK .

mization problem:

tk = arg min
t
f (xk + teik) = −〈aik , rk〉

‖aik‖22
. (8.6.39)

This can be viewed as a form of exact line search and typically leads to more rapid

convergence in practice. The overall Matching Pursuit algorithm is specified as

Algorithm 8.10.

Orthogonal Matching Pursuit.
Matching pursuit achieves better convergence by choosing the step size tk in an

optimal manner. Since

xk+1 = xk + tkeik , (8.6.40)

this is equivalent to making an optimal choice of the ik-th entry in xk+1, while

leaving all of the other entries fixed. It is possible to further improve the rate of

convergence of this approach by choosing all of the nonzero entries of xk+1 op-

timally (rather than just the ik-th entry). In notation, let Ik = {i1, i2, . . . , ik−1}
denote the collection of indices that have been chosen up to step k. The Orthogo-

nal Matching Pursuit method [PRK93,TG07] selects an index ik that maximizes

the correlation |a∗i rk| of a column of A with the residual rk = Axk − y. It sets

Ik+1 = Ik ∪ {ik}, and then updates all of the nonzero entries in x by setting

xk+1 = arg min
x

1
2 ‖Ax− y‖

2
2 subject to supp(x) ⊆ Ik+1. (8.6.41)

This problem can be solved in closed form:

[xk+1]Ik+1
=
(
A∗Ik+1

AIk+1

)−1
A∗Ik+1

y, (8.6.42)

[xk+1]Ick+1
= 0. (8.6.43)

The name Orthogonal Matching Pursuit comes from the observation that the

residual

rk+1 = Axk+1 − y =
(
AIk+1

(
A∗Ik+1

AIk+1

)−1
A∗Ik+1

− I
)
y (8.6.44)
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Algorithm 8.11 Orthogonal Matching Pursuit for Sparse Approximation

1: Problem: find a sparse x such that f(x) ≡ 1
2 ‖Ax− y‖

2
2 is small.

2: x0 ← 0, I0 ← ∅.

3: for (k = 0, 1, 2, . . . ,K − 1) do

4: rk ← Axk − y.

5: ik ← arg maxi |a∗i rk|.
6: Ik+1 ← Ik ∪ {ik}.
7: [xk+1]Ik+1

←
(
A∗Ik+1

AIk+1

)−1
A∗Ik+1

y.

8: [xk+1]Ick+1
← 0.

9: end for

10: Output: x? ← xK .

is orthogonal to the range range
(
AIk+1

)
of the dictionary columns selected through

the first k + 1 iterations.

The overall Orthogonal Matching Pursuit algorithm is given as Algorithm

8.11. This method is sometimes favored by practitioners due to its simplicity,

and the fact that it maintains an explicit active set Ik. The latter property is

useful for problems in which the support of the sparse solution x? is the object

of interest.14

Although OMP has many variants and extensions, it was originally derived

for the specific problem of finding sparse near-solutions to a linear system of

equations Ax = y. Like `1 minimization, OMP is guaranteed to succeed when-

ever y is generated from some sufficiently sparse xo and the columns of A are

sufficiently spread in the high-dimensional space Rm. In particular:

Theorem 8.32 (Convergence of Orthogonal Matching Pursuit). Suppose that

y = Axo, with

k = ‖xo‖0 ≤
1

2µ(A)
. (8.6.45)

Then after k iterations, the OMP algorithm terminates with xk = xo and Ik =

supp(xo).

Exercise 8.12 guides the reader through a proof of Theorem 8.32. The key

message of the proof is that under the conditions of the theorem, at each iteration

` the algorithm selects an index i` that belongs to the true support set supp(xo).

The form of Theorem 8.32 can be directly compared to that of Theorem 3.3 of

Chapter 3. These results imply that both OMP and `1 minimization recover xo
whenever ‖xo‖0 ≤ 1/2µ(A). Hence, at an intuitive level, both methods succeed

whenever the target solution is sparse and the matrix A is “nice”.

14 For example, in the RF spectrum sensing discussed in Chapter 11, the goal is to determine
which bands of the RF spectrum are occupied, in order to avoid interference. The specific

energy levels within these bands are of secondary importance.
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However, as shown in Chapter 3, the incoherence condition requires xo to

be extremely sparse. `1 minimization also recovers denser xo under the stronger

condition that A satisfies the Restricted Isometry Property δ(A) < c. While var-

ious improved analyses of OMP are available, the RIP is not sufficient for OMP

to succeed. In this sense, convex relaxation achieves a better uniform guarantee.

However, OMP can be modified to also guarantee sparse recovery under the RIP.

The key ideas are to allow the algorithm to remove elements from the active set

Ik at each iteration, and to add multiple elements. The resulting method, called

Compressed Sampling Matching Pursuit (COSAMP) [NT09] is described in more

detail in Exercise 8.13. The large and varied literature on greedy algorithms also

includes greedy methods for more general problems such as low-rank recovery,

as we will give more references in the final Notes section.

8.6.4 Stochastic Gradient Descent for Finite Sum

The type of optimization we often encounter is of the type:

F (x) = f(x) + g(x), x ∈ Rn, (8.6.46)

where f(x) is typically the measurement error term, also known as the “data”

term, say ‖y−Ax‖22, and g(x) is typically a regularization for promoting certain

low-dimensional structure on the solution x, also known as the “model” term,

say the `1 norm ‖x‖1 for a vector or the nuclear norm for a matrix. As we

have seen in the previous section, to strive for better scalability, the Frank-Wolfe

method exploits the (compositional) structure in the term g(x), by restricting

the search for good descent direction to a small set of coordinates or directions.

See Section D.4 of the Appendix B for a more explicit scheme, known as block

coordinate descent, to exploit such structures. Such schemes typically allow us

to reduce the dependency of algorithmic complexity on the dimension n, from

O(n) to sublinear in n, say15

O(n)→ O(n1/2).

A remaining question is whether there are good structures in the data term

f(x) that can be exploited too for better scalability. Indeed, in many problems

that arise in compressive sensing or machine learning, the data term is typically

a finite sum of (statistically independent) terms, say measurement errors. That

is, f(x) is typically of the form:

f(x) =
1

m

m∑

i=1

hi(x), x ∈ Rn, (8.6.47)

where each hi(x) is an independent sample of the function f(x) hence E[hi(x)] =

15 For example, in the case of recovering an n1 × n2 low-rank matrix, the Frank-Wolfe
method reduces the dependency from O(n1 × n2) to O(n1 + n2).
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f(x). For example, for m measurements of a sparse vector x: y = Ax ∈ Rm, we

can write the data fitting term as:

1

m
‖y −Ax‖22 =

1

m

m∑

i=1

(yi − a∗ix)2, (8.6.48)

where a∗i is the i-th row of A. This is also the case in many machine learning

problems, where the total loss to minimize is a sum of logistic or `p losses for a

large set of training samples.

Notice when the number of samples m is very large, even gradient descent al-

gorithm can be very expensive: to evaluate the gradient of f(x), the complexity

is typically linear in the number of samples, i.e., of the order O(m). To further

reduce the complexity’s dependency on m, one key idea is to use the so-called

stochastic gradient descent (SGD) method [RM51,Bot10]. That is, at east itera-

tion k, instead of using all the m samples to compute the full gradient ∇f(x), we

compute the gradient approximately with a random batch of samples Bk ⊂ [m]

of a fixed size b� m:

fk(x)
.
=

1

b

∑

i∈Bk
hi(x), ∇fk(x)

.
=

1

b

∑

i∈Bk
∇hi(x). (8.6.49)

We then use this approximate gradient to replace the full gradient in the descent

scheme, leading to the stochastic gradient descent (SGD) scheme:

xk+1 = xk − γk∇fk(xk). (8.6.50)

This reduces the computational cost of each iteration to be O(n). Following our

proofs for the gradient descent, using the fact E[∇fk(x)] = ∇f(x), it is easy to

show that the expected value of the objective function E[f(xk)] converges using

the stochastic gradient descent scheme.

However, despite high scalability, SGD has poor convergence rate due to a con-

stant variance of the stochastic gradient E[‖∇fk(x)−∇f(x)‖] > 0. To improve

the convergence behavior of SGD, several methods of variance reduced SGD have

been developed in the past decade or so [JZ13,DBLJ14,LMH15,AZ17]. In such

variance reduction methods, instead of directly using ∇fk(x), one computes a

full gradient∇f(x̃) at an anchor point x̃ beforehand. Then one uses the following

variance reduced gradient

∇̃fk(x)
.
= ∇fk(x)−∇fk(x̃) +∇f(x̃) (8.6.51)

as a proxy for the full gradient ∇f(x) during each iteration:

xk+1 = xk − γk∇̃fk(xk). (8.6.52)

As a result, the amortized per-iteration cost is still the same as SGD. However,

the variance reduced gradient (8.6.51) is unbiased and can reduce the variance

from E[‖∇fk(x) − ∇f(x)‖] to E[‖∇fk(x) − ∇fk(x̃)‖]. In theory, the variance

E[‖∇fk(x) − ∇fk(x̃)‖] can vanish asymptotically, thus the convergence rate of

SGD can be substantially improved.
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Roughly speaking, these methods can reduce the variance of stochastic gradi-

ent by exploiting the structure of finite sum. With variance reduction, they have

the same per-iteration cost with SGD in the amortized sense whereas they can

achieve better total complexity than the gradient descent method in terms of

dependence on the number of samples, typically from O(m) to sublinear in m,

say

O(m)→ O(m1/2).

All of these methods can work with the Nesterov’s acceleration schemes in-

troduced in earlier sections and can be extended to the nonsmooth setting for

structured signal recovery [DBLJ14,XZ14,AZ17]. More specifically, to achieve a

prescribed accuracy in the objective function, say |f(xk) − f(x?)| ≤ ε, instead

of the generic rate O(ε−2) of stochastic gradient descent for general convex func-

tions, one can achieve the accelerated rate of

O(ε−2)→ O(ε−1/2).

The recent work [SJM20b], which combines the variance reduction and accel-

eration methods, has achieved an overall computational complexity that prac-

tically meets the theoretical lower bound for this class of finite-sum problems.

In addition, the variance reduced SGD can also be used in conjunction with the

Frank-Wolfe method to simultaneously exploit the finite-sum structure and low-

dimensional structure for even better scalability, for example see the work [HL16].

8.7 Notes

Greedy Algorithms.
The name basis pursuit was first suggested by Chen and Donoho in their early

work on recovering sparse representation [Che95, CDS01]. Many greedy algo-

rithms such as Matching Pursuit (MP) [MZ93] were first used to solve the associ-

ated optimization problems, for an incoherent measurement matrix. The original

idea of Orthogonal Matching Pursuit (OMP) can be traced to the work [PRK93]

on wavelets in early 1990’s and was later reintroduced by [TG07] to the problem

of compressed sensing with random measurements. The OMP algorithm was later

improved by [NT09] as the (Compressed Sampling Matching Pursuit) COSAMP

algorithm which works for measurement matrices with the RIP property. As we

have seen in this chapter, these greedy algorithms bear great resemblance to the

Franke-Wolfe algorithm [FW56] developed in 1950’s.

Convex Optimization Approach.
An almost parallel line of study strives to develop efficient algorithms based

on convex optimization. The study of proximal operator for various convex

functions can be traced to the work of Moreau in 1960’s [Mor62]. The Itera-

tive Shrinkage Threshold Algorithm (ISTA), with its early roots tracing back
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to [Tib96], has been studied under different names, such as forward-backward

splitting [CW05], thresholded Landweber [DDM04], and separable approxima-

tion (SpaRSA) [WNF08]. The Fast Iterative Shrinkage Threshold Algorithm

(FISTA), based on Nesterov’s acceleration technique [Nes83], was introduced

later by [BT09].

Large-Scale Algorithmic Implementations.
The methods featured in this Chapter aim to elucidate main ideas and techniques

for solving the BP (8.1.1) or Lasso (8.1.2) type programs. The algorithms given in

here can already solve problems of moderate size efficiently. Nevertheless, for very

large-scale problems, say with x being hundreds of millions in dimension. One

could resort to more scalable approaches. For example, one can screen the vari-

ables in x so that we do not have to work with all variables at once. For instance,

for the Lasso-type (or any `1 regularized convex) problems, more careful studies

of the primal dual variables lead to efficient screening rules [TBF+12, GVR12].

Based on different screening strategies, one can subsequently develop more scal-

able greedy algorithms, including sequential screening methods [WZL+14] or

dynamical screening methods [NFGS15]. Another related strategy is to maintain

and update a relatively small working or active set according to some violation

rules [JG15]. This has also led to some of the more recent scalable algorithms

such as the BLITZ [JG15] and CELER [MSG18].

Convergence of ALM and ADMM.
The convergence of ALM and ADMM type algorithms has been studied long in

history (see e.g. [Hes69,Roc73,Pow69] for ALM and [LM79,KM89] for ADMM).

Like the ALM method, the most natural approach is to recognize ADMM as

some known algorithm applied to the dual. In fact, ADMM turns out to be

equivalent to Douglas-Rachford splitting applied to the dual. For more details

on this, see [EB92, CW05]. We recommend [Eck12] for a tutorial introduction

to a more formal convergence analysis of ADMM. For more recent analysis of

generalized version of ADMM including their convergence rates, we recommend

the work of [DY16]. ADMM has also been widely applied to problems when

the number of terms are more than three [BPC+11]. The convergence analysis

of ADMM with more than three terms is much more difficult and it has been

shown to diverge in many cases.

The proof given in this book follows the framework of [HY12] which was ap-

plied to the linear equality case by [Xu17]. We have seen that monotone op-

erators play a powerful role in providing unified convergence analysis for both

ALM and ADMM. In fact, monotone operators not only help with the conver-

gence analysis. They may also lead to rather unified ways of algorithm design

for convex optimization, by interpreting the optimal solution as the fixed point

to certain contracting mappings associated with the monotone operators of the

Lagrangian. The reader may refer to the recent manuscript [RB16] for a more

systematic survey on this method.
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Exploit Structures in Data Measurements.
In this chapter, the algorithms developed typically treat the data-fitting term for

the measurement y = Ax as a general smooth convex function. The convergence

rates of all the algorithms are characterized under this (somewhat unnecessarily)

general assumption. For instance, the rate O(1/k) for ALM and ADMM, proven

in Theorem 8.27 and 8.28, is actually optimal for this class of problems for first-

order methods, according to [Nes03,Nem04,OX18]. However, in the compressed

sensing setting, the data matrix is often a random measurement matrix and thus

is full rank and well-conditioned. This property induces implicit strong convex-

ity in the data fitting term. Recent work [SJM20a] has shown that, somewhat

surprisingly, for this class of problems, the bound O(1/k) for ALM-like algo-

rithms can be broken and one can obtain accelerated algorithms that achieve an

improved convergence rate of O(1/k2 log k).

Exploit Structures in Sparsity-Promoting Norms.
In this chapter, we have mainly used the model problems of recovering sparse

signals and/or low-rank matrices to introduce key algorithmic ideas that lead

to provably efficient and effective algorithms for convex optimization. We only

customize all the general algorithms to the `1 norm and the nuclear norm. As

we have alluded to in Chapter 6, there are many other norms that promote

a broader family low-dimensional structures. In particular, the so-called group

sparsity norms can be used to promote various sparse patterns in signals and

images. One may develop efficient optimization algorithms that are specially

tailored to such norms. Interested readers may refer to the manuscript [BJMO12]

on this topic.

8.8 Exercises

8.1 (Proximal Operators). Prove the first and the third assertions of Proposition

8.4.

8.2 (Average Proximal Operator). Given multiple matrices {W i ∈ Rm×n}ki=1,

show that we have:

soft
(1

k

k∑

i=1

W i,
λ

k

)
= arg min

X
‖X‖∗ +

1

2

k∑

i=1

‖X −W i‖2F . (8.8.1)

This can be viewed as the proximal to find a low-rank matrix such that the aver-

aged squared Frobenius norms to multiple matrices are small.

8.3 (Hybrid Singular Value Thresholding). Consider a matrix W of rank r and

with singular values {σi}ri=1 in descending order. Let h : R→ R+ be an increasing

function and h(0) ≤ 1.
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1 Show that, given any λ ∈ (0, σ1), there exists a unique integer j ∈ [1, r] such

that the solution tj to the following equation:

h
( j∑

i=1

σi − jtj
)

=
tj
λ

satisfies the condition:

σj+1 ≤ tj < σj .

2 Design an algorithm that can compute this unique j and tj efficiently. Notice

that the worst you can do is to do a sequential search for all j’s.

Denote this unique solution as t∗j (λ), and this gives a so-called hybrid threshold-

ing operator on the matrix W with singular value decomposition UΣV ∗:

H(W , λ) = Usoft
(
Σ, t∗j (λ)

)
V ∗. (8.8.2)

8.4 (Proximal Operator for Function of Nuclear Norm). Let f : R → R be any

convex and differentiable function with an increasing derivative f ′(x) and f ′(0) ≤
1. Then given any matrix W ∈ Rm×n and a λ > 0, we have

H(W , λ) = arg min
X

λf(‖X‖∗) +
1

2
‖X −W ‖2F , (8.8.3)

where H(W , λ) is the hybrid thresholding operator defined in the previous exer-

cise. Notice that the squared nuclear norm ‖X‖2∗ or exponential e‖X‖∗ discussed

in Example 8.5 are all special cases to the above result.

8.5. Given multiple matrices {W i ∈ Rm×n}ki=1, consider a function f of the

same property as in the previous exercise. Then we have:

H
(1

k

k∑

i=1

W i,
λ

k

)
= arg min

X
λf(‖X‖∗) +

1

2

k∑

i=1

‖X −W i‖2F . (8.8.4)

8.6 (Iterative Soft-Thresholding Algorithm for PCP). Regarding solving the sta-

ble principal component pursuit program using proximal gradient descent:

1 Apply the proximal gradient method to the PCP program. Based on separa-

bility of the two nonsmooth terms in the objective function, write down the

corresponding proximal operators and the associated w1 and w2. Justify the

updates for Lk+1 and Sk+1 in Algorithm 8.2.

2 Code a MATLAB function that implements the Iterative Soft-Thresholding

Algorithm 8.2 for PCP, and demonstrated it on synthetic problem instances

in which the data are superpositions of low-rank and sparse matrices.

8.7 (Lasso and Elastic Net). Use the PG and APG methods to solve the following

two problems:
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1 Suppose the observation y = Axo+n, where xo is sparse and n is some noise.

Given y and A, we would like to solve the Lasso problem of the following form

min
x

1

2
‖y −Ax‖22

︸ ︷︷ ︸
f(x)

+λ ‖x‖1︸ ︷︷ ︸
g(x)

,

to approximately recover the sparse vector xo. For the PG and APG with a

constant step size, compute the step size based on the Lipschitz constant of

∇f . Report your chosen step size for the proximal gradient in analytic form

(i.e with respect to derived Lipschitz constant). For each method implemented,

report the number of iterations needed for convergence, norm difference with

respect to the ground truth, a plot of objective value convergence in log scale

and the run time.

2 Furthermore, consider the following elastic net problem:

min
x

1

2
‖y −Ax‖22 + µ ‖x‖22

︸ ︷︷ ︸
f(x)

+λ ‖x‖1︸ ︷︷ ︸
g(x)

,

where f is µ-strongly convex for µ > 0. Use PG and APG to solve the problem

and conduct similar reports as those for the previous problem.

8.8 (Implementation: Augmented Lagrange Multiplier Algorithm for PCP). De-

rive an algorithm for the (equality constrained) principal component pursuit prob-

lem,

min
L,S
‖L‖∗ + λ‖S‖1 subject to L+ S = Y . (8.8.5)

This algorithm will solve a sequence of unconstrained problems; sketch how these

problems can be solved using (accelerated) proximal gradient. Which solver do

you expect to be more efficient, the one you’ve derived in this exercise, or a

solver based on the alternating directions method of multipliers, which alternates

between L and S?

8.9 (Data Self-Expressive Representation). In many data processing problems

such as subspace clustering [VMS16], the inter-relationships among all the data

are best revealed through using data to represent (or regress) themselves. More

precisely, given a set of data points X = [x1,x2, . . . ,xm] ∈ Rn×m, we try to

represent every data point as the (sparse) linear combination of other data points

as:

X = XC (8.8.6)

where C ∈ Rm×m is a matrix of coefficients. Since we do not want the pathological

solution where every point is represented by itself, we can enforce the diagonal

entries of C to be zero: diag(C) = 0. In addition, we like to represent each

point with the fewest points hence we prefer the sparse solution for C. This is

particularly the case when the data lie on low-dimensional structures such as a
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union subspaces, or approximately so for submanifolds. This entails us to solve

the following program:

min ‖C‖1 subject to X = XC, diag(C) = 0. (8.8.7)

Use the techniques provided in this chapter and write an algorithm to solve this

problem.

One may also interpret the data points as nodes of a graph and the coefficient

matrix C as a matrix of the “state transition” probability. In this case, if the

data form certain “clusters” or “communities”, we may expect the matrix C to

be low rank [LLY+13]. Replace the `1 norm in the above problem and write an

algorithm to solve the following program:

min ‖C‖∗ subject to X = XC, diag(C) = 0. (8.8.8)

8.10 (Unconstrained Problems via Frank-Wolfe). Consider an unconstrained op-

timization problem of the form

min
x
f(x) + g(x), (8.8.9)

with f differentiable with Lipschitz continuous gradient. Derive a Frank-Wolfe

like method for this problem by instead solving

min
x,t

f(x) + t subject to g(x) ≤ t, t ≤ t0, (8.8.10)

where t0 is an upper bound on g(x?) at any optimal solution x? (you may assume

that t0 is provided by the user).

8.11 (Sparse and Low-Rank via Frank-Wolfe). Consider the constrained problem

min f(L,S) ≡ 1
2‖Y −L− S‖2F subject to ‖L‖∗ ≤ τL, ‖S‖1 ≤ τS . (8.8.11)

Derive a Frank-Wolfe algorithm for solving this problem. By how much can the

rank of L increase at each iteration? By how much can the number of nonzeros

in S increase at each iteration?

Suppose we modify the algorithm by, after each Frank-Wolfe iteration, taking

a projected gradient step

S+ = P‖S‖1≤τS
[
S − 1

L∇Sf(L,S)
]

(8.8.12)

where L is a Lipschitz constant of the gradient of f . What are some potential

advantages of this hybrid method, in terms of the number of iterations required

to converge?

8.12 (Sparse Recovery by Orthogonal Matching Pursuit). The goal of this ex-

ercise is to prove Theorem 8.32, which shows that OMP correctly recovers any

target sparse solution xo with k = ‖xo‖0 ≤ 1
2µ(A) . Let I = supp(xo).
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• OMP selects a true support index in the first iteration. Let imax index a

maximum-magnitude entry of xo, i.e., xo(imax) = ‖xo‖∞. Using the inco-

herence of A, argue that
∣∣a∗imax

r0

∣∣ ≥
∣∣a∗jr0

∣∣ ∀ j ∈ Ic. (8.8.13)

• Argue by induction that OMP selects some i` ∈ I for every iteration ` =

0, . . . , k − 1.

• Using the fact that r` ⊥ span (AI`), argue that OMP selects a new index i` ∈ I

at each iteration ` = 0, . . . , k−1. Conclude that OMP terminates with xk = xo
and Ik = I, as claimed.

8.13 (Greedy Methods that Succeed Under RIP). The Compressive Sampling

Matching Pursuit (COSAMP) algorithm modifies OMP by adding and subtract-

ing multiple indices from the active set I` at each iteration `. This algorithm takes

as input a target number of nonzero entries, s, and modifies OMP as follows:

• At iteration `, let I1/2 be the support of the largest 2s entries of u` = A∗r`.
• Let I`+1/2 = I` ∪ I1/2
• Solve for x`+1/2 by least squares on the support I`+1/2.

• Then let x`+1 be x`+1/2 pruned to its largest s entries.

Implement the COSAMP algorithm, and compare its breakdown in terms of spar-

sity level to OMP.

8.14 (Monotone Relation). Show the following properties for monotone relations:

1 Given two monotone relations: F1,F2, their sum F1 + F2 is also monotone.

2 For an affine function F(x) = Ax+b to be monotone if and only if A+A∗ � 0.

3 Prove the monotonicity of the KKT operator of equality constrained convex

optimization, that is Lemma 8.21.

8.15 (ADMM for Basis Pursuit). One way of solving the basis pursuit problem

min ‖x‖1 subject to Ax = y (8.8.14)

is to introduce an auxiliary variable z, and solve the problem

min ‖x‖1 subject to Az = y, x = z. (8.8.15)

Derive an algorithm for this problem, by applying the alternating directions

method of multipliers (ADMM). Implement your algorithm in a language of

your choice, and investigate both its convergence speed and ability to reconstruct

a target signal xo using synthetic problem instances.

8.16 (Dual of Principal Component Pursuit). Show that the dual program to the

PCP program is

max
Λ

trace (Y ∗Λ) subject to J(Λ) ≤ 1,
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where Λ is the matrix of Lagrange multipliers for the equality constraint Y =

L+ S, and J(Λ) = max(‖Λ‖2, λ−1‖Λ‖∞).



9 Nonconvex Optimization for
High-Dimensional Problems

“Premature optimization is the root of all evil.”
– Donald Ervin Knuth, The Art of Computer Programming

The previous chapter and this chapter are due in no small part to contributions

from Dr. Chaobing Song.

In Chapter 8, we introduced optimization techniques that efficiently solve

many convex optimization problems that arise in recovering structured signals

from incomplete or corrupted measurements, using known low-dimensional mod-

els. In contrast, as we saw in Chapter 7, problems associated with learning low-

dimensional models from sample data are often nonconvex: either they do not

have tractable convex relaxations or the nonconvex formulation is preferred due

to physical or computational constraints (such as limited memory). In this chap-

ter, we introduce optimization algorithms for nonconvex programs.

This chapter is not intended to give a complete exposition of nonconvex opti-

mization, which has a long history and a vast literature. We will rather provide

an overview of the most fundamental ideas and representative methods, with

any eye towards (i) how problems leverage negative curvature to guarantee local

(and sometimes global) optimality and (ii) how to characterize more precisely

the computational complexity of different algorithms in order to achieve the opti-

mal efficiency. Unlike previous chapters, some methods will be presented without

detailed proofs, but with pointers to relevant references where appropriate.1

As mentioned in the previous chapter, one major difference between nonconvex

and convex problems is that nonconvex objective functions may exhibit spurious

critical points2 other than the (desired, global) minimizers. These can include

spurious local minimizers, local maximizers, and various types of saddle points,

etc. Generally speaking, for nonconvex optimization we need to give up on the

ambition of guaranteeing global optimality across broad classes of problems, and

content ourselves to develop methods which guarantee to produce local optima

in general, and global optima for specially structured problems such as those

1 Indeed, in some situations the best known guarantees of worst case performance have
lengthy and technical proofs. For a more comprehensive exposition of basic techniques for

nonlinear optimization, one may refer to classic textbooks such as [Ber03].
2 points x? whose gradient vanishes: ∇f(x?) = 0.
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described in Chapter 7. The key to both of these goals is leveraging negative

curvature of the objective function. In Chapter 7, problem symmetries induced

negative curvature in symmetry-breaking directions, in some situation leading

to nonconvex functions with benign global geometry. Identifying directions of

negative curvature allowed us to prove that some such functions have no spurious

local minimizers. Here, we will use negative curvature in a different, algorithmic

way: to build methods that escape saddle points and converge to minimizers.

We will explore a variety of means to accomplish this, which require different

types of local information about the objective function, from both the gradient

and the full Hessian matrix (Section 9.2) or the gradient alone (Sections 9.3–

9.5). At the technical level, we will reveal clearly that useful negative curvature

information in the Hessian can be efficiently computed or approximated from

a sequence of gradient evaluations, either explicitly (Sections 9.3 and 9.4) or

implicitly with noise (Section 9.5).

Recall that in Section 8.3.1 of Chapter 8, we have discussed whether a long

history of states and gradients may help improve the convergence of first-order

methods. Nesterov’s method has shown that in the convex case two previous

states and one gradient per iteration are sufficient to achieve the optimal rate

of convergence. We will see in this chapter that in the nonconvex case a longer

sequence of gradient evaluations is needed to achieve another objective: escaping

unstable saddle points. Roughly speaking, how efficiently and accurately one can

use gradients to estimate the direction of negative curvature is the key to achieve

different, and eventually optimal, tradeoffs between per-iteration cost and rate of

convergence. This is reflected through the improved sophistication in algorithm

design and analysis from Section 9.3, to 9.4, and to 9.5.

Last but not the least, in our context, many nonconvex problems arise due

to the fact that the optimization is constrained over a nonlinear submanifold.

The submanifold typically has very good geometric structures. We will discuss in

Section 9.6 how to exploit such structures to develop more efficient algorithms.

9.1 Challenges and Opportunities

In this chapter, we focus on the problem of minimizing a function f(x)

min
x
f(x), x ∈ Rn, (9.1.1)

which we assume to be twice continuously differentiable.3 We know that at any

local minimizer x?, the gradient vanishes:

∇f(x?) = 0,

3 For simplicity, we focus on smooth, unconstrained optimization problems. Generally
speaking, like the convex case in Chapter 8, constrained problems can be dealt with using
the Lagrange multiplier method and in our context most non-smooth objectives admit

efficient proximal operators. We defer discussions of nonsmoothness and constraints to the

Notes section, as well as the exercises at the end of this chapter.



372 Nonconvex Optimization for High-Dimensional Problems

i.e., x? is a critical point. In Section 9.1.1, we review what is arguably the sim-

plest and most widely used optimization method: gradient descent. We will see

that in general, gradient methods guarantee convergence to a critical point. For

convex f , this suffices to solve the problem in a very strong sense: for convex f ,

every critical point is a global minimizer. In contrast, nonconvex f can exhibit

other types of critical points, including local minimizers, local maximizers, and

saddle points. Hence, convergence to a critical point is not sufficient even to guar-

antee local optimality: to achieve this, we must somehow use information about

the curvature of the objective function.4 We therefore next review a classical ap-

proach to leveraging curvature information to rapidly minimize convex functions

f , Newton’s method, and, with these two methods as motivating background,

embark on a tour of approaches to using (negative) curvature information to

locally minimize nonconvex f .

9.1.1 Finding Critical Points via Gradient Descent

Perhaps the simplest and most widely used optimization method is gradient

descent,5 which generates a sequence of iterates

xk+1 = xk − γk∇f(xk) (9.1.2)

by repeatedly stepping in the direction of the negative gradient of the func-

tion f . Because this method only requires one to compute the gradient of the

objective function f at each iteration, it is often quite scalable. The choice of

−∇f as a descent direction makes intuitive sense, since this is the direction of

steepest descent of the object function f ; indeed, ∇f is the slope of a first-order

approximation to f at the given point xk:

f(y) ≈ f(xk) + 〈∇f(xk),y − xk〉 . (9.1.3)

In (9.1.2), γk > 0 is a step size, which can be chosen adaptively from iteration

to iteration, or can be set ahead of time based on knowledge of the objective

function f . In particular, suppose that gradient ∇f is Lipschitz continuous:

∀x,y ‖∇f(y)−∇f(x)‖2 ≤ L1‖y − x‖2 (9.1.4)

for some L1 > 0.6 In this setting, one can augment the local approximation

4 Strictly speaking, many of the methods we describe guarantee convergence not to a local
minimizer, but to a second-order stationary point, i.e., a point satisfying ∇f(x) = 0 and

∇2f(x) � 0. For “generic” (i.e., Morse) f , every such point is a local minimizer; this is

also the case for the functions studied in Chapter 7. However, it is possible to construct
objectives f with second-order stationary points that are not minimizers; take, e.g.,

f(x) = −x4.
5 Like most natural ideas, gradient methods have a rich history, having been (re)discovered

many times. The first formal exposition is believed to have been given by Augustin Cauchy
in 1847, in the context of finding numerical solutions to equations [Cau47].

6 Or equivalently, as f is twice differentiable, the absolute values of eigenvalues of the

Hessian ∇2f(x) ∈ Rn×n are uniformly bounded by L1.
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(9.1.3) to produce a global upper bound

f(y) ≤ f(xk) + 〈∇f(xk),y − xk〉+
L1

2
‖y − xk‖22. (9.1.5)

As we showed in Chapter 8, the upper bound on the right hand side is minimized

at y? = xk− 1
L1
∇f(xk), i.e., taking on gradient step is equivalent to minimizing

a quadratic upper bound on the objective function f .

This observation suggests choosing γk = 1/L1. This step size guarantees that

(i) the gradient method is a descent method, i.e., the objective function does not

increase from iteration to iteration, and (ii) that the iterates xk converge to a

critical point x?, satisfying ∇f(x?) = 0. Intuitively, we might expect to converge

to a critical point x? that is a local minimizer. Although this is often the case in

practice, in general all one can guarantee is convergence to some critical point,

which could be a maximizer or a saddle point. Indeed, if xk happens to be a

saddle point and so ∇f(xk) = 0, the iteration (9.1.2) will never leave xk.

In Chapter 8, we obtained useful intuition (and good methods!) by not only

proving that methods converge, but assessing how rapidly they converge, and

seeking methods whose convergence rate is the best possible. In the nonconvex

setting, it does not make sense to measure the progress of gradient descent in

terms of function values, because it may not converge to a global minimizer.

Instead, one typically measures how close xk is to being a critical point through

the norm of the gradient ‖∇f(xk)‖2. In this setting, one can show:

Proposition 9.1 (Convergence Rate of Gradient Descent for Nonconvex Func-

tions). Suppose that f(x) is a (possibly nonconvex) differentiable function with

∇f Lipschitz continuous with constant L1. The gradient descent scheme (9.1.2)

with the step size γk = 1/L1 converges to a critical point x?. Furthermore, the

gradient norm at the best iterate min0≤i≤k−1 ‖∇f(xi)‖ goes to zero at the rate

O(1/
√
k).

Proof ∀k ≥ 1, the gradient descent iteration xk = xk−1 − 1
L1
∇f(xk−1) is

equivalent to:

xk := argmin
x

{
f(xk−1) + 〈∇f(xk−1),x− xk−1〉+

L1

2
‖x− xk−1‖22

}
.

Also note that, according to Lemma 8.2, Lipschitz continuity (9.1.4) is equivalent

to: ∀x,y

f(y) ≤ f(x) + 〈∇f(x),y − x〉+
L1

2
‖y − x‖22. (9.1.6)

It follows that

f(xk) ≤ f(xk−1) + 〈∇f(xk−1),xk − xk−1〉+
L1

2
‖xk − xk−1‖22

≤ f(xk−1)− 1

2L1
‖∇f(xk−1)‖22. (9.1.7)
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Hence the value of the objective function decreases with the iteration. Tele-

scoping (9.1.7), we obtain

f(xk) ≤ f(x0)− 1

2L1

k−1∑

i=0

‖∇f(xi)‖22.

This gives

k

2L1
min

i∈{0,1,...,k−1}
‖∇f(xi)‖22 ≤

k−1∑

i=0

1

2L1
‖∇f(xi)‖22 ≤ f(x0)− f(xk).

With respect to the critical point x? to which the sequence converges, we have

f(x0)− f(xk) ≤ f(x0)− f(x?). So we have

min
i∈{0,1,...,k−1}

‖∇f(xi)‖2 ≤
√

2L1(f(x0)− f(x?))

k
. (9.1.8)

We note several key differences from the analyses of gradient and proximal

gradient methods in Chapter 8. First, and most importantly, in the nonconvex

setting we only guarantee convergence to a (first-order) critical point – which may

not be a minimizer. Second, in contrast to the convex setting, here, the gradient

method is essentially optimal amongst first-order methods. In Chapter 8, we

were able to improve the behavior of (proximal) gradient descent, by comparing

its rate of convergence to the best achievable rate of convergence for first-order

methods, i.e., methods assuming access to only the first-order oracle:

the gradient ∇f(x) of the function f(x), (9.1.9)

at each iteration. The convergence rate in Proposition 9.1 can be interpreted

as saying that to achieve ‖∇f‖ ≤ εg, we require O(ε−2
g ) iterations. This turns

out to be the best (worst case) rate that first-order methods can achieve for

the class of functions f with Lipschitz gradients: in contrast to the convex case,

introducing momentum or other forms of acceleration does not improve the worst

case performance.

However, if we assume a little more about the objective function, namely that

the Hessian is also Lipschitz, the picture changes dramatically. In this setting, it

is possible to obtain information about the curvature of the objective function

by comparing gradients at nearby points: the second derivative ∇2f(x)δ in the

δ direction satisfies ∇2f(x)δ ≈ ∇f(x + δ) −∇f(x). We will see that by using

this information, it is possible to fundamentally improve the convergence rate of

gradient descent and to enable it to escape (nondegenerate) saddle points and

maximizers. This highlights the importance of curvature information in noncon-

vex optimization. In the coming sections, we will first review efforts to explicitly

leverage curvature information through the Hessian ∇2f(x), before describing

lighter-weight methods that leverage curvature using gradients only.
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9.1.2 Finding Critical Points via Newton’s Method

The simplest and most natural approach to incorporating curvature information

into iterative methods is to replace the first-order approximation (9.1.3) with a

second-order approximation. Suppose that the Hessian ∇2f(x) is Lipschitz:

∀x,y ‖∇2f(y)−∇2f(x)‖ ≤ L2‖y − x‖2, (9.1.10)

where ‖ · ‖ denotes the spectral norm of a matrix. Then in the vicinity of a point

x, we can accurately approximate f(y) with the Taylor expansion

f(y) ≈ f̂(y,x)
.
= f(x) + 〈∇f(x),y − x〉+ 1

2 (y − x)∗∇2f(x)(y − x). (9.1.11)

This approximation f̂ has the same slope and curvature as f at y = x. When

f is a strongly convex function, the eigenvalues of ∇2f are all positive and the

approximation is also strongly convex. In this setting, the approximation f̂ has

a unique minimizer

y? = arg min
y
f̂(y,x) = x−

[
∇2f(x)

]−1∇f(x). (9.1.12)

The expression on the right hand side can be obtained simply by setting the

derivative ∇y f̂(y,x) = 0 and solving for y. This suggests the following itera-

tive approach to minimizing f : starting from an initial point x0, we generate a

sequence of iterates xk by setting

xk+1 = xk −
[
∇2f(xk)

]−1∇f(xk). (9.1.13)

This is known as the Newton iteration, and is closely related to the Newton-

Raphson method for finding roots of polynomials. Indeed, searching for a critical

point of a smooth function f is equivalent to looking for a solution (root) of the

equation ∇f(x) = 0.7 Newton’s method clearly belongs to the class of methods

which assume access to the the second-order oracle:

the gradient ∇f(x) and the Hessian ∇2f(x), (9.1.14)

Typically, this makes the iterations of Newton’s method much more expensive

than those of gradient descent: generally, one needs to compute and store the

full n × n Hessian matrix ∇2f(xk) and its inverse. The benefit of this per-

iteration complexity is a drastic reduction in the number of iterations required

to converge to an accurate solution. Consider, for example, a strongly convex

objective function f , (i.e., an f which satisfies ∇2f(x) � λI for all x), with

Lipschitz Hessian. Because f is strongly convex, it has a unique minimizer x?.

7 Like gradient descent, Newton’s method (or the Newton-Raphson method) has a long

history. It can be interpreted as a method for solving the critical point equation
∇f(x?) = 0, i.e., finding “roots” of ∇f(x). The Newton-Raphson method was originally
introduced in the late 1680’s by Isaac Newton and Joseph Raphson for finding roots of

polynomials, and generalized to find critical points of smooth functions by Thomas

Simpson in 1750 [Sim50].
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We will show that the iterates produced by Newton’s method satisfy

‖xk+1 − x?‖2 ≤
L2

2λ
‖xk − x?‖22. (9.1.15)

This means that as long as x0 is close to x? (say, ‖x0 − x?‖ < 2λ
L2

), the iterates

xk converge to x? extraordinarily rapidly:

‖xk − x?‖2 ≤
(
L2

2λ

)2k+1

‖x0 − x?‖2
k

2 . (9.1.16)

In optimization, this is referred to as superlinear convergence: log ‖xk − x?‖2
diminishes faster than any linear function of k. Slightly more formally:

Proposition 9.2 (Convergence Rate of Newton’s Method). Let f(x) be strongly

convex, with λmin(∇2f(x)) ≥ λ > 0 for all x, and assume that ∇2f is Lipschitz

continuous with constant L2, and let x? be the (unique) minimizer of f over Rn.

Assuming ‖x0 − x?‖ < 2λ
L2

, the iterates xk converge to x?, with quadratic rate

(9.1.16).

Proof Using the Taylor expansion of the gradient ∇f(x) around the critical

point x? and the mean value theorem, we have

‖∇f(x?)− [∇f(xk) +∇2f(xk)(x? − xk)]‖2 ≤
L2

2
‖x? − xk‖22.

With xk+1 = xk −
[
∇2f(xk)

]−1∇f(xk), this gives

‖∇2f(xk)(x? − xk+1)‖2 ≤
L2

2
‖x? − xk‖22.

The operator norm of the Hessian inverse
[
∇2f(x)

]−1
is bounded uniformly from

above, by λ−1 <∞. Combining this with the above inequality, we obtain:

‖x? − xk+1‖2 ≤
L2

2λ
‖x? − xk‖22.

Despite its fast rate of convergence for strongly convex problems, there are

several limitations that render Newton’s method inapplicable in our setting of

high-dimensional, nonconvex optimization. First, Newton’s method requires us

to compute
[
∇2f(x)

]−1∇f(x). Simply storing the n×n Hessian matrix is infea-

sible when n is large. Typical approaches to solving the Newton system require

O(n3) arithmetic operations, making even a single step of Newton’s method com-

putationally prohibitive when n is large. These limitations are why, in Chapter

8, we focused on convex optimization methods with cheaper iterations.

Second, and more fundamentally, in the nonconvex setting, we have no con-

trol over what kind of critical point the iterates xk converge to! Close inspection

shows that the argument of Proposition 9.2 works just as well to prove conver-

gence to a maximizer, with essentially the same quadratic rate. There is a simple
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reason why Newton’s method cannot distinguish between minimizers, maximiz-

ers and saddles. In the nonconvex setting, solving ∇y f̂(y,x) = 0 does not neces-

sarily yield a minimizer of the quadratic approximation f̂ – rather, it asks for a

critical point of this approximation, which, depending on the signs of the eigen-

values of ∇2f(x), could be a minimizer, maximizer or saddle point. Hence, in

the nonconvex setting, the classical Newton’s method can be interpreted not as

repeatedly minimizing approximations to the objective, but as repeatedly finding

critical points of approximations to the objective. Exercise 9.1 guides the reader

through examples showing that Newton’s method may converge to minimizers,

maximizers, and saddle points.

Clearly, if our goal is to leverage negative curvature to minimize nonconvex

functions, some modifications to Newton’s method are required. In the subse-

quent sections, we will show how to modify Newton’s method to escape saddle

points and obtain minimizers (strictly speaking, to obtain second-order critical

points satisfying ∇f(x?) = 0 and ∇2f(x?) � 0). We will then show how to re-

duce the per-iteration complexity by leveraging negative curvature without the

full Hessian, or even using only gradient information, yielding methods that are

applicable to high-dimensional problems. Finally, similar to our development of

proximal and accelerated proximal gradient methods in Chapter 8, we will show

how to carefully combine gradient and curvature information to obtain first-order

methods that achieve the best known rate of convergence.

9.2 Cubic Regularization of Newton’s Method

As we saw in the previous section, when applied to strongly convex problems,

Newton’s method converges extremely rapidly. In comparison to the gradient

method, it better leverages positive curvature of the objective function. However,

when applied to nonconvex problems, it does not distinguish between minimizers,

maximizers and saddle points. In particular, it is incapable of leveraging negative

curvature to escape saddle points. To develop second-order methods that make

better use of negative curvature, a natural idea is to build a local model of the

objective function which contains both first and second-order information, i.e.,

to write

f(y) ≈ f(x) + 〈∇f(x),y − x〉+ 1
2 (y − x)∗∇2f(x)(y − x). (9.2.1)

and to determine a step direction by minimizing this model. This is in contrast

to Newton’s method, which only seeks a critical point of this approximation.

Here, a comparison to our development of gradient methods in Chapter 8 is

instructive. There, we motivated gradient and proximal gradient methods from

a first-order approximation to the objective function,

f(y) ≈ f(x) + 〈∇f(x),y − x〉 . (9.2.2)

In contrast, the second-order approximation in (9.2.1) retains information about
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the curvature of f , through the Hessian ∇2f . In particular, f has directions

of negative curvature at x if and only if the smallest eigenvalue λmin(∇2f) is

negative. In particular, any eigenvector corresponding to this smallest eigenvalue

gives a direction of negative curvature.

9.2.1 Convergence to Second-order Stationary Points

How can we use the model (9.2.1) to reduce the objective function f? In our

study of gradient and proximal gradient methods, we found it useful to augment

the local approximation in (9.2.2) to produce a global upper bound on f(y).

Minimizing this global upper bound produced a new point x+ with f(x+) ≤
f(x), i.e., it guarantees descent in the objective value f . Here, we proceed in the

same spirit. Suppose that the Hessian ∇2f is Lipschitz, i.e.,

∀x,y ‖∇2f(y)−∇2f(x)‖ ≤ L2‖y − x‖2, (9.2.3)

for some L2 > 0. Here ‖ · ‖ denotes the spectral norm of matrix. In this setting,

we have that for all x,y,

f(y) ≤ f̂(y,x)
.
= f(x)+〈∇f(x),y−x〉+ 1

2 (y−x)∗∇2f(x)(y−x)+ L2

6 ‖y−x‖
3
2 . (9.2.4)

The right hand side is a global upper bound on f(y), which has the same value,

slope and curvature at x. Similar to our discussion of gradient descent in Chapter

8 and Section 9.1.1, given an iterate xk, we can produce the next iterate xk+1

by minimizing this upper bound:

xk+1 = arg min
y
f̂(y,xk). (9.2.5)

The resulting method is known as the Cubic Regularized Newton’s Method, and

is described in Figure 9.1.

In contrast to gradient descent, the problem of minimizing the approximation

f̂ in (9.2.5) is itself in general a nonconvex problem – we intentionally choose an

approximation that retains negative curvature information! Perhaps surprisingly,

this particular nonconvex problem can be solved efficiently: it can be reduced

to solving a one-dimensional convex optimization problem [NP06]. We guide the

reader through a derivation of this subproblem in Exercise 9.3, and describe more

scalable alternatives in the next section, after discussing convergence issues.

Remark 9.3 (The Trust Region Method). The cubic regularized Newton’s method

is not the only way of using the second-order approximation (9.2.1) to solve non-

convex optimization problems. One important (and historically earlier) alterna-

tive is the trust region method. Rather than building a global upper bound to f(y),

the trust region method chooses a step direction by minimizing the approxima-

tion (9.2.1) over a small neighborhood of the point x, where the approximation
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is known to be accurate:

xk+1 = arg min
‖y−xk‖2≤δk

f(xk) + 〈∇f(xk),y − xk〉+ 1
2 (y − xk)∗∇2f(xk)(y − xk).

(9.2.6)

Like the cubic Newton subproblem, this subproblem can be solved efficiently; like

cubic Newton, the resulting method is able to leverage negative curvature, as cap-

tured by the Hessian ∇2f . The main difference is simply the use of the constraint

‖y − xk‖2 ≤ δk instead of the cubic penalty ‖y − xk‖32. We guide the interested

reader through the development of the trust region method and the solution of

the trust region subproblem in Exercise 9.2.

We next show that the iterates produced by the Cubic Regularized Newton’s

Method converge to point x? that satisfies

∇f(x?) = 0; ∇2f(x?) � 0, (9.2.7)

i.e., a second-order stationary solution. We will measure our progress in terms

of the following quantity

µ(x)
.
= max

{√
1

L2
‖∇f(x)‖2, −

2

3L2
λmin

(
∇2f(x)

)}
, (9.2.8)

where λmin is the smallest eigenvalue of the Hessian ∇2f(x), which we desire to

be nonnegative. If µ(x)→ 0, xk converges to a solution x? that satisfies (9.2.7).

The following theorem shows that this indeed occurs, and controls the rate at

which µ(xk) approaches zero:

Theorem 9.4 (Convergence Rate of Cubic Newton’s Method). Suppose f(x) is

bounded from below. Then the sequence {xk} generated by the cubic regularized

Newton step (9.2.5) converges to a non-empty set of limit points X?. Let x? ∈
X?. Then we further have limk→∞ µ(xk) = 0 and for any k ≥ 1, we have

min
1≤i≤k

µ(xi) ≤ C
(
f(x0)− f(x?)

k · L2

)1/3

(9.2.9)

for some constant C > 0.

Sketch of Proof. Since xk is the minimizer of f̂(y,xk−1) as defined in (9.2.4),

it satisfies the first-order optimality condition:

∇f(xk−1)+∇2f(xk−1)(xk−xk−1)+
L2

2
‖xk−xk−1‖2(xk−xk−1) = 0.(9.2.10)

In addition, from the derivation of the global minimizer for (9.2.5), one can also

show that xk satisfies the condition (see Proposition 1 of [NP06]):

∇2f(xk−1) +
L2

2
‖xk − xk−1‖2I � 0. (9.2.11)
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Cubic Regularized Newton’s Method

Problem Class:

min
x
f(x), x ∈ Rn,

where f : Rn → R is nonconvex, and is twice continuously differentiable,
with both gradient and Hessian Lipschitz continuous. We have access to the
second-order oracle: ∇f(x) ∈ Rn and ∇2f(x) ∈ Rn×n.

Setup: Let f̂(y,x) be defined similarly as in (9.2.4):

f̂(y,x)
.
= 〈∇f(x),y − x〉+

1

2
(y − x)∗∇2f(x)(y − x) +

L2

6
‖y − x‖32 .

Initialization: Set x0 ∈ Rn,

Iteration: For k = 0, 1, 2, . . .

xk+1 = arg min
y
f̂(y,xk).

Convergence Guarantee: xk converges with limk→∞ µ(xk) = 0.

Figure 9.1 An overview of the Cubic Regularization of Newton’s Method.

Since f̂(y,xk) defined in (9.2.4) is an upper bound of f(y), at iterate xk we

have:

f(xk) ≤ f(xk−1) + 〈∇f(xk−1),xk − xk−1〉

+
1

2
〈∇2f(xk−1)(xk − xk−1),xk − xk−1〉

+
L2

6
‖xk − xk−1‖32

= f(xk−1)

+〈∇f(xk−1),xk − xk−1〉+ 〈∇2f(xk−1)(xk − xk−1),xk − xk−1〉

−1

2
〈∇2f(xk−1)(xk − xk−1),xk − xk−1〉+

L2

6
‖xk − xk−1‖32

= f(xk−1)− L2

2
‖xk − xk−1‖32

−1

2
〈∇2f(xk−1)(xk − xk−1),xk − xk−1〉+

L2

6
‖xk − xk−1‖32

≤ f(xk−1)− L2

12
‖xk − xk−1‖32, (9.2.12)

where from the second equality to the third is by the first-order optimality con-

dition (9.2.10), the last inequality is by applying the second optimality condition

(9.2.11). The last inequality (9.2.12) indicates that the cubic regularized New-

ton’s method is indeed a descent method.
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Telescoping (9.2.12), we have

f(xk) ≤ f(x0)− L2

12

k∑

i=1

‖xi − xi−1‖32.

So we have

L2k

12
min
i∈[k]
‖xi−xi−1‖32 ≤

L2

12

k∑

i=1

‖xi−xi−1‖32 ≤ f(x0)− f(xk) ≤ f(x0)− f(x?),

where x? is a minimizer to which the sequence converges. So we have

min
i∈[k]
‖xi − xi−1‖2 ≤

(
12(f(x0)− f(x?))

L2k

) 1
3

.

Now to ensure the convergence rate, we need to determine the relationship be-

tween ∇f(xk), ∇2f(xk), and ‖xk − xk−1‖2.

First, note that through Taylor expansion and the mean value theorem, the

Lipschitz Hessian condition implies that for all x,y,

‖∇f(y)− (∇f(x) +∇2f(x)(y − x))‖2 ≤
L2

2
‖y − x‖22. (9.2.13)

Combining with (9.2.10), we have

‖∇f(xk)‖2 = ‖∇f(xk)− (∇f(xk−1) +∇2f(xk−1)(xk − xk−1))

+(∇f(xk−1) +∇2f(xk−1)(xk − xk−1))‖2
≤ ‖∇f(xk)− (∇f(xk−1) +∇2f(xk−1)(xk − xk−1))‖2

+‖∇f(xk−1) +∇2f(xk−1)(xk − xk−1)‖2
≤ L2‖xk − xk−1‖22. (9.2.14)

Second, by (9.1.10) and (9.2.11), we have

∇2f(xk) � ∇2f(xk−1)− L2‖xk − xk−1‖2I � −
3L2

2
‖xk − xk−1‖2I.

Therefore we have8

‖∇f(xk)‖2 ≤ L2

(
12(f(x0)− f(x?))

L2k

) 2
3

, (9.2.15)

−λmin(∇2f(xk)) ≤ 3L2

2

(
12(f(x0)− f(x?))

L2k

) 1
3

. (9.2.16)

By definition of µ(x), we have µ(xk) ≤
(

12(f(x0)−f(x?))
L2k

) 1
3

converges as k →
∞.

8 Strictly speaking, we here should consider the iterate that achieves mini∈[k] ‖xi − xi−1‖2.

We here use the last iterate xk for simplicity.
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The fact that µ(xk) → 0 implies that the cubic regularized Newton iteration

(9.2.5) indeed converges asymptotically to stationary limit points with∇f(x?) =

0 and ∇2f(x?) � 0. Furthermore, the bound (9.2.9) on µ implies that with a

finite number of k iterations

min
1≤i≤k

‖∇f(xi)‖2 ≤ O(k−2/3),

which, as expected, is improved over the bound O(k−1/2) for first-order (acceler-

ated) gradient descent (see Proposition 9.1), and is tight for methods with access

to the second-order oracle (9.1.14).

9.2.2 More Scalable Solution to the Subproblem

The subproblem (9.2.5) in the cubic regularized Newton’s method essentially

aims to minimize the following function:

min
w

ψ(w)
.
= 〈∇f(x),w〉+

1

2
w∗∇2f(x)w +

L2

6
‖w‖32 . (9.2.17)

Although this subproblem can be reduced to a one-dimensional convex program

[NP06], that solution assumes knowing the Hessian inverse or its factorization,

which can be costly when the dimension n is very large.

To obtain a more scalable implementation, one may choose to minimize the

nonconvex function ψ(w) using gradient descent type methods. Notice that the

gradient is of the form:

∇ψ(w) = ∇f(x) +∇2f(x)w +∇L2

6
‖w‖32 , (9.2.18)

and only the second term ∇2f(x)w involves the Hessian. Nevertheless, it is

required only in the form of a “Hessian-vector product9” between the Hessian

∇2f(x) and the vector w. One can approximate such a Hessian-vector product

by

∇2f(x)w ≈ ∇f(x+ tw)−∇f(x)

t
(9.2.19)

for a small t > 0. So we only need one additional evaluation of the gradient

∇f(x+ tw) to obtain the gradient of ∇ψ(w).

It has been shown that gradient descent (with noise10) can efficiently find the

global minimizer of ψ(w) within ε-accuracy11 in O(ε−1 log(1/ε)) steps in the

worst case. Moreover, when ε is small enough, the algorithm converges to an

ε-accuracy solution with a linear rate in O(log(1/ε)) steps [CD16,CD19].

9 The role such a Hession-vector product will become clear when we study how to efficiently

compute the direction of negative curvature for f(x) for descending purpose in Section

9.3.2 as well as in Section 9.5.3.
10 Noise is needed to help escape spurious critical points in some hard cases. We will reveal

the role of noise clearly in Section 9.5.
11 Here, if wo is the global minimizer of ψ(w), an ε-accurate solution w? is such that

ψ(w?) ≤ ψ(wo) + ε.
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9.3 Gradient and Negative Curvature Descent

As we have alluded to in the preceding section, to escape from unstable critical

points, it is not necessary to compute the full Hessian matrix ∇2f(x) at each

iteration, or have to find the precise minimizer of the proxy function in the cubic

Newton’s method. It often suffices if we can find just a direction that sufficiently

reduces the objective function. This could help alleviate the computational bur-

den of second-order methods associated with computing the full Hessian and its

inverse.12 Hence in this section, we study methods that assume access to the

negative curvature oracle:

the gradient ∇f(x) and a negative eigenvector e of ∇2f(x). (9.3.1)

For many practical problems, it is cheaper to obtain such a direction e of negative

curvature than to compute the full Hessian. In some problems, the complexity

of obtaining e can even be on par with evaluating the gradient ∇f(x).13 Even if

the negative curvature direction e must be computed numerically, one can resort

to efficient methods that we will soon introduce in Section 9.3.2. For now, we

assume we have this information at each iterate.

9.3.1 Hybrid Gradient and Negative Curvature Descent

To be consistent with the gradient descent and Newton’s method, we here assume

that both gradient and Hessian are Lipschitz continuous:

‖∇f(y)−∇f(x)‖2 ≤ L1‖y − x‖2, ‖∇2f(y)−∇2f(x)‖ ≤ L2‖y − x‖2.
One should notice one common idea in the design of all above optimization

algorithms: given a prescribed precision ε, the function value is expected to

decrease by ε per iteration:

f(xk)− f(xk−1) ≤ −ε,
unless the first-order and second-order derivatives have met the conditions of

convergence.

From Proposition 9.1, we know when we conduct gradient descent, we should

expect the norm of gradient ∇f(xk) to descend according to (9.1.8):

‖∇f(xk)‖2 ≤ O

(
L1(f(x0)− f(x?))

k

) 1
2

= O
(
(L1ε)

1/2
)
. (9.3.2)

According to Theorem 9.4, if we use second-order descent method, the smallest

eigenvalue of Hessian ∇2f(xk) should decay with the number of iteration k as

(9.2.16):

− λmin

(
∇2f(xk)

)
≤ O

(
L2

2(f(x0)− f(x?))

k

) 1
3

= O
(
(L2

2ε)
1/3
)
. (9.3.3)

12 which becomes prohibitive when the dimension of the problem is extremely high.
13 say problems in which we may have analytic expressions for evaluating e.
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Hybrid Gradient and Negative Curvature Descent

Problem Class:

min
x
f(x), x ∈ Rn,

where f : Rn → R is twice continuously differentiable, with Lipschitz con-
tinuous gradient and Hessian. Have access to the oracle: the gradient ∇f(x)
and the smallest eigenvalue-vector pair (λmin, e) of the Hessian ∇2f(x).

Setup: prescribed accuracy ε > 0, εg = (2L1ε)
1/2, and εH =

(
1.5L2

2ε
)1/3

.

Initialization: Set x0 ∈ Rn,

For k = 0, 1, 2, . . .

1 Compute the gradient ∇f(xk).
2 if ‖∇f(xk)‖2 ≥ εg, then conduct gradient descent:

xk+1 = xk −
1

L1
∇f(xk); (9.3.4)

3 else compute the smallest eigenvalue λk and eigenvector ek of ∇2f(xk),
and choose its direction such that 〈∇f(xk), ek〉 ≤ 0.

4 if −λk ≥ εH , then conduct negative curvature descent:

xk+1 = xk +
2λk
L2
ek; (9.3.5)

5 else end for and return x? = xk.

Convergence guarantee: ‖∇f(x?)‖2 ≤ εg, −λmin

(
∇2f(x?)

)
≤ εH .

Figure 9.2 An overview of the Hybrid Gradient and Negative Curvature Descent.

These conditions naturally suggest a simple descent strategy that alternates

between gradient descent and negative curvature descent:

• When the gradient has not reached the desired precision according to (9.3.2),

we keep conducting gradient descent;

• Whenever condition (9.3.2) is reached, we conduct the negative curvature

search if the smallest eigenvalue of the Hessian has not reached the desired

bound (9.3.3).

We summarize this hybrid descent scheme as an algorithm in Figure 9.2. Note

that with this scheme, one does not have to compute the negative curvature

direction unless it is needed. Then the following theorem states that the algo-

rithm converges to the prescribed precision with the constants specified in the

algorithm.

Theorem 9.5 (Convergence of Hybrid Gradient and Negative Curvature De-

scent). The gradient and negative curvature descent algorithm in Figure 9.2 con-
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verges to a second-order stationary point x? with the desired precision ε in no

more than k = (f(x0)− f(x?))/ε iterations.

Proof If ‖∇f(xk)‖2 ≥ εg = (2L1ε)
1/2, the algorithm conducts gradient descent:

xk+1 = xk − 1
L1
∇f(xk). Then following the same arguments in Proposition 9.1,

in particular equation (9.1.7), we have

f(xk+1) ≤ f(xk) + 〈∇f(xk),xk+1 − xk〉+
L1

2
‖xk+1 − xk‖22

≤ f(xk)− 1

2L1
‖∇f(xk)‖22

≤ f(xk)− ε. (9.3.6)

Otherwise, if−λk ≥ εH =
( 3L2

2ε
2

)1/3
, then algorithm conducts negative curvature

descent: xk+1 = xk+ 2λk
L2
ek. Since ek is the eigenvector, we have∇2f(xk)(xk+1−

xk) = λk(xk+1 − xk). Therefore, we have

f(xk+1) ≤ f(xk) + 〈∇f(xk),xk+1 − xk〉

+
1

2
〈∇2f(xk)(xk+1 − xk),xk+1 − xk〉+

L2

6
‖xk+1 − xk‖32

≤ f(xk) +
1

2
〈∇2f(xk)(xk+1−xk),xk+1−xk〉+

L2

6
‖xk+1−xk‖32

≤ f(xk) +
1

2
λk

(2λk
L2

)2

+
L2

6

(2|λk|
L2

)3

= f(xk)− 2|λk|3
3L2

2

≤ f(xk)− 2ε3
H

3L2
2

(9.3.7)

≤ f(xk)− ε. (9.3.8)

So in each iteration, the function value will decrease by ε. To attain ε, the

number of gradient descent and negative curvature descent will be bounded by

f(x0)− f(x?)

ε
. (9.3.9)

That is to say, we need at most k ≤ f(x0)−f(x?)
ε iterations to attain

‖∇f(x?)‖2 ≤ εg, ∇2f(x?) � −εHI. (9.3.10)

Remark 9.6 (Curvilinear Search). The idea of mixing gradient descent with

negative curvature descent can be traced back to the curvilinear search method

[Gol80]. At each iterate xk, the curvilinear search suggests searching the next

iterate along a curve:

x(α) = xk + αsk + α2dk, α ∈ (0, 1), (9.3.11)

where sk is typically the negative gradient, say −∇f(x), and dk is a direction of

negative curvature, say the negative eigenvector e. The motivation behind such

a scheme is rather intuitive: when the gradient is large, we only need to take a
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small step (i.e., α is small) along the negative gradient for an adequate descent;

when the gradient is small, it is safe to follow more towards a direction of negative

curvature and we need to take a larger step (i.e., α is large) to ensure an adequate

descent. One can show under certain conditions, such a scheme asymptotically

converges to a stable critical point. However, the precise convergence rate is not

so easy to characterize.

9.3.2 Computing Negative Curvature via Lanczos Method

In the above scheme, we need the direction of (the most) negative curvature e,

which is associated with the smallest eigenvalue of the Hessian. To characterize

the precise computational complexity of the scheme, we here show that such

a direction can be efficiently computed by evaluating gradients only, using the

Hessian-vector product type operations. The mechanism involved is also known

as the power iteration or a more advanced variation the Lanczos method.

Around the neighborhood of a given point x, consider the second-order ap-

proximation to the function f(x+w):

φ(w)
.
= f(x) + 〈∇f(x),w〉+

1

2
w∗∇2f(x)w. (9.3.12)

In general, the negative gradient−∇f(x) indicates the steepest descent direction.

However, if x is near a critical point, we have ∇f(x) ≈ 0 hence 〈∇f(x),w〉 ≈ 0.

In this case, the approximate steepest descending direction d for f(x) is the

solution to

d = argmin
w

1

2
w∗∇2f(x)w, subject to ‖w‖2 = 1. (9.3.13)

Then d is the eigenvector e ∈ Rn associated with the smallest (negative) eigen-

value λmin of the Hessian. To simplify notation, here we define H
.
= ∇2f(x). So

we have:

He = λmin(H)e.

Geometrically, this is the direction in which the surface of f(x) has the most

negative curvature. Note that d can have two choices: d = ±e. If x is not

precisely a critical point, i.e., ∇f(x) is not zero, we usually choose d to align

with the descent direction:

〈∇f(x),d〉 ≤ 0. (9.3.14)

Recall that we have analyzed the problem (4.2.4) of computing the largest

eigenvalue and eigenvector of a matrix in Chapter 4. Here we are interested in

the smallest (likely negative) eigenvalue and the associated eigenvector. Notice

that the Lipschitz condition (9.1.4) implies that L1 is an upper bound of the

largest eigenvalue maxi |λi| of H. Hence, if we define a new matrix

A
.
= I − L−1

1 H � 0,
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then the largest eigenvalue and eigenvector of A are:

λmax(A) = 1− λmin(H)/L1 > 0, and Ae = λmax(A)e.

This eigenvector e is exactly the most negative curvature direction of the Hessian:

He = λmin(H)e.

The analysis of singular vectors given in Section 4.2.1 of Chapter 4 suggests

that computing the largest eigenvalue/eigenvector can be rather efficient, say

using the power iteration method in Exercise 4.6 – we will give a more general

account of power iteration methods later in Section 9.6. In light of designing

scalable optimization algorithms, we here give a more precise account of its

complexity subject to a prescribed accuracy.

Power Iteration and Lanczos Method.
The power iteration and Lanczos method [KW92] are two popular methods to

compute the leading eigenvalue and eigenvector of a matrix A ∈ Rn×n. They

both rely on computing a series of matrix-vector products of A with a random

vector b ∈ Rn, known as the Krylov information:

K
.
=
[
b,Ab,A2b, . . . ,Akb

]
. (9.3.15)

Notice that in our context, the matrix-vector product Ab depends only on the

Hessian-vector product Hb which in turn can be approximated from the differ-

ence of two gradients:

Ab =
[
I − L−1

1 H
]
b ≈ b− (tL1)−1

(
∇f(x+ tb)−∇f(x)

)
, (9.3.16)

for some small t > 0. This can be done recursively for all the products Aib in

K, for i = 1, . . . , k.

Then, based on the Krylov information, the power iteration and Lanczos

method estimate the largest eigenvalue λmax(A) respectively as:

Power iteration: λ̂k+1 =
〈Ax,x〉
〈x,x〉 , x = Akb; (9.3.17)

Lanczos method: λ̂k+1 = max
x

〈Ax,x〉
〈x,x〉 , x ∈ span(K), (9.3.18)

for k = 0, 1, . . .. In our context, we are interested in precisely how many iterations

(hence number of gradient evaluations) are needed in order to obtain an estimate

within a prescribed accuracy ε > 0:
∣∣∣∣∣
λ̂− λmax(A)

λmax(A)

∣∣∣∣∣ ≤ ε. (9.3.19)

Of course, it is easy to see that this cannot always be achieved for all matrices

A if the vector b is fixed. One only has to consider the special case (of zero

probability though) when b is perpendicular to the leading eigenvector: b ⊥ e.

We leave this as an exercise to the reader.
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Random Initialization.
Nevertheless, one can expect this to work with high probability for a randomly

chosen b. The usage of randomness here is to help avoid zero-measure patho-

logical (or hard) cases mentioned above. In the next section, we will utilize ran-

domness in a similar spirit – adding some random noise to gradient descent can

help escape spurious critical points. From a random initialization, we can also

precisely characterize how quickly the iteration reaches the desired accuracy.

Theorem 9.7 (Convergence Rates of Power Iteration and Lanczos Method). Let

b is chosen randomly from a uniform distribution on the sphere Sn−1, then we

have:

Power iteration: Eb

[∣∣∣∣∣
λ̂k+1(b)− λmax(A)

λmax(A)

∣∣∣∣∣

]
≤ c1 log(n)/k; (9.3.20)

Lanczos method: Eb

[∣∣∣∣∣
λ̂k+1(b)− λmax(A)

λmax(A)

∣∣∣∣∣

]
≤ c2(log(n)/k)2. (9.3.21)

for some small constants c1, c2 > 0.

That is, the expected error in the estimated largest eigenvalue converges to

zero at the rate of O(log(n)/k) and O((log(n)/k)2) for the power iteration and

Lanczos method, respectively. Or equivalently, to reach a prescribed accuracy ε

as in (9.3.19), the number of iterations needed is O(log(n)/ε) and O(log(n)/
√
ε),

respectively. One may refer to [KW92] for a detailed proof for the theorem above.

Approximate Least Eigenvalue and Eigenvector.
The above theorem immediately leads to a result that is very useful in our

setting [RW18].

Corollary 9.8. Let H be a symmetric matrix satisfying ‖H‖ ≤ L1 for some

L1 > 0. Suppose that the Lanczos procedure is applied to find the largest eigen-

value of L1I −H starting from a random vector uniformly distributed over the

unit sphere. Then, for any ελ > 0 and δ ∈ (0, 1), there is a probability at least

1− δ that the procedure outputs a unit vector e′ such that

(e′)∗He′ ≤ λmin(H) + ελ (9.3.22)

in at most

min

{
n,

log(n/δ2)

2
√

2

√
L1

ελ

}
(9.3.23)

iterations. The procedure obtains a unit vector e such that e∗He = λmin(H)

after at most n iterations.
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9.3.3 Overall Complexity in First-order Oracle

Now we know we can use the power iteration or Lanczos method to compute

the direction of negative curvature. This essentially reduces the computation to

a series of Hessian vector product operations that involve evaluating gradients

(9.3.16). If we use the first-order oracle, evaluating a gradient, as the basic unit

for measuring the complexity of an algorithm, then how we can measure or

estimate the complexity of the proposed algorithm precisely?

Notice from the proof of Theorem 9.5, each negative curvature descent step, the

function value decreases about O(ε3
H). The Lanczos process above, can estimate

the least eigenvalue up to the precision O(εH) for about O(ε
−1/2
H ) iterations

(or Hessian vector products). Hence per gradient evaluation, we can achieve

a descent of O(ε
7/2
H ). For this to be on par with the pure gradient descent,

that is an ε descent per gradient, we could set ε = O(ε
7/2
H ) or εH = O(ε2/7).

Then the overall complexity in terms of the number of gradient evaluations,

can be bounded as O(ε−1) or O(ε−2
g ). That is, the above hybrid scheme has

the same computational complexity in terms of first-order oracle as the gradient

descent scheme, introduced in the beginning of the chapter (see Proposition 9.1).

However, it guarantees to converge to a second-order stationary point.

To see this more rigorously, we can modify the hybrid gradient and negative

curvature algorithm in Figure 9.2 as follows. Whenever the gradient is below εg,

we use Lanczos method to compute an inexact unit eigenvector e′k such that

(with probability 1− δ)

〈e′k,∇f(xk)〉 ≤ 0, λ′k ≤ λmin

(
∇2f(xk)

)
+
εH
2
, (9.3.24)

where λ′k := (e′k)∗∇2f(xk)e′k.We know from Corollary 9.8, this requiresO(ε
−1/2
H )

of Hessian vector product operations or gradient evaluations. With the inexact

eigenvector, we conduct negative curvature descent when λ′k ≤ − εH2 :

xk+1 = xk +
2λ′k
L2
e′k. (9.3.25)
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Then similar to the proof in Theorem 9.5, we have

f(xk+1)− f(xk) ≤ 〈∇f(xk),xk+1−xk〉+
1

2
(xk+1−xk)∗∇2f(xk)(xk+1−xk)

+
L2

6
‖xk+1 − xk‖32

=

〈
∇f(xk),

2λ′k
L2
e′k

〉
+

1

2

(
2λ′k
L2
e′k

)∗
∇2f(xk)

(
2λ′k
L2
e′k

)

+
L2

6

∥∥∥∥
2λ′k
L2
e′k

∥∥∥∥
3

2

≤ 1

2

(
2λ′k
L2
e′k

)∗
∇2f(xk)

(
2λ′k
L2
e′k

)
+
L2

6

∥∥∥∥
2λ′k
L2
e′k

∥∥∥∥
3

2

=
2(λ′k)3

L2
2

+
4|λ′k|3
3L2

2

=
2(λ′k)3

3L2
2

≤ − ε3
H

12L2
2

. (9.3.26)

Therefore, the total descent is 1
12L2

2
ε3
H for O(ε

−1/2
H ) gradient evaluations. The

average descent per gradient is O(ε
7/2
H ). With the choice εH = O(ε2/7), the per

gradient evaluation will incur a descent of O(ε). Hence, the number of iterations

is k ≤ O(ε−1). With the same choice of εg = O(ε1/2), the overall computational

complexity of the inexact negative curvature descent in terms of the first-order

oracle is14

k ≤ O(ε−2
g ),

and the scheme guarantees to converge to a critical point x? that satisfies:

‖∇f(x?)‖2 ≤ O(ε1/2), −λmin(∇2f(x?)) ≤ O(ε2/7). (9.3.27)

9.4 Negative Curvature and Newton Descent

As we have seen in the cubic regularized Newton’s method in Section 9.2, if we

have access to the second-order oracle (the gradient and Hessian), the best rate

of convergence can be achieved is O(ε−1.5
g ). However, if we have access only to

the gradient, then for functions with Lipschitz gradient and Hessian, then the

lower bound of first-order methods can be relaxed to Ω(ε
−12/7
g ) [CDHS17], while

the best known achievable upper bound is O(ε
−7/4
g ).

We notice that the above hybrid gradient and negative curvature descent con-

verges at the rate O(ε−2
g ) and does not yet achieve the best known complexity

result. The main problem is with the step of gradient descent: to achieve the

prescribed descent ε per gradient step, it requires the gradient is at least in the

14 up to some log factor in n.
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order of O(ε1/2), disregarding any second-order information. When the gradi-

ent is not as large, to achieve the same amount of descent, one must leverage

second-order information about the Hessian as we did in the above Newton type

methods.

In this section, we show that a slightly more careful use of the negative curva-

ture information (computed from gradients) can indeed lead to algorithms that

reach the best known complexity bound. For readers who are not interested in

such theoretical guarantee, they may skip this section without loss of continuity.

9.4.1 Curvature Guided Newton Descent

In the preceding algorithm, the negative curvature descent step offers useful

second-order information about the function that probably can be utilized by

the gradient step, a key observation by [RW18]. This suggests that we could

reverse the order of the two steps: We first evaluate the smallest eigenvalue λmin

of the Hessian ∇2f(x). Based on its value, we decide to conduct either a negative

curvature descent or a more effective descent based on the gradient ∇f(x).

Notice that for the later choice, with the second-order information about the

negative curvature, we can conduct a more effective regularized Newton type

descent:

sk = argmin
s
〈∇f(xk), s〉+

1

2
s∗∇2f(xk)s+

λ

2
‖s‖22 (9.4.1)

with λ > λmin. The choice of the quadratic regularization term λ‖s‖22 ensures the

function is strongly convex in s or equivalently, ∇2f(x)+λI � 0 is positive defi-

nite. If we directly use the so computed optimal sk = −[∇2f(xk)+λI]−1∇f(xk)

as increment, we arrive at the well-known Levenberg-Marquardt method:15

xk+1 = xk −
[
∇2f(xk) + λI

]−1∇f(xk). (9.4.2)

Nevertheless, here to ensure the function value to decrease by at least the pre-

scribed amount, we should be judicious about the step size γk along the direction

sk:16

xk+1 = xk + γksk. (9.4.3)

Figure 9.3 and the following theorem give the proper conditions under which

the above hybrid scheme converges to a second-order stationary point.

15 We will provide more references to the Levenberg-Marquardt method in the Notes section.
Similar update rule can be derived from the perspective of the trust region method, as we
will see in Exercise 9.2.

16 In optimization, a good step size is often found through a “line search” step. Nevertheless,

when the function Lipschitz constants are given, we can give an explicit expression for the
proper step size.
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Hybrid Negative Curvature and Newton Descent

Problem Class:

min
x
f(x), x ∈ Rn,

where f : Rn → R is twice continuously differentiable, with Lipschitz con-
tinuous gradient and Hessian. Have access to the oracle: ∇f(x) and ∇2f(x).

Setup: given a prescribed accuracy ε > 0, εg = 38/3L
1/3
2 ε2/3/2, εH =(

3L2
2ε
)1/3

.

Initialization: Set x0 ∈ Rn.

For k = 0, 1, 2, . . .

1 Compute ∇f(xk), and the smallest eigenvalue and unit eigenvector pair
(λk, ek) of ∇2f(xk) with 〈∇f(xk), ek〉 ≤ 0.

2 if λk ≤ −εH , then conduct negative curvature descent:

xk+1 = xk +
2λk
L2
ek; (9.4.4)

3 else if ‖∇f(xk)‖2 ≥ εg, then solve the convex quadratic problem:

sk = argmin
s
〈∇f(xk), s〉+

1

2
s∗∇2f(xk)s+ εH‖s‖22, (9.4.5)

xk+1 = xk + γksk, (9.4.6)

with γk = min
{(

3εH
2L2‖sk‖2

)1/2

, 1
}

.

4 else end for and return x? = xk.

Convergence Guarantee: ‖∇f(x?)‖2 ≤ εg, −λmin(∇2f(x?)) ≤ εH .

Figure 9.3 An overview of the Hybrid Negative Curvature and Newton Descent.

Theorem 9.9 (Convergence of Hybrid Negative Curvature and Newton De-

scent). Assume {xk} are generated by the hybrid negative curvature and Newton

descent algorithm in Figure 9.3. Then in at most

k ≤ f(x0)− f(x?)

ε
(9.4.7)

iterations, xk will be an approximate second-order stationary point such that

‖∇f(xk)‖2 ≤ εg, λmin(∇2f(xk)) ≥ −εH , where

εg = 38/3/2L
1/3
2 ε2/3, εH =

(
3L2

2ε
)1/3

.

Proof If λk ≤ −εH or −λk ≥
(
3L2

2ε
)1/3

, we conduct negative curvature descent

(9.4.4). From the proof of Theorem 9.5, we know that then we have

f(xk+1)− f(xk) ≤ 2(λk)3

3L2
2

≤ −2ε3
H

3L2
2

= −2ε. (9.4.8)
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If λk > −εH , then we discuss two cases.

Case 1. If
(

3εH
2L2‖sk‖2

)1/2 ≥ 1, that is, ‖sk‖2 ≤ 3εH
2L2

, we accept the unit step

size. By the optimality condition of sk in (9.4.5), we have

∇2f(xk)sk + 2εHsk +∇f(xk) = 0. (9.4.9)

Then together with the property of Lipschitz Hessian condition (9.2.13), we have

‖∇f(xk+1)‖2 = ‖∇f(xk + sk)‖ ≤ ‖∇f(xk + sk)− (∇f(xk) +∇2f(xk)sk)‖2
+‖∇f(xk) +∇2f(xk)sk‖2

≤ L2

2
‖sk‖22 + ‖2εHsk‖2 ≤

L2

2
‖sk‖22 + 2εH‖sk‖2

≤
(9

8
+ 3
)ε2

H

L2
≤ 9ε2

H

2L2

≤ εg. (9.4.10)

Then, by the property of Lipschitz Hessian condition (9.2.4), we have

f(xk+1) = f(xk + sk)

≤ f(xk) + 〈∇f(xk), sk〉+
1

2
s∗k∇2f(xk)sk +

L2

6
‖sk‖32

≤ f(xk)− 1

2
s∗k∇2f(xk)sk − 2εH‖sk‖22 +

L2

6
‖sk‖32

≤ f(xk)− 3

2
εH‖sk‖22 +

L2

6
‖sk‖32

≤ f(xk)− 3

2
εH‖sk‖22 +

εH
4
‖sk‖22

≤ f(xk)− 5

4
εH‖sk‖22. (9.4.11)

That is, when the step size γk = 1, we have that ∇f(xk+1) is already smaller

than εg and f(xk+1) is smaller than f(xk). As a result, we must have

λmin(∇2f(xk+1)) < −εH ;

otherwise, we have found a desired second-order stationary point. So, for the

case of accepting step size 1, before the algorithm stops, the function value will

be decreased by at least 2ε in the next iteration by negative curvature descent

(9.4.8).

Case 2. If
(

3εH
2L2‖sk‖2

)1/2
< 1, that is, ‖sk‖2 > 3εH

2L2
. To simplify notation, we
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let α =
(

3εH
2L2‖sk‖2

)1/2

< 1. Then we have

f(xk+1) = f(xk + αsk)

≤ f(xk) + α〈∇f(xk), sk〉+
α2

2
s∗k∇2f(xk)sk +

L2α
3

6
‖sk‖32

≤ f(xk) + α
(α

2
− 1
)
s∗k∇2f(xk)sk − 2αεH‖sk‖22 +

L2α
3

6
‖sk‖32

≤ f(xk)− αεH
(α

2
− 1
)
‖sk‖22 − 2αεH‖sk‖22 +

L2α
3

6
‖sk‖32

≤ f(xk)− αεH‖sk‖22 +
L2α

3

6
‖sk‖32

= f(xk)−
( 3

2L2

)1/2

(εH‖sk‖2)3/2 +
(3/2)3/2

6L
1/2
2

(εH‖sk‖2)3/2

≤ f(xk)− (3/2)1/23

4L
1/2
2

(εH‖sk‖2)3/2

≤ f(xk)− 27ε3
H

16L2
2

= f(xk)− 5ε. (9.4.12)

Combining (9.4.8)-(9.4.12), we know that before finding an approximate second-

order stationary point such that ‖∇f(xk)‖2 ≤ εg, λmin(∇2f(xk)) ≥ −εH , we can

always decrease the function value by at least 2ε in two consecutive iterations. As

a result, to find such point the total number of iterations will be upper bounded

by k ≤ f(x0)−f(x?)
ε .

9.4.2 Inexact Negative Curvature and Newton Descent

In the above scheme, we have assumed that we have access to the Hessian and

its smallest eigenvalue and eigenvector. However, if we only have access to the

gradient and the Hessian-vector product, how costly would it be to compute the

eigenvector? How accurately should it be computed so that the resulting scheme

achieves the best known complexity (w.r.t. the first-order oracle)?

In this section, we consider an inexact version of the algorithm in Figure 9.3,

which allows us to approximately compute the smallest eigenvalue and eigenvec-

tor pair, and approximately solve the convex quadratic problem. By carefully

choosing the stopping criterion, the inexact version of the algorithm, shown in

Figure 9.4, can maintain the convergence rate of the exact version, differing only

in constants. The corresponding convergence result is given in the theorem below.

Theorem 9.10. Assume {xk} are generated by the hybrid negative curvature
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Inexact Hybrid Negative Curvature and Newton Descent

Problem Class:

min
x
f(x), x ∈ Rn,

where f : Rn → R is twice continuously differentiable, with Lipschitz contin-
uous gradient and Hessian. Have access to the oracle: ∇f(x) and the Hessian
product ∇2f(x)v.

Setup: prescribed accuracy ε > 0, εg = (5/L2)(24L2
2ε)

2/3, εH =
(
24L2

2ε
)1/3

.

Initialization: Set x0 ∈ Rn.

For k = 0, 1, 2, . . .

1 Compute ∇f(xk) and an inexact unit eigenvector e′k such that (with prob-
ability 1− δ)

〈e′k,∇f(xk)〉 ≤ 0, λ′k ≤ λmin

(
∇2f(xk)

)
+
εH
2
, (9.4.13)

where λ′k := (e′k)∗∇2f(xk)e′k.
2 if λ′k ≤ − εH2 , then conduct negative curvature descent:

xk+1 = xk +
2λ′k
L2
e′k; (9.4.14)

3 else if ‖∇f(xk)‖2 ≥ εg, then find sk such that

‖∇2f(xk)sk + 2εHsk +∇f(xk)‖2 ≤
1

2
εH‖sk‖2, (9.4.15)

xk+1 = xk + γksk, (9.4.16)

where γk = min
{(

3εH
2L2‖sk‖2

)1/2

, 1
}

.

4 else end for and return x? = xk.

Convergence Guarantee: ‖∇f(x?)‖2 ≤ εg, −λmin

(
∇2f(x?)

)
≤ εH .

Figure 9.4 Overview of the Inexact Hybrid Negative Curvature and Newton Descent.

and Newton descent algorithm in Figure 9.4. Then in at most

k ≤ f(x0)− f(x?)

ε
(9.4.17)

iterations, xk will be an an approximate second-order stationary point such that

‖∇f(xk)‖2 ≤ εg, λmin(∇2f(xk)) ≥ −εH , where

εg = (5/L2)(24L2
2ε)

2/3, εH =
(
24L2

2ε
)1/3

.

Proof If λ′k ≤ − εH2 , we estimate the amount of descent by the negative curva-

ture descent. This is exactly the same as we have done in (9.3.26). The slight
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difference here is the choice of εH . Hence we have

f(xk+1)− f(xk) ≤ − ε3
H

12L2
2

= −2ε. (9.4.18)

If λ′k > − εH2 , then by the conditions of λ′k, we have

−εH
2
≤ λ′k ≤ λmin

(
∇2f(xk)

)
+
εH
2
, (9.4.19)

i.e, we have λmin

(
∇2f(xk)

)
≥ −εH . Then we discuss in two cases.

Case 1. If
(

3εH
2L2‖sk‖2

)1/2

≥ 1, that is, ‖sk‖2 ≤ 3εH
2L2

, then we accept the unit

step size. Letting

rk := ∇2f(xk)sk + 2εHsk +∇f(xk), (9.4.20)

we know ‖rk‖2 ≤ 1
2εH‖sk‖2. By the Lipschitz Hessian condition (9.2.13), we

have

‖∇f(xk+1)‖2 = ‖∇f(xk + sk)‖2
≤ ‖∇f(xk + sk)− (∇f(xk) +∇2f(xk)sk)‖2 + ‖∇f(xk) +∇2f(xk)sk‖2
≤ L2

2
‖sk‖22 + ‖rk − 2εHsk‖2 ≤

L2

2
‖sk‖22 + 2εH‖sk‖2 + ‖rk‖2

≤ L2

2
‖sk‖22 + 2εH‖sk‖2 +

1

2
εH‖sk‖2 ≤

(9

8
+ 3 +

3

4

)ε2
H

L2

≤ 5ε2
H

L2

= εg. (9.4.21)

Then, by the Hessian Lipschitz condition (9.2.4), we have,

f(xk+1) = f(xk + sk)

≤ f(xk) + 〈∇f(xk), sk〉+
1

2
s∗k∇2f(xk)sk +

L2

6
‖sk‖32

= f(xk) + 〈rk − (∇2f(xk)sk + 2εHsk), sk〉+
1

2
s∗k∇2f(xk)sk +

L2

6
‖sk‖32

≤ f(xk) + 〈rk, sk〉 −
1

2
s∗k∇2f(xk)sk − 2εH‖sk‖22 +

L2

6
‖sk‖32

≤ f(xk) + ‖rk‖2‖sk‖2 −
1

2
s∗k∇2f(xk)sk − 2εH‖sk‖22 +

L2

6
‖sk‖32

≤ f(xk) +
1

2
εH‖sk‖22 +

1

2
εH‖sk‖22 − 2εH‖sk‖22 +

L2

6
‖sk‖32

≤ f(xk)− εH‖sk‖22 +
L2

6
‖sk‖32

≤ f(xk)− εH‖sk‖22 +
εH
4
‖sk‖22

≤ f(xk)− 3

4
εH‖sk‖22. (9.4.22)

That is, if we accept the step size γk = 1, then ∇f(xk+1) is already smaller
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than εg and f(xk+1) is smaller than f(xk). As a result, we next should have

λmin(∇2f(xk+1)) < −εH ; otherwise, we have found a desired second-order sta-

tionary point. So for the case of accepting step size 1, before the algorithm stops,

we must decrease the function value by at least 2ε in the next iteration by the

negative curvature descent (9.4.18).

Case 2. If
(

3εH
2L2‖sk‖2

)1/2
< 1, that is, ‖sk‖2 > 3εH

2L2
. For simplicity, we denote

α =
(

3εH
2L2‖sk‖2

)1/2

< 1. Then we have

f(xk+1) = f(xk + αsk)

≤ f(xk) + α〈∇f(xk), sk〉+
α2

2
s∗k∇2f(xk)sk +

L2α
3

6
‖sk‖32

≤ f(xk)+α‖rk‖2‖sk‖2+α
(α

2
−1
)
s∗k∇2f(xk)sk−2αεH‖sk‖22+

L2α
3

6
‖sk‖32

≤ f(xk) +
αεH

2
‖sk‖22 − αεH

(α
2
− 1
)
‖sk‖22 − 2αεH‖sk‖22 +

L2α
3

6
‖sk‖32

≤ f(xk)− αεH
2
‖sk‖22 +

L2α
3

6
‖sk‖32

= f(xk)− 1

2

( 3

2L2

)1/2

(εH‖sk‖2)3/2 +
(3/2)3/2

6L
1/2
2

(εH‖sk‖2)3/2

≤ f(xk)− (3/2)1/2

4L
1/2
2

(εH‖sk‖2)3/2

≤ f(xk)− 9ε3
H

16L2
2

≤ f(xk)− 27

2
ε. (9.4.23)

So when using step size less than 1, we can always guarantee sufficient decrease.

Combining (9.4.18)-(9.4.23), we know that before finding an approximate

second-order stationary point such that ‖∇f(xk)‖2 ≤ εg, λmin

(
∇2f(xk)

)
≥

−εH , we can always decrease the function value by at least 2ε in two consecutive

iterations. As a result, to find such point the total number of iterations will be

upper bounded by k ≤ f(x0)−f(x?)
ε .

9.4.3 Overall Complexity in First-order Oracle

Notice that in the inexact scheme above, we need to approximate both the eigen-

vector e′ associated with the smallest eigenvalue (9.4.13) as well as find an ap-

proximate solution sk to the convex quadratic problem (9.4.1) that satisfies the

accuracy (9.4.15).

Inexact Negative Curvature Descent.
As we have characterized before in Section 9.3.3, to compute the smallest eigen-

value and eigenvector up to the prescribed accuracy εH/2, the number of Hessian-
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vector products (or gradients) evaluations is of order O(ε
−1/2
H ). With the choice

εH = O(ε1/3), this is equivalent to O(ε−1/6).17

Then, according to the proof of Theorem 9.9, each negative curvature descent is

ε. Hence per gradient evaluation, the descent is O(ε7/6). The number of iteration

k = O(ε−7/6).

According to Theorem 9.9, the total number of iterations of the algorithm in

Figure 9.4 is O(ε−1), while per iteration we need O(ε−1/6) number of Hessian-

vector products to produce the desired inexact solution. So the total number

of Hessian-vector products we need in negative curvature descent is O(ε−7/6).

Since we have ε = O(ε
3/2
g ), this leads to the best known rate k = O(ε

−7/4
g ).

Inexact Convex Quadratic Program.
Now, notice that we also need an approximate solution to the convex quadratic

problem (9.4.1). The above rate will hold only if we can solve the problem (9.4.15)

with the same complexity in first-order oracle for the Newton descent step. That

is, we need to show that the number of Hessian vector products, hence gradient

evaluations, needed to solve the quadratic problem approximately is also of order

O(ε
−1/2
H ), i.e., O(ε−1/6).

By the optimality condition of the convex quadratic problem (9.4.5), we have

∇2f(xk)sk + 2εHsk +∇f(xk) = 0. (9.4.24)

This is equivalent to

(∇2f(xk) + 2εHI)sk = −∇f(xk), (9.4.25)

which is of the form of a linear system: As = b, with A = ∇2f(xk) + 2εHI, b =

−∇f(xk). Notice that in the above algorithm, when we conduct the Newton

descent, we have the condition λmin(∇2f(xk)) ≥ −εH . So for our problem here:

εHI � A � (L1 + 2εH)I.

Of course, one could simply compute the inverse of A to solve s = A−1b,

but the complexity would be very high. To avoid computing matrix inverse, one

could try to solve the program numerically

min
s
‖As− b‖22

using the steepest gradient descent. However, the complexity would not be the

best one can do. The classic conjugate gradient method, described in equation

(A.6.3) in Appendix A, is precisely an accelerated gradient algorithm designed to

solve the above quadratic program more efficiently than the steepest descent. The

reader may refer to [She94, NW06] for an excellent derivation and justification

of this elegant, classical method.

For our interest here, one should notice that, at each iteration i, the conjugate

17 Here for simplicity, we have omitted possible log factors in the orders.
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gradient scheme only needs to evaluate the multiplication of A with the current

estimate si to compute the residual:

ri+1 = ri − αiAsi
for the next iteration. For our purpose, we need to characterize the precise num-

ber of iterations for the conjugate gradient method to produce an approximate

solution that satisfies the following (relative) accuracy:

‖As− b‖2 ≤ µ‖b‖2,

for some small µ > 0. Then from the property of conjugate gradient, it is easy

to show the following result for our problem.

Theorem 9.11 (Complexity of Approximate Conjugate Gradient). To solve

As = b with αI � A � βI, the conjugate gradient method computes an s′

that satisfies ‖As′ − b‖2 ≤ µ‖b‖2 for µ ∈ (0, 1) in at most

min

{
n,

1

2
ln
( 4

µ

(β
α

)3/2)
√
β

α

}
(9.4.26)

iterations.

Interested readers may see [She94, RW18] for a proof. In the setting of our

problem (9.4.15), we have α = εH , µ = 1
2εH , and β is bounded by a constant

close to L1. Therefore, the number of iterations, or matrix vector products, is of

the order O
(
ε
−1/2
H log( 1

εH
)
)
. If we ignore the log factor, the complexity Õ

(
ε
−1/2
H

)

is the same as that using the Lanczos method for computing the approximate

solution to the smallest eigenvalue.

Putting together the respective complexity of the inexact negative curvature

descent and inexact Newton descent, the overall computational complexity in

terms of the first-order oracle is (up to some log factors18):

k ≤ O
(
ε−7/4
g

)
,

and the scheme guarantees to converge to a point x? that satisfies:

‖∇f(x?)‖2 ≤ O(ε2/3), −λmin

(
∇2f(x?)

)
≤ O(ε1/3). (9.4.27)

Compared to the vanilla gradient descent scheme introduced in Section 9.1.1,

the above method not only has lower complexity in terms of first-order oracle,

O
(
ε
−7/4
g

)
versus O

(
ε−2
g

)
, but also converges to a second-order stationary point.

9.5 Gradient Descent with Small Random Noise

As we have mentioned before, when the dimension is very large, it can be very

costly to compute second-order information. Hence for scalable implementation

18 such as log(n) in the Lanczos method or log( 1
εH

) in the conjugate gradient.
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in practice, one may be restricted to have access only to the gradient information.

However, it is well known that in the worst case gradient descent alone can be

very ineffective with minimizing nonconvex functions. It can be extremely slow

to escape saddle points,19 unless we utilize schemes introduced in Sections 9.3 –

9.4 which explicitly exploit negative curvature computed from evaluating extra

number of gradients.

Historically, to avoid spurious critical points, people have also found that it is

beneficial to introduce some random noise in the descent process. Conceptually,

the random noise allows the algorithm to search a broader local landscape of

the objective function and creates a fair chance to escape from unstable critical

points20, or even to escape local minima (at least asymptotically, as we will soon

see).

This section studies the role of random noise in nonconvex optimization and

develops gradient descent type algorithms with convergence guarantees to global

(asymptotically) or local minimizers. In other words, we assume the algorithms

only have access to the noisy gradient oracle:

the gradient ∇f(x) and small random noise n.

We will reveal that gradient descent with random noise is actually implicitly

computing the second-order information and exploiting the direction of negative

curvature to achieve adequate local descent. In particular, for converging to

second-order stationary points, the best achievable complexity (in the first-order

oracle) is, not surprisingly, the same as the best methods introduced in the

previous section.

9.5.1 Diffusion Process and Laplace’s Method

To understand the role of random noise, it is the clearest to examine the con-

tinuous dynamics of the state x under the gradient flow with random noise (e.g.

see [Sas83]). Given a nonconvex function f(x), consider the following dynamics

with noisy gradient flow:

ẋ(t) = −1

2
∇f(x(t)) +

√
λn(t), (9.5.1)

where λ > 0 and n ∈ Rn is a white noise process. This is also known as the diffu-

sion process, or continuous-time Langevin dynamics. It is known from stochastic

process that given the derivative ∇f(x) grows rapidly enough as ‖x‖ → ∞,21

then the probability density of this diffusion process of the state x converges

19 even when the saddle points are not so flat or are non-degenerate [DJL+17].
20 As we have seen in the power iteration and Lanczos method in Section 9.3.2, random

initialization also helps avoid certain (zero measure) pathological cases with high

probability.
21 For instance, it suffices for the function f(x) to grow like quadratic as ‖x‖ → ∞.
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exponentially to a stationary distribution, known as the Gibbs measure [PSV77]:

pλ(x) = Cλ exp

(
− 1

λ
f(x)

)
, (9.5.2)

where Cλ > 0 is a normalizing factor such that
∫
x
pλ(x)dx = 1. We are interested

in what the density pλ(x) converges to, as the variance of the noise λ goes from

small to zero.

The Most Basic Case.
To this end, we recall a well-known result from calculus:

Lemma 9.12 (Laplace’s Method: Scalar Case). Suppose f(x) is a twice continu-

ously differentiable function with a unique maximizer x0 and f ′′(x0) < 0. Then

we have

lim
λ→0

∫
e

1
λ f(x)dx = e

1
λ f(x0)

√
2πλ

−f ′′(x0)
∝
∫
e

1
λ f(x)δ(x− x0)dx. (9.5.3)

Proof We here give a sketch of the proof that illustrates the reason why this

is expected. We leave a more rigorous derivation and proof for the multivariate

case (below) to the reader as exercises.

Since x0 is a maximizer, we have f ′(x0) = 0. So with Taylor expansion, we

may approximate the function up to second-order:

f(x) ≈ f(x0) +
1

2
f ′′(x0)(x− x0)2.

Then for the integral we have:
∫
e

1
λ f(x)dx ≈ e 1

λ f(x0)

∫
e

1
2λ f
′′(x0)(x−x0)2dx

= e
1
λ f(x0)

∫
e−

1
2λ |f ′′(x0)|(x−x0)2dx.

Notice that the last integral is exactly a Gaussian integral with variance σ2 =

λ/|f ′′(x0)) hence its value is
√

2πλ
|f ′′(x0)| . So we have

∫
e

1
λ f(x)dx ≈ e 1

λ f(x0)

√
2πλ

−f ′′(x0)
.

As λ→ 0 the approximation becomes exact in the sense that the ratio between

the two sides approaches to 1.

Based on this Lemma, when λ becomes small, the integral on the left hand

side is well approximated by a point-mass distribution at the global maximizer

x0, and it has nothing to do with any other values (including local maximizers)

of f(x).
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Multiple Global Optima.
As we have seen in Chapter 7, due to discrete symmetry, the objective functions

we try to optimize often have multiple global optima, associated with the ele-

ments of the symmetry group (see Figure 7.3). It is easy to generalize the above

lemma to this case. Suppose f(x) has multiple global maximizers x1, . . . , xN ∈ R.

We then have:

lim
λ→0

∫
e

1
λ f(x)dx =

N∑

i=1

e
1
λ f(xi)

√
2πλ

−f ′′(xi)
. (9.5.4)

We leave the proof as an exercise to the reader, see Exercise 9.6. Notice that the

integral above is very similar in style to
∫

x

pλ(x)dx ∝
∫

x

exp

(
− 1

λ
f(x)

)
dx

as λ ↓ 0, except that −f(x) here is a multivariate function with possibly multiple

global maximizers at x1
?, . . . ,x

N
? , corresponding to the multiple global minimizers

of f(x). Then one can show that, in this case, we have the following statement

that generalizes the above lemma:

Theorem 9.13 (Laplace Method: Multivariate and Multiple Global Minimizers).

Let f(x) be a function with at least quadratic growth as x → ∞. Suppose f(x)

has multiple global minimizers at x1
?, . . . ,x

N
? and they are all non-degenerate.

Then in the limit λ ↓ 0, the density pλ(x) of the noisy gradient descent dynamics

(9.5.1) converges to

p0(x) =

∑N
i=1 aiδ(x− xi?)∑N

i=1 ai
, with ai = det[H(xi?)]

−1/2, (9.5.5)

where H(x) = ∇2f(x) is the Hessian of the function f(x).

A Continuous Family of Global Optima.
As we have seen in Chapter 7, sometimes a nonconvex function f(x) may have

a continuous family of global minimizers, say due to rotational symmetry (see

Figure 7.3). The above theorem also generalizes naturally to this case. Let us

assume that the set of all minimizers make a continuous submanifoldM, and the

Hessian of the function is non-degenerate along the directions orthogonal to the

submanifold.22 For simplicity, we still use H(x) to denote the Hessian restricted

to the orthogonal directions to the submanifold (tangent space) at any global

minimizer x ∈ M. In this case, the Gibbs distribution pλ(x) converges to a

density on M given by:

p0(x) =
det[H(x)]−1/2

∫
M det[H(y)]−1/2dy

, x ∈M, (9.5.6)

and dy is the naturally induced metric on M.

22 Such a function is called a Morse-Bott function in differential geometry.
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A simple proof of Theorem 9.13 for the multivariate case, or the case with

multiple global minimizers, or the case with a family of global minimizers can

be found in [Sas83], which is very much in the same spirit of Lemma 9.12 for the

scalar case. Only here that the second-order derivative is naturally replaced by

the determinant of the Hessian. We leave the details to the reader as an exercise,

see Exercise 9.6.

The above theorem states an interesting fact: under the noisy gradient flow

(9.5.1), as the noise variance λ is gradually reduced to nearly zero, the den-

sity of the state converges to a point-mass distribution with support only on

the global minimizers of the function f(x). Historically, the above phenomenon

has motivated optimization methods that leverage random noise for nonconvex

optimization, including the well-known simulated annealing [KGV83].

Although the above theorem reveals a nice qualitative behavior of noisy gradi-

ent descent, it by no means suggests that this behavior can be exploited effectively

and efficiently for optimization. In fact, in order for the diffusion process to con-

verge to the density with support on the global minimizers, the noise variance λ

needs to be reduced to zero exponentially slowly in time t [GH86,CHS87]:

λ =
c

log t
for large t and c > 0.

9.5.2 Noisy Gradient with Langevin Monte Carlo

Inspired by properties of the above diffusion process, to minimize a function f(x),

one may consider a discrete approximation to the noisy gradient flow (9.5.1). The

resulting discrete process is known as Langevin Monte Carlo:

xk+1 = xk − α∇f(xk) +
√

2αλnk, (9.5.7)

where nk ∼ N (0, I) is i.i.d. Gaussian noise and α > 0 is a step size (corre-

lated with the noise level). It can be shown that if the discretization is done

properly, the above discrete Langevin process can asymptotically converge to

the same Gibbs stationary distribution as in the continuous case mentioned

above [RT96].23 Algorithms based on the above discrete stochastic process for

optimization have been long proposed and studied in the literature of stochastic

control and optimization [Kus87, GM90]. Below we try to illustrate the funda-

mental rationale behind such schemes through analysis of the most basic cases.

To simplify the analysis, as in the previous section, we assume again that

f : Rn → R is nonconvex, and is twice continuously differentiable, with Lipschitz

continuous gradient ∇f(x) ∈ Rn with Lipschitz constant L1. Notice that if we

23 A few words of caution though: the relationship between the continuous diffusion (9.5.1)

and the discrete approximation (9.5.7) can be subtle. Even if the original diffusion
converge, naive discretizations need not to. Or even if the original diffusion converges
exponentially quickly to its stationary distribution, discretized versions need not to
converge exponentially fast. For details of proper discretizing of the Langevin dynamics,

one may refer to [RT96].
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choose the step size to be the Lipschitz constant α = 1/L1, then the above

scheme becomes

xk+1 = xk −
1

L1
∇f(xk) +

√
2λ/L1nk. (9.5.8)

Now let us consider a similar setting as in the negative curvature descent

scheme studied in Theorem 9.5, with a prescribed precision ε > 0.24 Then we

have the following statement regarding the above noisy gradient descent scheme:

Proposition 9.14 (Noisy Gradient Descent). Considering the above noisy gra-

dient descent scheme (9.5.8), if ‖∇f(xk)‖2 ≥ (2L1ε)
1/2, then we have

E[f(xk+1) | xk] ≤ f(xk)− ε+ λ. (9.5.9)

Proof From the Lipschitz condition, we have

f(xk+1) ≤ f(xk) + 〈∇f(xk),xk+1 − xk〉+
L1

2
‖xk+1 − xk‖22.

Also from the iteration (9.5.8), we have xk+1−xk = − 1
L1
∇f(xk) +

√
2λ/L1nk.

So we have

f(xk+1) ≤ f(xk) + 〈∇f(xk),− 1

L1
∇f(xk) +

√
2λ/L1nk〉

+
L1

2

∥∥∥ 1

L1
∇f(xk)−

√
2λ/L1nk

∥∥∥
2

2
.

Take the conditional expectation on both sides, we have

E[f(xk+1) | xk] ≤ f(xk)− 1

L1
‖∇f(xk)‖22 +

1

2L1
‖∇f(xk)‖22 + λ

= f(xk)− 1

2L1
‖∇f(xk)‖22 + λ

≤ f(xk)− ε+ λ.

This proposition reveals a simple and important relationship between the op-

timization precision ε and the noise variance λ. It has several implications. On

one hand, it ensures that as long as the gradient is strictly over the threshold

‖∇f(xk)‖2 > (2L1λ)1/2, the noisy gradient descent scheme reduces the expected

function value per iteration. Or equivalently, as long as we choose the noise level

adaptively according to:

λk <
1

2L1
‖∇f(xk)‖22,

the scheme is expected to be descending always. On the other hand, if one uses

a fixed noise variance λ > 0, then whenever the iterates approach to a critical

point with gradient dropping below the threshold

‖∇f(xk)‖2 < (2L1λ)1/2,

24 That is, we desire to eventually achieve |f(xk+1)− f(xk)| ≤ ε.
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the random effect starts to take over and to explore if the critical point is stable.

This mechanism allows the noisy descent algorithm to escape from unstable

critical points such as saddle points, as we will elucidate further below.

9.5.3 Negative Curvature Descent with Random Noise

Despite the asymptotic consistency, there is no theoretical guarantee that the

Langevin Monte Carlo (9.5.7) is able to find the global minima of a general non-

convex functions in polynomial time. In fact, according to [BEGK11], it takes

the Langevin diffusion at least eΩ(h/λ) time to escape any local minima of height

h > 0. This implies that for functions that contain deep local minima, it is

unavoidable for noisy gradient descent to take exponentially long time to escape

before finding global ones. Hence, contrary to our earlier hope, it is actually

computationally intractable to use this method (alone) to find global minima of

general nonconvex functions!

Dynamics of Noisy Gradient Descent around a Strict Saddle Point.
It seems that noise is no magical sauce and there is no free lunch at all when it

comes to solving general nonconvex optimization problems. Then what can noisy

gradient descent methods actually end up with helping in practice with noncon-

vex optimization then? As it turns out, random noise helps gradient descent to

escape non-stationary critical points, such as saddle points, efficiently.25 As we

have seen in the negative curvature descent methods, any non-degenerate sad-

dle point has a direction with strict negative curvature. Intuitively such a point

is very “unstable” (as shown in the Figure 7.2), and any random perturbation

would drive the state away from it. The only question is how quickly this may

take place, say under the noisy gradient descent scheme.

To see this, notice that without loss of generality, we may consider dynamics

of the noisy gradient descent around the critical point x = 0 of the standard

quadratic function26

f(x) =
1

2
x∗Hx

for a constant H ∈ Rn×n, with the smallest eigenvalue λmin < 0, and the Lips-

chitz constant L1 = maxi |λi(H)|.

Proposition 9.15 (Escaping Saddle Point via Noisy Gradient Descent). Con-

sider the noisy gradient descent via the Langevin dynamics (9.5.8) for the func-

tion f(x) = 1
2x
∗Hx, starting from x0 ∼ N (0, σ2I). Then after

k ≥ log n− log(|λmin|/L1)

2 log(1 + |λmin|/L1)
(9.5.10)

25 Hence, this ensures that the process converges at least to local minima, in polynomial
time [ZLC17].

26 Since we only care about local behaviors, any nonconvex function is diffeomorphic to this

standard form around a non-degenerate critical point x? with Hessian H(x?).
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steps, we have

E[f(xk+1)− f(x0)] ≤ −λ. (9.5.11)

Proof Notice that for this function, the Lipschitz constant for the gradient L1

is exactly the spectral norm of the Hessian H. So the Langevin dynamics (9.5.8)

becomes:

xk+1 = xk −
1

L1
∇f(xk) +

√
2λ/L1nk

= (I − L−1
1 H)xk +

√
2λ/L1nk.

Notice that the matrix A
.
= I −L−1

1 H has eigenvalues outside of the unit circle

if and only if the Hessian has a negative eigenvalue λmin < 0:

λmax(A) = 1− λmin(H)

L1
> 1.

This defines an unstable linear dynamic system with random noise as the input:

xk+1 = Axk + bnk, (9.5.12)

with b
.
=
√

2λ/L1. Therefore we have

xk+1 = Ak+1x0 + b

k∑

i=0

Ak−ini. (9.5.13)

Notice that all the terms Ak+1x0 and Ak−ini on the right hand side are nothing

but powers of the matrix A applied to a (random) vector.

From the power iteration method that we have seen in Section 9.3.2, as the

power increases, each of these term converges to the eigenvector of the largest

eigenvalue ofA,27 or equivalently the eigenvector of the smallest (negative) eigen-

value of H. That is exactly the direction of the most negative curvature of f(x)

that we have computed before in Section 9.3.2. Hence when the gradient is small,

the noisy gradient descent implicitly performs negative curvature descent, exactly

in the same spirit as the gradient and negative curvature descent algorithm in

Figure 9.2.

Now we only have to turn the state evolution (9.5.13) to a bound for the descent

of the expected value of the function f(x). Let {λj}nj=1 be the n eigenvalues of

the Hessian H, sorted from the largest to the smallest. Notice that A and H

share the same eigenvectors and can be diagonalized by the same orthogonal

transform, the corresponding eigenvalues of A are {1− λj
L1
}nj=1. Since x0 and nk

27 We will also characterize the geometry of the landscape of the objective function for power

iteration more precisely in Section 9.6.
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are all independent zero mean random variables, we have

E[f(xk+1)− f(x0)] = E
[1

2
x∗k+1Hxk+1 −

1

2
x∗0Hx0

]

=
1

2
σ2trace

(
A2(k+1)H

)
+

1

2
b2

k∑

i=0

trace
(
A2(k−i)H

)
− 1

2
σ2trace (H) .

For the first and third terms related to the initial condition x0, we have

1

2
σ2trace

(
A2(k+1)H

)
− 1

2
σ2trace (H)

=
1

2
σ2

n∑

j=1

[(
1− λj

L1

)2(k+1)
λj − λj

]
≤ 0

because 1− λj
L1

is smaller than 1 when λj is positive and larger than 1 when λj
is negative. So without the random noise, the deterministic part of the system

xk+1 = Axk always leads to descending in the objective value regardless of

initial condition!

So we have

E[f(xk+1)− f(x0)] ≤ 1

2
b2

k∑

i=0

trace
(
A2(k−i)H

)

=
1

2
b2

n∑

j=1

( k∑

i=0

(
1− λj

L1

)2(k−i)
λj

)
.

Notice that we have

k∑

i=0

(
1− λj

L1

)2(k−i)
λj ≤ L1, when λj > 0;

k∑

i=0

(
1− λj

L1

)2(k−i)
λj < 0, when λj < 0.

There are at most n− 1 positive eigenvalues. Since b =
√

2λ/L1, we have

E[f(xk+1)− f(x0)] ≤ 1

2
b2
(

(n− 1)L1 + λmin

k∑

i=0

(
1− λmin

L1

)2i)

≤ λ
(

(n− 1) +
λmin

L1

(
1− λmin

L1

)2k)
.

To have
λmin

L1

(
1− λmin

L1

)2k

≤ −n,

we only need to choose

k ≥ log n− log(|λmin|/L1)

2 log(1 + |λmin|/L1)
. (9.5.14)
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With this choice of number of noisy descent iterations around the saddle point,

we have

E[f(xk+1)− f(x0)] ≤ −λ. (9.5.15)

In fact, one can see from the above expression for k, the number of iteration

needed increases when the ratio κ = L1/|λmin| is large. In this case log(1 +

|λmin|/L1) ≈ |λmin|/L1 = κ−1. So from (9.5.14), the number of noisy gradient

steps required to achieve the desired descent λ is simplified to:

k ≥ κ

2
log(n).

Stopping Criteria.
Notice that the above lower bound for the number of noisy descent steps k is

monotonic in |λmin| = −λmin: the smaller is |λmin|, the larger k needs to be. Then

without computing and knowing the smallest eigenvalue λmin of the Hessian H,

how do we know what k to use and when should we stop, once the curvature

becomes nearly non-negative? Answers to these questions can be tricky if we do

not resort to any explicit process to estimate λmin.

From the proof of the above Proposition 9.15, the noisy gradient descent es-

sentially conducts negative curvature descent implicitly through power iteration

on noise. If we choose the noise variance λ in the noisy gradient descent to be the

same as the prescribed precision ε for the function value (as in Section 9.3.2):

λ = ε,

then k noisy gradient descent iterations are equivalent to one step of deterministic

negative curvature descent (as characterized by Theorem 9.5.)

Following the same line of arguments in Theorem 9.5, as long as we have:

−λmin(H) ≥ εH =
(
1.5L2

2ε
)1/3

,

we should expect to achieve a descent amount of λ = ε. So using εH =
(
1.5L2

2ε
)1/3

as a lower bound28 for |λmin|, we get an estimate of the number of noisy gradient

descent needed:

kmax ≥
log n− log

(
L−1

1

(
1.5L2

2ε
)1/3)

2 log
(
1 + L−1

1

(
1.5L2

2ε
)1/3) . (9.5.16)

Hence, if, after kmax noisy gradient descent, the function value drops less than ε,

that indicates the minimum eigenvalue should have reached the desired threshold:

− λmin(H) ≤ εH =
(
1.5L2

2ε
)1/3

, (9.5.17)

and the critical point reached is an approximate second-order stationary point.

28 Notice that for the standard quadratic function f(x) = 1
2
x∗Hx, the Lipschitz constant L2

can be as small as zero. However, for a general function, L2 is not and we can choose any
nonzero upper bound for this constant.



9.5 Gradient Descent with Small Random Noise 409

Hybrid Noisy Gradient Descent

Problem Class:

min
x
f(x), x ∈ Rn,

where f : Rn → R is nonconvex, and is twice continuously differentiable,
with Lipschitz continuous gradient and Hessian with constants L1 and L2,
respectively. Have access to the oracle: gradient ∇f(x) and random noise n.

Setup: given a prescribed accuracy ε > 0, εg = (2L1ε)
1/2 and εH =(

1.5L2
2ε
)1/3

.

Initialization: Set x0 ∈ Rn.

For k = 0, 1, 2, . . .

1 Compute the gradient ∇f(xk).
2 if ‖∇f(xk)‖2 ≥ εg, then gradient descent:

xk+1 = xk −
1

L1
∇f(xk);

3 else x0
k = xk, and negative curvature descent with noisy gradients:

for i = 0, 1, 2, . . . , kmax as in (9.5.10)

xi+1
k = xik −

1

L1
∇f(xik) +

√
2ε/L1n

i,

where ni ∼ N (0, I).
end for and set xk+1 = xi+1

k .

End for when |f(xk+1)− f(xk)| ≤ ε and return x? = xk.

Convergence guarantee: ‖∇f(x?)‖ ≤ εg, −λmin(∇2f(x?)) ≤ εH .

Figure 9.5 An overview of the Hybrid Noisy Gradient Descent Method.

Hybrid Noisy Gradient Descent.

As we have seen from the analysis in Section 9.5.2 and Section 9.5.3, when the

gradient is large, it is not so helpful to add noise. Only when the gradient is

small enough and we are near a strict saddle point, adding small random noise

would help escape from it – but with a price about O(κ log n) noisy gradient

steps to reach the same amount of descent. So to make the algorithm more

efficient, we may modify the basic noisy gradient scheme with a hybrid scheme

illustrated in Figure 9.5, in which we choose different descent strategies based

on the local landscape. One should notice that this scheme is very similar to

the hybrid gradient and negative curvature descent scheme in Figure 9.2. The

only difference is that here we replace the negative curvature descent step with

a sequence of O(κ log n) random gradient descent steps.
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Optimize Overall Complexity.
As we have discussed above, around a critical point, to achieve the same amount

of descent, say ε, by exploiting negative curvature using noisy gradient descent,

it requires evaluating a number of, kmax, gradients. If we use gradients as the

oracle to evaluate overall complexity, the cost of the negative curvature step

in the above algorithm will be more than the gradient step. From the analysis

above, if we require λmin ≥ −O(ε1/3), to achieve ε amount of descent, we need

kmax = O(ε−1/3 log(n)). Hence on average, the function value decreases per

gradient evaluation is in the order of O(ε−4/3 log(n)). So to guarantee ‖∇f(x)‖ ≤
εg = O(ε1/2), we need (up to a log(n) factor) O(ε

−8/3
g ) number of gradients,

which is actually worse than the rate O(ε−2
g ) of the gradient descent given in

Proposition 9.1.

Since the negative curvature descent is much more costly, we may relax our

requirements on the accuracy in the smallest eigenvalue, say from −λmin ≤ εH =

O(ε1/3) to

−λmin ≤ εH = O(ε1/4)

instead. Then the number of noisy gradient descent becomes

kmax = O(ε−1/4 log(n))

and the function value decreases by O(ε3/4). On average, up to a log(n) factor,

the function value decreases per gradient evaluation is O(ε), the same as a gra-

dient descent step. So to guarantee ‖∇f(x)‖ ≤ εg, the number of total gradient

evaluations needed is O(ε−2
g ), up to a log(n) factor.

9.5.4 Complexity of Perturbed Gradient Descent

In the above hybrid descent scheme, for simplicity and clarity of analysis, we have

separated the normal gradient descent and noisy gradient descent around critical

points. The hybrid scheme achieves a complexity of O(ε−2
g ). As we have seen in

the previous section, the best complexity we are able to achieve is O(ε
−7/4
g ). A

remaining question is whether it is possible to achieve this rate with a noisy

gradient descent scheme.

As we have mentioned before, the simple gradient descent is not the most

efficient way to decrease the function value. The Newton descent introduced in

Section 9.4.1 is precisely aiming to improve its efficiency. Nevertheless, it requires

accessing or approximating the direction of negative curvature. For algorithmic

simplicity, one may prefer only to conduct the (noisy) gradient descent. What

else can we do to improve the efficiency of (noisy) gradient descent without

explicitly computing the second-order information?

In fact, we have seen such a scheme in the context of convex optimization: the

Nesterov’s acceleration (see Section 8.3 of Chapter 8 or Section D.2 of Appendix

D). The same acceleration scheme should also work for the nonconvex case (at

least locally). Following this line of thought, a randomly perturbed accelerated
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Perturbed Accelerated Gradient Descent

Problem Class:

min
x
f(x), x ∈ Rn,

where f : Rn → R is nonconvex, and is twice continuously differentiable,
with Lipschitz continuous gradient and Hessian with constants L1 and L2,
respectively. Have access to the oracle: gradient ∇f(x) and random noise n.

Setup: given properly chosen parameters εg, εH , σ, s, and kmin.

Initialization: Set the state x0 ∈ Rn and momentum v0 = 0.

For k = 0, 1, 2, . . .

1 Compute the gradient ∇f(xk).
2 If ‖∇f(xk)‖2 ≤ εg and there is no random perturbation in last kmin steps,

then randomly perturb the current iterate:

xk ← xk + nk, nk ∼ N (0, σI).

3 Conduct accelerated gradient descent:
pk+1 = xk + βvk,
xk+1 = pk+1 − α∇f(pk+1),
vk+1 = xk+1 − xk.

(9.5.18)

4 If

f(xk) ≤ f(pk+1) + 〈∇(pk+1),xk − pk+1〉 −
εH
2
‖xk − pk+1‖

2
2,

then use vk to conduct negative curvature exploitation:
• if ‖vk‖2 ≥ s then xk+1 = xk;
• else xk+1 = xk + δ with δ = ±s vk

‖vk‖
that minimizes f(xk + δ).

• reset vk+1 = 0.

End for.

Figure 9.6 An overview of the Perturbed Accelerated Gradient Descent Method.

gradient descent (PAGD) scheme has been proposed by [JNJ18], as illustrated

in Figure 9.6.

One remarkably insightful and clever idea of this scheme is to directly leverage

the momentum from the acceleration scheme, the vector vk in Step 3 of the

PAGD algorithm, as a candidate to exploit the negative curvature. This saves

the effort to (approximately) compute the negative curvature direction as we

have done in methods introduced earlier. By combining the random perturbation

and the acceleration, careful analysis can show that the resulting scheme indeed

achieves the best complexity of O(ε
−7/4
g ) (saving some log factors) [JNJ18].

The reader should be aware that all the complexity guarantees characterized

for all methods so far are for the worst case among a broad family of func-
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tions considered.29 As we have seen in Chapter 7, many of the problems that

we encounter in low-dimensional structure recovery are much better than the

worst case. Even to the opposite, the functions often have additional benign

geometric structures. For instance, the objective functions have non-degenerate

saddle points, the functions do not have any spurious local minima in conspicuous

configurations [DJL+17], the functions are strongly convex around the minima

etc. Hence, it is often observed in practice that, even much simplified vanilla

versions of the randomly initialized or perturbed gradient descent can be sur-

prisingly efficient and effective (in escaping strict saddles and converging to min-

imizers), far more than what is characterized for the worst case.

9.6 Leveraging Symmetry Structure: Generalized Power Iteration

This chapter so far has provided a rather systematic and complete characteriza-

tion of convergence and complexity of first (and second) order methods for a very

general class of (unconstrained) nonconvex programs. However, the complexities

characterized are typically for the worst case (in a broad class of problems consid-

ered). In practice, very often the particular optimization problems we encounter

for recovering low-dimensional models have special structures which can be ex-

ploited for much better computational efficiency. This clearly has been the case

for convex optimization as we have seen in Section 8.6 where methods such as

Franke-Wolfe and Stochastic Gradient Descent can be utilized to exploit the

structures in the constraints and in the objective function, respectively.

In Chapter 7, we have argued that in processing structured data, noncon-

vexity often arises due to certain structural symmetries in the problems and

the domain spaces are typically compact manifolds that are invariant under the

associated symmetry group actions. Such special manifolds are known as homo-

geneous spaces in differential geometry [Lan01]. They include important cases

that we have frequently encountered before: high-dimensional spheres, orthog-

onal groups, and Stiefel manifolds etc. The nice global geometric structures

of these manifolds make them amenable to global analysis and computation. In

this section, we illustrate several important instances for which we can go be-

yond the local gradient-descent type methods, and exploit more global geometric

structures for more efficient optimization algorithms.

9.6.1 Power Iteration for Computing Singular Vectors

Consider the problem of computing the leading singular value-vector of a matrix

Y that we have seen earlier in Chapter 4:

min ϕ(q) ≡ −1
2q
∗Γq,

subject to q∗q = 1 (or q ∈ Sn−1)

(9.6.1)

29 Here functions with Lipschitz gradient and Hessian and only have strict saddles.
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with Γ = Y Y ∗. As we have shown in Section 4.2.1, when ϕ is viewed as a function

on the sphere, its saddle points are associated with the (ordered) eigenvalues λi
of Γ with λi > λi+1, and we have

ϕ(q(λi+1)) > ϕ(q(λi)), for i = 1, . . . , n.

From the second derivative of the objective function (4.2.9), we see that we

always have

S−[q(λi+1)] ⊃ S−[q(λi)], for i = 1, . . . , n,

where S− indicates the unstable submanifold of a critical point. It suggests that

unstable submanifolds of upstream saddle points contain the entire unstable

submanifolds of the downstream saddle points. Further analysis shows that the

direction towards the global minimum has the most negative curvature among

all directions. Therefore, we expect most reasonable methods to converge to a

global minimizer. For almost all the problems that we have studied in Chapter 7,

the landscape of their objective functions has similar global geometric properties.

In addition, the objective functions do not have any spurious local minima in

conspicuous configurations. There are both theoretical and experimental reasons

to expect standard, randomly initialized, gradient descent to converge to a small

neighborhood of a global minimizer, in polynomial time.30

In fact, for the singular vector problem, the nice global geometry of the objec-

tive function ϕ may enable even more efficient methods than the vanilla gradient

descent. For instance, we know, from the Lagrangian formulation of (9.6.1), the

necessary condition of the critical points of ϕ gives

∇ϕ(q) = Γq = λq

for some λ (the eigenvalues of the matrix Γ). Hence any critical point, including

the optimal solution, is a “fixed point” to the following equation:

q = PSn−1(Γq) =
Γq

‖Γq‖2
, (9.6.2)

where PSn−1 means projection onto the sphere Sn−1. If we view

g(·) .
= PSn−1 [Γ(·)] : Sn−1 → Sn−1

as a map from Sn−1 to Sn−1 itself, the map is actually a contraction mapping.

That is,

d(g(q), g(p)) ≤ ρ · d(q,p)

for some 0 < ρ < 1 and d(·, ·) a natural distance on the sphere. It is easy to

show that here ρ is bounded from above by the ratio ρ ≤ λ2/λ1 where λ2 is the

second largest eigenvalue of Γ. This leads to another more popular method to

30 This has been proved for specific problems, including dictionary learning [GBW19] and

generalized phase retrieval [CCFM18].
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compute the eigenvector, known as the power iteration method (as we have seen

in Exercise 4.6):

qk+1 = g(qk) =
Γqk
‖Γqk‖2

∈ Sn−1. (9.6.3)

It can be shown that this iteration is much more efficient than gradient descent

method for solving the singular vector problem (9.6.1).31 The rate of convergence

of the iteration is typically linear: If q? is a fixed point q? = g(q?), we always

have

d(q?, qk) ≤ ρk · d(q?, q0).

That is, the error decreases geometrically according to the kth power of ρ, hence

the name of the method.

9.6.2 Complete Dictionary Learning

In Chapter 7, we have introduced and studied dictionary learning as an important

example of structured nonconvex problems. Now, consider solving a special case

of dictionary learning where the dictionary is complete (i.e., square and invert-

ible). Without loss of generality, we assume the dictionary is orthogonal32 and

we solve the problem via maximizing `4 norm: given a data matrix Y = DoXo

where Do is orthogonal and Xo is sparse, we try to recover the dictionary from

solving the following optimization problem:

min ψ(A) ≡ − 1
4‖AY ‖44,

subject to A∗A = I (or A ∈ O(n)).

(9.6.4)

Notice that this is very similar in style to the singular vector problem (9.6.1).

Unfortunately, a careful study would show that, unlike the singular vector prob-

lem, here ψ is in general not a Morse function on O(n).33 Hence there is no

guarantee that the gradient flow type algorithms would be efficient for solving

this problem.

But what about the fixed point approach then? Let us consider the Lagrangian:

L(A,Λ)
.
= −1

4
‖AY ‖44 + 〈Λ,A∗A− I〉. (9.6.5)

This gives the necessary condition ∇AL(A,Λ) = 0:

−∇Aψ(A) = (AY )◦3Y ∗ = AS, (9.6.6)

for a symmetric matrix S = (Λ + Λ∗) (of Lagrange multipliers). Notice that if

31 As we have seen the same scheme arises several times in the earlier sections of this
Chapter, whenever a direction with negative curvature of the Hessian matrix is concerned.

32 If the dictionary is not orthogonal, one can always convert the problem to an orthogonal

one by certain normalization process, see [ZYL+20].
33 One can show that when n = 6, there exist critical points whose Hessian has multiple zero

eigenvalues.
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A is an orthogonal matrix and S is symmetric, then the projection of AS onto

the orthogonal group O(n) is

PO(n)[AS] = A.

Then, by projecting both sides of (9.6.6) onto the orthogonal group O(n), the

critical point, including the optimal solutions A?, should satisfy the following

“fixed point” equation:

A = PO(n)[(AY )◦3Y ∗]. (9.6.7)

So if we view

g(·) .
= PO(n)[((·)Y )◦3Y ∗] : O(n)→ O(n)

as a map from O(n) to O(n) itself, one can show that this map is again a (locally)

contraction map. This leads to the matching, stretching, and projection (MSP)

algorithm [ZYL+20] for solving the dictionary learning problem:

Ak+1 = PO(n)[(AkY )◦3Y ∗]. (9.6.8)

Hence, the MSP can be viewed as a power iteration algorithm for solving the

above fixed point problem.

The original Newton’s method (9.1.13), introduced earlier in this Chapter, is

precisely a “fixed-point” type algorithm for computing the roots of an equation.

Only that it gives a contraction mapping locally around a critical point – see

the proof of Proposition 9.2. The power iteration for computing eigenvectors

or for dictionary learning is unlike any of the local (first-order or second-order)

methods that we have introduced earlier in this chapter. It actually exploits the

global geometry of the objective function over a nice manifold of the solution

space: it has the ability to converge to the globally optimal solution from a

random starting point, and enjoys much higher convergence rates. In fact, one

can show that the MSP iteration for dictionary learning converges locally with

cubic rate around the globally optimal solutions [ZYL+20], far more efficient

than any first-order or second-order local methods introduced earlier.34

9.6.3 Optimization over Stiefel Manifolds

From the previous examples, we could try to generalize the method to a broader

set of problems. Consider the problem of minimizing a concave function f(X)

over the so-called Stiefel manifold, for m ≤ n:

Vm(Rn)
.
= {X ∈ Rn×m |X∗X = Im×m}. (9.6.9)

Then for the program:

min
X

f(X) subject to X∗X = I, (9.6.10)

34 However, the global convergence of MSP remains an open problem, despite compelling

empirical evidences suggesting that is the case.
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we consider the Lagrangian:

L(X,Λ)
.
= f(X) + 〈Λ,X∗X − I〉. (9.6.11)

The necessary condition for optimality ∇XL(X,Λ) = 0 gives

−∇f(X) = XS, (9.6.12)

for a symmetric matrix S = (Λ + Λ∗). This gives

∇f(X)∗∇f(X) = S∗X∗XS = S2. (9.6.13)

We can solve for S = [∇f(X)∗∇f(X)]1/2. When S is invertible,35 the necessary

condition (9.6.12) for optimality becomes:

X = −∇f(X)[∇f(X)∗∇f(X)]−1/2. (9.6.14)

For simplicity, we define:

g(X)
.
= −∇f(X)[∇f(X)∗∇f(X)]−1/2 (9.6.15)

as a mapping from Vm(Rn) to itself:

g(X) : Vm(Rn)→ Vm(Rn).

Hence the optimal solution X? can be viewed as the “fixed point” to the equa-

tion:

X = g(X).

To compute the fixed point, we can simply take the iteration:

Xk+1 = g(Xk) = −∇f(Xk)[∇f(Xk)∗∇f(Xk)]−1/2. (9.6.16)

It is easy to check that the iterations for the singular vector computation and

the dictionary learning are precisely special cases to this iteration, with m = 1

and m = n, respectively.

The above descent scheme is also known as the generalized power method

[JNRS10] (applied over Stiefel manifolds). With similar techniques as in the

gradient descent case (in Section 9.1.1), one can show that when the objective

function is concave, the iterative process converges to a first-order critical point

at least in the rate O(1/k) (see Exercise 9.8). However, as we see in the cases

of singular vector and dictionary learning, when the function f(X) has good

properties, actual performance of the above scheme (9.6.16) can be far more

efficient than the rate O(1/k) for the worst case, especially when the associated

function g(X) is a (global or local) contraction mapping.

35 which is normally the case, as we have seen in the cases with the singular vector and
dictionary learning.
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Fixed Point of a Contraction Mapping

Problem Class:

min
x
f(x), x ∈M, withM being a compact manifold.

Critical points of f correspond to the fixed point of a (locally) contraction
mapping g(·) :M→M:

g(x) = x.

Initialization: Set x0 ∈ Rn randomly (or locally near a critical point).

Iteration: For k = 0, 1, 2, . . . ,K,

xk+1 = g(xk).

Convergence guarantee: xk converges to a fixed point x? in at least geo-
metrically fast (i.e., at least linear rate of convergence).

Figure 9.7 An overview of optimization via the fixed point of a contraction mapping.

9.6.4 Fixed Point of a Contraction Mapping

Notice that the power iteration algorithms for all three problems have one thing

in common: they all rely on a (locally) contraction mapping from a compact

manifold to itself. More generally speaking, letM be a compact smooth manifold

with a distance metric d(·, ·).

Definition 9.16 (Contraction Mapping). A map g : M→M is called a con-

traction mapping on M if there exists ρ ∈ (0, 1) such that

d(g(x), g(y)) ≤ ρ · d(x,y)

for all x,y ∈M.

The constant ρ can be viewed as the Lipschitz constant for g. For contraction

mapping, we have the following well-known result:

Theorem 9.17 (Banach-Caccioppoli Fixed Point). Let (M, d) be a complete

metric space with a contraction mapping: g : M → M. Then g has a unique

fixed point x? ∈M:

g(x?) = x?.

In particular, as the previous examples have indicated, the unique fixed point

x? can be found through the simple power iteration:

xk+1 ← g(xk), k = 0, 1, . . .

and we have xk → x? at least geometrically. Notice that, the fixed point scheme

does not rely on local information such as gradient hence it can even escape
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degenerate critical points. Empirically, we observe that the MSP algorithm works

very well for the `4-based dictionary learning problem, even though the `4 norm

has degenerate critical points on the orthogonal group O(n). In addition, the

contraction factor ρ does not need to be a constant. If it scales with powers

of the ‖xk+1 − xk‖, the contraction mapping enjoys higher than linear rates

of convergence, as in the Newton or the MSP iteration. We summarize this in

Figure 9.7 as a general algorithm of power iteration for solving the fixed point

of a contraction mapping.

9.7 Notes

Modifications to Newton’s Method.
Despite its simplicity and fast convergence, Newton’s method (9.1.13) has several

known problems. One problem is that for a nonconvex function the Hessian

∇2f(x) can sometimes be degenerate (hence not invertible). So the iteration

(9.1.13) is not even defined. A popular fix to this problem is to regularize the

Hessian with a unit matrix such that ∇2f(x) + λI � 0 is positive definite. The

above Newton iteration is then modified to be:

xk+1 = xk −
[
∇2f(xk) + λI

]−1∇f(xk). (9.7.1)

This is known as the popular Levenberg-Marquardt regularization [Lev44,Mar63,

Mor78]. The above update rule can often be viewed as a mixture of gradient

descent and Newton step with the parameter λ weighing between the two. An-

other, arguably more rigorous, justification of the above form of update is from

the perspective of the trust region method [CGT00], which we will study in more

details in Exercise 9.2. Due to its flexibility, the Levenberg-Marquardt method

has been widely used in practice for solving nonconvex optimization problems,

especially nonlinear least-squares type problems.

Complexity Bounds.
For functions with Lipschitz gradient and Hessian, [CDHS17] has derived the

lower bound of first-order methods O(ε
−12/7
g ) , while it is believed that the best

attainable upper bound is O(ε
−7/4
g ). [AAZB+16,CDHS18] were among the first

to make the attempt to develop algorithms that can achieve the optimal bound.

Later the work [RW18, JNJ18] provided simplified approaches to achieve this

bound by combining negative curvature and accelerated gradient descent. To a

large extent, the methods presented in this chapter are inspired by these work.

Table 9.1 summarizes all the algorithms introduced in this chapter and their

respective complexities in terms of associated oracles and convergence guaran-

tees. These complexity bounds are for the worst case in the class of functions

considered. If a particular function of interest has better structure or property

(which is often the case in our settings), the complexity of even the vanilla gradi-

ent descent can be dramatically improved: For instance, if the function is locally
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Method Oracle Stat. Point Complexity

Vanilla gradient descent first-order first-order O(ε−2
g )

Cubic Newton, Fig. 9.1 second-order second-order O(ε−1.5
g )

Gradient/negative curvature, Fig. 9.2 first-order second-order O(ε−2
g )

Negative curvature/Newton, Fig. 9.4 first-order second-order O(ε−1.75
g )

Hybrid noisy gradient, Fig. 9.5 first-order second-order O(ε−2
g )

Perturbed accelerated gradient, Fig. 9.6 first-order second-order O(ε−1.75
g )

Table 9.1 Oracles and complexities (up to log factors) of different optimization methods.
“Stat. Point” stands for the type of stationary point x? to which the method guarantees
to converge. All complexities are measured in terms of the number of oracles accessed
before attaining a prescribed accuracy ‖∇f(x?)‖ ≤ εg.

strongly convex around a minimizer, the local convergence rate becomes linear

O(log 1
ε ) (see Theorem D.4 of Appendix D).

Notice that these complexities are characterized for functions that have global

Lipschitz gradient and Hessian. In practice, this may not be the case and we

cannot easily decide on the step size without knowing the Lipschitz constants. So

we generally may resort to a local line search scheme to determine the proper step

size (see (D.1.2) of Appendix D) and then to establish corresponding convergence

and complexity analysis.

Exploiting Geometric Structures.

In the last Section 9.6, we have shown a few important instances in which the

optimization is over certain nonlinear manifold. The recent book [Bou20] gives a

good introduction to optimization on general smooth manifolds. As we have seen

in Chapter 7 and also will in the application chapters, optimization problems that

arise in low-dimensional models often have nice global geometric structures such

as certain symmetry over a homogeneous space. In such cases, we can develop

extremely effective and scalable optimization algorithms, far beyond the local

greedy gradient-based schemes. However, unlike the generic first-order or second-

order methods summarized in Table 9.1, there is still a lack of systematic analysis

of convergence and complexity for such geometric optimization problems. As we

have alluded to before in Section 7.4 of Chapter 7, developing scalable algorithms

for this class of problems and characterizing conditions under which there is

guaranteed (global) convergence and complexity are certainly an important and

pressing research topic for the future.
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9.8 Exercises

9.1 (Examples for Newton’s Method). Apply Newton’s method around the critical

point, x = 0, of three functions: f(x) = 1
2x

2, f(x) = − 1
2x

2, and f(x1, x2) =
1
2 (x2

1 − x2
2), and describe what Newton iteration does respectively in these three

cases.

9.2 (Trust Region Method). In the Remark 9.3 about the trust region method,

we need to find the minimizer to a constrained quadratic program of the form:

w? = arg min f(xk) + 〈∇f(xk),w〉+
1

2
w∗∇2f(xk)w s.t. ‖w‖2 ≤ δk. (9.8.1)

To compute the optimal minimizer w?, there are essentially three cases depending

on the relationships between the gradient ∇f and the Hessian ∇2f . Let λ1 be the

smallest eigenvalue of ∇2f , and e1 be the associated eigenvector: ∇2fe1 = λ1e1.

If λ1 > 0, the Hessian is positive definite. If λ1 < 0, then e1 is the direction

that the surface has the largest negative curvature. We denote the eigen-subspace

associated with e1 as

S1
.
= {αe1, α ∈ R}.

• Case 1: When ∇2f(xk) is positive definite, i.e., λ1 > 0, and

∥∥∥
[
∇2f(xk)

]−1∇f
∥∥∥

2
< δ,

show that the optimal solution is given by w? = −
[
∇2f(xk)

]−1∇f(xk).

Whenever this happens, the trust region Newton descent reduces to a regular

Newton descent:

xk+1 = xk +w? = xk −
[
∇2f(xk)

]−1∇f(xk). (9.8.2)

When the minimizer is not in the interior of the trust region, the problem

becomes how to minimize a quadratic function over a sphere ‖w‖2 = 1. The

situation becomes a little more complicated as we see below.

• Case 2: Show that if the gradient ∇f(xk) is not perpendicular to S1, then the

equation

∥∥∥
[
∇2f(xk) + λI

]−1∇f(xk)
∥∥∥

2

2
= δ2 (9.8.3)

has a solution λ? ≥ 0 in the range (−λ1,∞) which gives the optimal mini-

mizer w? = −
[
∇2(xk) + λ?I

]−1∇f(xk). In fact, here finding the optimal λ?
is itself a one-dimensional nonlinear optimization problem. One can use any

optimization method (such as Newton’s method) to solve it, and some specific

options can be found in [CGT00]. Once the optimal minimizer w? is found,
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the trust region Newton descent in this case is:36

xk+1 = xk +w? = xk −
[
∇2f(xk) + λ?I

]−1∇f(xk). (9.8.4)

Further show that when the gradient ∇f is perpendicular to S1: ∇f ⊥ S1,

if the equation
∥∥∥
[
∇2f(xk) + λI

]−1∇f
∥∥∥

2

2
= δ2 still has a solution λ? ≥ 0 in

the range (−λ1,∞), then w? = −
[
∇2f(xk) + λ?I

]−1∇f again is the desired

minimizer.

• Case 3: The situation becomes a little trickier when ∇f ⊥ S1 but the above

equation does not have any solution. That is,
∥∥∥
[
∇2f(xk) + λI

]−1∇f
∥∥∥

2

2
< δ2

for any λ that makes ∇2f(xk) + λI positive definite. Show that this case only

happens when λ1 ≤ 0. In this case, let w1 be the minimum norm solution to[
∇2f(xk)− λ1I

]
w = −∇f , i.e., w1 = −

[
∇2f(xk)− λ1I

]†∇f . Then show

that the minimizer w? on the unit sphere is of the form:

w? = w1 + βe1 = −
[
∇2f(xk)− λ1I

]†∇f + βe1

with β chosen such that ‖w?‖22 = δ2. It is easy to see that so constructed w?

satisfies the condition for minimizer:
[
∇2f(xk)− λ1I

]
(w1 + βe1) =

[
∇2f(xk)− λ1I

]
w1 = −∇f.

Geometrically, w1 is the minimizer restricted to the subspace S⊥1 . If it is in the

interior of the trust region, we then simply add a step along the direction of the

largest negative curvature to reach the global minimizer w? on the boundary.

The trust region Newton descent in this case becomes:

xk+1 = xk +w? = xk −
[
∇2f(xk) + λ?I

]†∇f(xk) + βe1. (9.8.5)

9.3 (Cubic Regularized Newton’s Method). For the Cubic Newton’s Method stud-

ied in Section 9.2,

1 Show that the cubic Newton step (9.2.5) reduces to solving a one-dimensional

convex optimization problem, similar to the one that we have seen in the trust

region method above.

2 Show that the optimal solution to the cubic Newton step satisfies the condition

(9.2.11).

9.4 (Power Iteration and Lanczos Method). Implement in detail the power itera-

tion and Lanczos method introduced in Section 9.3.2. Generate a real symmetric

matrix A ∈ Rn×n with λmin(A) < 0, say for n = 1, 000. Use the power iteration

and the Lanczos to compute the eigenvector associated with the smallest (neg-

ative) eigenvalue. Plot the approximation error versus the number of iteration,

and compare the two methods.

36 Notice that this update rule can be considered as a special case to the popular
Levenberg-Marquardt regularization (9.4.2), with λ chosen to be a specific value, according
to the second-order local geometry.
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9.5 (Conjugate Gradient Method). In this exercise, implement the conjugate

gradient method mentioned in Section 9.4.3 to solve the linear equation As = b,

say for a matrix A of size 1, 000 × 1, 000. Compare with efficiency with solving

the equation by directly computing the inverse of A: s = A−1b.

9.6 (Laplace Method). This exercise generalizes the basic ideas of the Laplace

Method to general cases.

1 Prove the Lemma 9.12 for the case when the function f(x), x ∈ R has multiple

global maximizers.

2 Prove the Theorem 9.13 for the case when the function f(x),x ∈ Rn has a

unique global maximizer.

3 For the case when the function f(x),x ∈ Rn has a continuous family of global

maximizers, the Gibbs distribution converges the density in (9.5.6).

9.7 (Orthogonal Dictionary Learning). Let us consider another formulation for

finding an orthogonal dictionary Ao up to some signed permutations in one shot.

We want to solve

min
A,X

1

2
‖Y −AX‖2F + µ ‖X‖1 , subject to A ∈ O(n),

where O(n) = {Z ∈ Rn×n | Z∗Z = I} is the orthogonal group. Show that the

problem can be reduced to

min
A

Huberµ (A∗Y ) , subject to A ∈ O(n). (9.8.6)

where Huberµ(·) is the Huber loss, which is sum of scalar Huber function, intro-

duced in (7.2.24), applies element-wise across all the matrix elements.

9.8 (Generalized Power Iteration). Show that the generalized power iteration

(9.6.16) is equivalent to the following descent scheme:

Xk+1 = arg min
Y ∈Vm(Rn)

f(Xk) + 〈∇f(Xk),Y −Xk〉. (9.8.7)

Use this fact to show that for a concave function, this descent scheme converges

to a first-order critical point with a rate at least O(1/k).
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10 Magnetic Resonance Imaging

“If you want to find the secrets of the universe, think in terms of energy, frequency
and vibration.”

– Nikola Tesla

10.1 Introduction

Magnetic resonance imaging (MRI) is based on the science of nuclear magnetic

resonance (NMR). Magnetic resonance states that certain atomic nuclei (such

as protons in the water molecules) can absorb and emit radio frequency energy

when placed in an external magnetic field. The emitted energy is proportional to

important physical properties of a material such as proton density. Therefore in

physics and chemistry, magnetic resonance is an important method for studying

structures of chemical substances, and its discovery was awarded the Nobel Prize

in 1952.

Later in 1970’s, Paul Lauterbur and Peter Mansfield discovered that by in-

troducing spatial gradients in the magnetic field, it is possible to create two-

dimensional images of the structures, now known as magnetic resonance imag-

ing (MRI). MRI soon proved to be extremely useful for medical diagnosis as it

provides an accurate and non-invasive method for imaging internal organs of the

human body. Unlike the X-rays or computed tomography (CT) scans, MRI does

not exert ionizing radiation, hence is much less harmful. Today, MRI has become

a routine medical examination in hospitals worldwide, especially for examining

the brain and the spinal cord. For their contributions to MRI, Lauterbur and

Mansfield were awarded a Nobel Prize in Physiology or Medicine in 2003.

Nevertheless, MRI machines can be rather expensive, and the acquisition pro-

cess of MRI is considerably time-consuming as it needs to densely sample the

magnetization responses with many different gradient fields. In order to lower the

cost of MRI and improve patient comfort or safety,1 in recent years, techniques

from compressive sensing have proven to be extremely effective in improving the

efficiency of MRI [LDSP08], which was briefly highlighted in Chapter 2 as one

of the heralding successes.

1 For young pediatric cancer patients, frequent exposures to strong magnetic fields for long

periods of time can be unsafe and even fatal.
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Primary Electromagnetic Coil

Primary Electromagnetic Coil

Magnetic Gradient Coil

Magnetic Gradient Coil

RF Coil

RF CoilPatient Table

Computer

Figure 10.1 Left: Key components of a basic MRI machine. Right: The three-axis
gradient coils.

In this chapter, we explain in more technical detail why MRI is particularly

suitable for techniques of compressive sensing. First, a high-level review of the

physics of MRI in Section 10.2 reveals that the MRI imaging process is amenable

to compressive sampling as it naturally takes spatially encoded samples of the

image in the frequency domain. Secondly, medical images of human organs are

naturally structured and mostly piecewise-smooth. We can verify empirically

that such images are highly compressible/sparse in a properly chosen transform

domain, and introduce several effective sampling schemes in Section 10.3. Finally,

we introduce in Section 10.4 some customized fast algorithms that can efficiently

reconstruct the image from such compressive samples with high fidelity, despite

imaging noise and other nuisance factors.

10.2 Formation of MR Images

In medical applications, MRI is based on measurements of a radio frequency (RF)

signal, known as the transverse magnetization, generated by protons which exist

in abundance as the hydrogen nuclei in the molecules of water and fat in human

tissues. The signal measured is largely proportional to the density of protons at

each spatial location, which indicates the presence or absence of such molecules.

This information can then be used by physicians for diagnostic purposes. Here, we

give a simplified mathematical model that captures the essence of this process.

For a more detailed description of the physical process, one may refer, e.g.,

to [Wri97].

10.2.1 Basic Physics

It is known in quantum physics that each proton spins along an axis that creates

an angular momentum. In the absence of any external magnetic field, the angular

momenta of the protons are oriented randomly in their neutral state, hence

collectively the protons (in the body tissue) do not produce any measurable

magnetization. However, when a strong external magnetic field, denoted as B0,
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Figure 10.2 The direction of the magnetization M as a vector is precessing in a cone
around B0, driven by the torque generated by the cross product M ×B0, in a
direction orthogonal to both M and B0. (Image from
https://mri-q.com/bloch-equations.html and reprinted with permission from
Allen D. Elster, MD.)

is applied to the tissue mass, it polarizes the protons and aligns their spins along

the direction of B0 and produces a net magnetization, denoted as M . B0 is also

called the primary magnetic field, and its strength typically can range from 1.5

to 3 Tesla.2 An MRI machine usually has three RF coils along the x, y, z axes

respectively, as shown in Figure 10.1, and can produce a magnetic field in any

direction by running electric currents through respective coils.

Following conventional notations in physics, we use (i, j,k) to denote the

three unit vectors in the x, y, z axes of a (local) Cartesian frame. Without loss

of generality, we may assume the direction of the external static magnetic field

B0 aligns with the z-axis, that is, B0 = B0k. In general the magnetization M

takes the form M = Mxi+Myj +Mzk. If the external magnetic field is static,

M will eventually reach an equilibrium magnetization of the form M0k.

Although protons can respond very quickly to the external magnetic field,

the polarization itself does not yield any RF signal that can be measured by the

machine. The key is that the magnetization Mxy = Mxi+Myj in the transverse

plane orthogonal to the primary axis undergoes very different dynamics and can

be exploited for measurement. This transverse magnetization precesses about

B0 according to the so called Bloch equation:

dMxy

dt
= γMxy ×B0, (10.2.1)

where γ is a physical constant. Figure 10.2 visualizes the precessing of Mxy

aroundB0. From this equation, we see that the precession frequency is ω0 = γB0,

known as the Larmor frequency. This rotating magnetic moment radiates an

electromagnetic signal which is picked up by the MRI machine.

So in order to produce a precessing magnetization orthogonal to B0, in the

2 In comparison, the magnitude of the Earth’s natural magnetic field only ranges from 25 to

65 micro Tesla.

https://mri-q.com/bloch-equations.html
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second step of MRI imaging, one applies a second time-varying magnetic field

B1 in the xy plane transverse to B0 = B0k. Typically B1 is chosen to be

B1 = cos(ω0t)i+sin(ω0t)j which rotates around B0 at the radian frequency ω0.

This magnetic field excites the protons to a higher energy state.

The excitation stops after a short period, and the protons gradually fall back

to its equilibrium state. This relaxation process lasts from milliseconds to several

seconds. As the transverse magnetization Mxy precesses, it induces an electro-

magnetic force in the RF coils. The magnitude, phase, and relaxation time of

the signal represent different properties of the matter that can be recorded in

different types of MR images.

10.2.2 Selective Excitation and Spatial Encoding

One question remains with regard to the imaging process, namely, how does

the MRI machine isolate and measure the RF signal from different parts of the

body, because if the body is affected by a single static magnetic field, then all

the protons will be aligned homogeneously. Several clever (Nobel Prize worthy

clever) techniques are required to address this issue, including the so-called se-

lective excitation and spatial encoding. The goal is to be able to sample and

measure magnetization signals from any spatial location (x, y, z) (up to certain

resolution).

As the transverse magnetization Mxy is of interest, we may choose to excite

the magnetic field in a thin slice along the z-axis, say around z0. That is, we

are interested in the plane (x, y, z0). The selective excitation can be achieved by

first making the Larmor frequency varying linearly in the z-direction with the

magnetic field

B0(z) =
(
B0 +Gz(z − z0)

)
k.

We then apply an additional RF excitation pulse with energy over a limited range

of frequency bandwidth Ω corresponding to the Larmor frequency ω0 = γB0 at

the slice z0. Typically, we could choose the pulse to be

B1(t) = sinc(Ωt)
(

cos(ω0t)i+ sin(ω0t)j
)
,

which has a rectangular (energy) distribution around the frequency ω0. As result,

only protons around the slice (x, y, z0) may resonate with the excitation and

reach a high magnetization level, say Mxy(x, y)
.
= Mxy(x, y, z0). This is why

the whole process is called magnetic resonance imaging.

The remaining question is how to image magnetization of different spatial lo-

cations inside the plane (x, y, z0). As we see from the above, spatially selectivity

(along the z-axis) can be achieved through introducing a spatially varying exci-

tation with a gradient (Gz) in the z direction. Hence, we could generalize this

idea by introducing an additional magnetic field B with a gradient Gx and Gy
in the x and y directions, respectively. Moreover, we could vary the gradients as
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functions of time t:

B =
(
B0 +Gx(t)x+Gy(t)y

)
k.

After the selective excitation, the magnetic field in the transverse plane (x, y, z0)

isMxy(x, y). Once the slice is subject to the above magnetic field,Mxy precesses

according to the Bloch equation and we can measure the electromagnetic signal

generated by it. Assume that the magnitude |Mxy| remains relatively constant

during the acquisition period, then from the Bloch equation, we have:

Mxy(x, y, t) = |Mxy(x, y)|e−iω0te−iγ
∫ t
0

(Gx(τ)x+Gy(τ)y)dτ ,

where i =
√
−1 is the imaginary unit. From this equation, we can ascertain the

true reason for introducing a gradient magnetic field: it allows us to manipulate

the phase of the transverse magnetic field Mxy so as to encode the spatial

information about Mxy that we needed in the first place.

To see this, note that the actual signal we measure is the collective effect of

all Mxy in the xy-plane. To simplify the notation, let us define

kx(t)
.
= γ

∫ t

0

Gx(τ)dτ, ky(t)
.
= γ

∫ t

0

Gy(τ)dτ.

In the MRI literature, the so-defined quantities (kx, ky) index a two-dimensional

space called k-space. We then have the measured signal, say s(t), as

s(t) = exp−iω0t

∫

x

∫

y

|Mxy(x, y)|e−i(kx(t)x+ky(t)y)dxdy.

Notice that this measured signal s(t), once with the e−iω0t component demodu-

lated, is essentially a 2D spatial Fourier transform of |Mxy(x, y)| at the spatial

frequency (kx(t), ky(t)):

S(kx, ky) =

∫

x

∫

y

|Mxy(x, y)|e−i(kxx+kyy)dxdy. (10.2.2)

In the MRI literature, this technique is called spatial frequency encoding. So,

in principle, once we have collected measurements of S at sufficiently many

spatial frequencies (kx, ky)’s, we could recover |Mxy(x, y)| simply from its inverse

Fourier transform:

|Mxy(x, y)| ∝
∫

kx

∫

ky

S(kx, ky)ei(kxx+kyy)dkxdky, (10.2.3)

which can be visualized as a 2D image, say I(x, y), on the xy-plane (at z0).

10.2.3 Sampling and Reconstruction

We have described above in a nutshell the physical and mathematical models of

MR imaging. In short, we see that the value of the measured signal S at any

given time t is essentially the 2D Fourier transform of the image of interest I(x, y)

(or |Mxy(x, y)|) at a particular spatial frequency (kx, ky). For any given gradient
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Figure 10.3 A Cartesian sample of the human brain (left) and its reconstructed MRI
image (right). The sampling resolution in this example is m = 512× 512.

field generated by (Gx(t), Gy(t)), if we measure the signal S at a sequence of time

{t1, t2, . . .}, we obtain the samples of the Fourier transform of I(x, y) at different

frequencies {(kx(t1), ky(t1)), (kx(t2), ky(t2)), . . .} in the transform domain (the

k-space).

In practice, we are interested in recovering the image up to certain spatial

resolution. That is, instead of a function on a continuous domain (the entire xy-

plane), we consider the image I(x, y) is a function on a finite Cartesian grid (say

of size N ×N). We denote the coordinates of the pixels as a vector v = (x, y).

In this case, the measurements can be viewed as discrete Fourier transform of

the image, which lie on a Cartesian grid (of size N × N) in the k-space. We

denote the coordinates of the frequencies as a vector u = (kx, ky). We collect all

measurements as a vector y ∈ Rm with m = N2. That is, each entry of y is of

the form:

yi =
∑

v

I(v)e−iu
∗
i v ∆v, i = 1, . . . ,m

where the sum is over the grid and ∆v is the grid step size. If we also view the

image I(v) as a vector of dimension m, then we have:

y(u) = F [I(v)](u), (10.2.4)

where F is an m ×m matrix representing the discrete (2D) Fourier transform.

As the matrix F is invertible, the MR image I can be simply recovered from

such Cartesian samples as:

I(v) = F−1[y(u)](v). (10.2.5)

Figure 10.3 shows an example of recovered MR image from such Cartesian sam-

pling scheme.

At first sight, sampling the entire Cartesian grid in the transform domain seems

natural, and the reconstruction via inverse Fourier transform is straightforward.

However, for practical images, it is too redundant to get all the m = N2 samples
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as illustrated in the example in Figure 10.3. Conventional signal processing tech-

niques have been applied to reduce the number of samples. For instance, if the

image largely consists of low-frequency components and has a cutoff bandwidth

fmax, then we only need to sample the transform domain on a sub grid according

to the Nyquist rate

fNyquist ≥ 2fmax.

Nevertheless, the number of samples required by the Nyquist rate is still very

large,3 which makes the conventional MRI imaging process very time-consuming.

For the rest of this chapter, we will see that by harnessing additional structures

(e.g., sparsity and smoothness) of the MR image, one can significantly reduce

the number of samples needed. We will first discuss the sparsity of MR images,

and then introduce a few effective compressive sampling schemes. Finally, we

will discuss numerical methods for reconstructing MR images from small sets of

samples, since, in this under-sampled regime we can no longer simply rely on the

inverse Fourier transform.

10.3 Sparsity and Compressive Sampling of MR Images

10.3.1 Sparsity of MR Images

In order to improve the sampling efficiency of MR images, we need to leverage

additional structure of the target image I. We know from Chapters 2-3 that

sparsity is a very powerful structural assumption, which, when present can sub-

stantially reduce the number of measurements that are required to reconstruct

a signal of interest. However, MR images are not sparse – most of the pixels

are nonzero! On the other hand, MR images are structured: they can be ap-

proximated as piecewise smooth functions with relatively few sharp edges. We

will see that this type of structure actually leads to a form of sparsity, in an

appropriately chosen transform domain.

From signal processing and harmonic analysis, we know that piecewise smooth

functions are compressible (nearly sparse) when represented in terms of appro-

priate basis functions – say, wavelets. There is a deep theory associated with

wavelets and related 2D signal representations. Here, we only sketch these con-

structions at a loose, operational level.

A wavelet transform Φ maps an N×N image I to a collection of N2 coefficients

x = Φ[I]. The inverse transform Ψ = Φ−1 maps the coefficients x to an image

I = Ψ[x]. The inverse mapping can be interpreted as expressing the image as a

superposition of basis function ψ1, . . . ,ψN2 :

I = Ψ[x] =

N2∑

i=1

ψixi. (10.3.1)

3 For images with sharp edges and contours, its cutoff bandwidth may be very high.
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Image I

=

ψ(1)

x(1)+ · · ·+

ψ(123)

x(123) + · · ·+ x(150)

ψ(150)

. . .

Figure 10.4 Wavelet Representation of an Image. The image I is expressed as a
superposition of basis functions ψi, with coefficients x(i). In this figure, we order the
coefficients by magnitude, in descending order: x(1) is the largest magnitude
coefficient, and ψ(1) its corresponding basis function, x(2) the second largest, and so
on. The largest coefficients capture low-frequency structure, as well as high-frequency
structure around edges. Notice, e.g., that ψ(123) and ψ(155) are located near sharp
edges at the left and right side of the brain.

Input image Coefficients

(one level)

Coefficients

(two levels)

Coefficients

(three levels)

Figure 10.5 Wavelet Coefficients of an Image. From left to right, an original
image, and the coefficients of one level, two level and three level wavelet
decompositions using the Daubechies db4 wavelet. The level one coefficients are
organized as LL (upper left), LH (upper right), HL (lower left) and HH (lower right).
The detail coefficients (high frequency) are concentrated near sharp edges.

Figure 10.4 visualizes several of the basis functions associated with a particular

two-dimensional wavelet transform.4

The coefficients xi have a very nice interpretation. To transform the image

I, we split the image into four bands, which capture vertical and horizontal

frequency content at different spatial locations in the image. The low frequency

band, typically labeled LL, contains low frequency in both directions, while the

high frequency band HH contains high frequency content in both directions. Two

other bands HL and LH contain high frequency content in one direction and low-

frequency content in the other direction. Figure 10.5 illustrates this operation.

Notice that most of the significant entries occur in the LL band. By repeating

this operation to the LL band, we obtain a two-level transform which captures

localized frequency content at multiple scales in the image. We can continue in

4 There are a variety of wavelets, leading to a variety of different transforms. In the

experiments in this chapter, we adopt the Daubechies db4 wavelet. Other choices of
separable wavelets lead to different transforms, but their behavior is qualitatively similar.
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Figure 10.6 Decay of the Wavelet Coefficients. Left: the magnitudes of the image
pixel values, plotted in descending order. Right three: the magnitudes of the wavelet
coefficients x in descending order, for one, two and three level wavelet transforms.
The wavelet coefficients decay much more rapidly than the original pixel values.

this manner. Figure 10.5 illustrates the three level to five level transforms of this

image.

MR images tend to be piecewise smooth, with only a few sharp edges. The

HL, LH and HH coefficients concentrate around edges, and so they tend to be

quite sparse. Indeed, classical results in harmonic analysis can be paraphrased as

arguing that the one dimensional version of this representation is nearly optimal

for representing one-dimensional functions which are piecewise smooth with only

a few discontinuities.5 Figure 10.6 plots the sorted magnitudes of the coefficients

x, for each level l, from l = 0 (the original image) to l = 3. Notice that as we in-

crease the number of levels in the transform, the coefficients become increasingly

compressible.

Because the wavelet coefficients are nearly sparse, we can accurately approx-

imate the input image using just a few wavelet coefficients. Let J = {i1, . . . , ik}
denote the indices of the k largest coefficients xi (across all scales) in absolute

value. We can form the best k-term approximation

Î =
∑

i∈J

ψixi, (10.3.2)

by retaining only these largest coefficients. Figure 10.7 visualizes approximations

with the best 1%, 4% and 7% of the coefficients, respectively. It also visualizes

the approximation error |I− Î|. Notice that the approximation errors are almost

entirely populated with noise. For comparison, Figure 10.7 (bottom) shows ap-

proximations using the best 1%, 4% and 7% of the original image pixels. The

wavelet approximations are dramatically more accurate than pixel approxima-

tions.

Of course, there is no reason to believe that wavelet sparsity captures all

of the structure in an MR image. Other structural assumptions may lead to

sparser representations, which can be leveraged to sample even more efficiently.

5 For piecewise smooth functions on a two-dimensional domain, the situation is more

complicated, and there is a large literature of image representations.
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Appx. Î Error |Î − I|
1% Wavelet

Appx. Î Error |Î − I|
4% Wavelet

Appx. Î Error |Î − I|
7% Wavelet

Appx. Î Error |Î − I|
1% Pixel

Appx. Î Error |Î − I|
4% Pixel

Appx. Î Error |Î − I|
7% Pixel

Figure 10.7 Wavelet Reconstructions. Top: Approximations of the brain image
using the most significant wavelet coefficients. We plot reconstructions Î using the
largest 1%, 4% and 7% of the wavelet coefficients, as well as the approximation error
|Î − I|. Retaining roughly 7% of the wavelet coefficients captures most of the
important structure in the image; what remains is mostly noise. Bottom: For
comparison purposes, we plot reconstructions and errors using the 1%, 4% and 7%
largest image pixels. These approximations are very inaccurate: the image is nearly
sparse in the wavelet domain, but not in the original pixel domain.

The literature is rich with alternatives, including representations that capture

oriented edges, nonlocal representations that capture repeated structure, and

learned representations that adapt to the specific classes of images. We will return

to this point in Section 10.4, where we sketch one means of further reducing the

sampling burden for MRI, by leveraging an additional form of sparsity. For now,

we turn to the question of how we can use the knowledge that the wavelet

coefficients are sparse to sample more efficiently.

10.3.2 Compressive Sampling of MR Images

Although a wavelet transform is able to sparsify the MR image I, notice that

we cannot have access to the wavelet coefficients x unless we have acquired the

entire image I (and then apply the transform Φ). Hence in conventional image

processing, wavelet transforms have mostly been used in the post-processing of

an image after it has been acquired, such as for compression. Now the question

is how can we exploit the fact the MR image is sufficiently sparse in certain

(wavelet) domains so that we can significantly reduce the number of measure-

ments sampled in the acquisition time and still recover the image with good

quality?

First we notice that the relationship between the measurements (Fourier co-

efficients) y ∈ CN
2

and the (sparse) wavelet coefficients x ∈ RN
2

is given by:

y = F [Ψx].
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From the physical model we have described above, we can directly measure any

subset of the Fourier coefficients y or any linear superpositions of them. For

convenience we denote the image I as a vector z
.
= I ∈ RN

2

:

z = Ψx.

Suppose, instead of taking all the N2 Fourier coefficients, we measure only

m � N2 samples of (linear superpositions) of the Fourier coefficients. Then

the transform from z to the m partial measurements y can be represented as an

m×N2 matrix, denoted as FU ∈ Cm×N
2

. Hence we have:

y = FU [Ψx]
.
= Ax, (10.3.3)

where we denote A
.
= FUΨ ∈ Cm×N

2

.

As we have learned from early chapters of the book, if the overall sampling

matrix A is sufficiently incoherent, then we in principle can correctly recover

all the sparse (wavelet) coefficients x from significantly fewer m samples. To

ensure the matrix A is incoherent, we know from Chapter 3 (Section 3.4.3) that

randomly chosen partial submatrix of the Fourier (or wavelet) transform F is

incoherent. Hence, a conceptually simple compressive sampling scheme is to take

some random measurements of the Fourier coefficients y.

However, as we can notice in Figure 10.3, the most significant nonzero Fourier

coefficients of a typical MR image are mainly in the low frequency region, and

the coefficients in the high frequency region are already quite sparse and small.

Hence a uniformly random sampling of the Fourier domain is not necessarily the

most efficient. A more suitable sampling scheme for so-distributed coefficients

is the variable density random sampling. It is designed specifically for 2D im-

age objects where most of their energy is concentrated close the origin of the

frequency domain. More specifically, although the locations of the samples are

still randomly selected, it progressively gives higher chances for samples in lower

frequencies to be selected than in the higher frequencies. Figure 10.8 shows one

example of the variable density random sample pattern.

In practice, however, from the physical model of MRI that we have described

above, we know that the MRI machine cannot take measurements at totally

random locations from time to time. Instead, it produces a sequence of samples

of the Fourier coefficients along a continuous trajectory (kx(t), ky(t)) in the k-

space. Hence, the main challenge of compressive MRI is to design both practical

and efficient sampling schemes in the Fourier domain for real MR images that

are subject to the constraints of the physical process. To this end, some popular

subsampling patterns have been proven (empirically) effective for MRI. Examples

include a radial sampling pattern and a spiral pattern as shown in Figure 10.9.

Clearly, both patterns are designed to have more coefficients densely sampled

close to the origin and sparser coefficients far away from the origin.

To see the effectiveness of different sampling patterns, in Figure 10.10, we plot
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Figure 10.8 A variable density random sampling pattern in the Fourier domain.

Figure 10.9 Examples of a radial sampling pattern and a spiral pattern.

the PSNRs of the reconstructed images against different sample percentages.6 To

establish a baseline, we first calculate the PSNR values when the most significant

nonzero wavelet coefficients in x are given. The results are shown in the red

curve. It clearly outperforms the other subsampling methods that do not have

the knowledge of the ground truth sparse signal x. Furthermore, compared to the

deterministic radial and spiral patterns, the variable density random sampling

initially achieves the worst reconstruction quality when the sampling percentage

is low, namely, less than 20%. Then its performance increases significantly when

the sampling percentage becomes higher, gradually surpassing the performance
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Figure 10.10 The reconstruction quality of the brain image using different subsampling
patterns.

of the other subsampling patterns. The reader may refer to [LDSP08] for more

discussions about compressive sampling of MRI.

10.4 Algorithms for MR Image Recovery

In this section, we discuss algorithms for reconstructing MR images from the sam-

pled measurements y. This is conceptually straightforward: many of the methods

described in Chapter 8 can be applied to reconstruct the sparse coefficients x

from the measurements y = Ax. However, there are several practical considera-

tions that demand additional attention. First, MR measurements are subject to

various nonidealities, including noise. Second, because it is so important to make

the sampling scheme as efficient as possible, it is often helpful to leverage other

structural information about the target image, beyond sparsity of its wavelet

coefficients x.

Measurement Noise.
In practice, the measured MR image I can be degraded by thermal noise, so that

the measurements y are

y = Ax+ n, (10.4.1)

where n is a noise term with bounded norm ‖n‖2 < ε or assumed to be Gaussian

for simplicity. One can accurately estimate the sparse coefficients x by looking

6 We will describe details of the reconstruction algorithm in the next section.
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for the minimum `1 norm coefficients that agree with the observations y up to

the noise level (see Chapter 3, Section 3.5):

x̂ = arg min
x
‖x‖1 subject to ‖Ax− y‖2 ≤ ε, (10.4.2)

Once x is recovered from solving this program, we can recover the image as

ẑ = Ψ [x̂].7

Gradient Sparsity.
The wavelet representation developed above is well-suited for representing piece-

wise smooth functions with smooth discontinuities. As we can see from the brain

image, MR images may exhibit stronger properties than just piecewise smooth-

ness: an image may be approximated as piecewise constant [MYZC08]. This

means that the image value is constant away from a few sharp edges. The gra-

dient of such an image is nonzero only at the edges, and hence is sparse.

To be more precise, let ∇1 and ∇2 represent finite-difference (differentiation)

operators on the first (x) and second (y) coordinates of the image I, respectively.

We use (∇z)i = ((∇1z)i, (∇2z)i) ∈ R2 to denote the gradient vector at a pixel

i. The `2 norm ‖(∇z)i‖2 =
(
(∇1z)2

i + (∇2z)2
i

)1/2
measures the length of this

vector.

A piecewise constant image has relatively few pixels at which the gradient is

nonzero: ∑

i

1‖(∇z)i‖2 6=0 (10.4.3)

is small. This can be interpreted as a group sparsity assumption on the gradient

vector field – see Chapter 6.

The number of points of nonzero gradient, (10.4.3), is conceptually simple,

but is not well-suited to efficient computation. Following the intuition for group

sparsity in Chapter 6, we can define a convex relaxation of this function, known

as the total variation of the image z:

‖z‖TV
.
=
∑

i

‖(∇z)i‖2 . (10.4.4)

This is a convex function of z.8

Using this convex function, we can verify experimentally that MR images are

well-approximated as gradient-sparse. To do this, we take an image z, and com-

pute approximations to it using the proximal operator9 for the total variation:

ẑλ = proxλTV (z)
.
= arg min

x
λ ‖x‖TV + 1

2 ‖x− z‖
2
2 . (10.4.5)

For each λ ≥ 0, we have an approximation ẑλ, whose gradient is sparse. The

7 Here by abuse of notation, we here use ẑ to denote both the 2D MR image I and its

vectorized version as a vector in RN
2
, as its meaning is clear from the context.

8 Strictly speaking, it is not a norm, because it is not positive definite.
9 For more details on proximal operators, see Sections 1-3 of Chapter 8.



10.4 Algorithms for MR Image Recovery 439

Original ẑ0.6 (5.8%) ẑ0.4 (7.1%) ẑ0.2 (10.5%)

Figure 10.11 Gradient-sparse Approximations. Left: target MR image z. Right
three: gradient-sparse approximations computed using the proximal operator for the
total variation, proxλTV(z) for λ = 0.6, 0.4, 0.2, respectively. For each approximation,
we also display the fraction of pixels at which the gradient is nonzero.

parameter λ trades off between gradient sparsity of ẑ and fidelity to the original

image z. Here, the proximal operator proxλTV(·) can be computed using the

alternating directions method of multipliers (ADMM); we will describe this in

more generality below.

Figure 10.11 shows approximations ẑλ to z, with λ = 0.6, 0.4, 0.2, 0.1. From

the figure, we see that the image admits visually plausible approximations with

roughly 10% of the nonzero gradient vectors.

Combining Gradient Sparsity and Wavelet Sparsity.
To encourage the recovered image to have sparse gradients, we can incorporate

the total variation into the above stable sparse recovery program (10.4.2) as an

additional regularization term. Notice that x = Φz and Ax = FU [z]. So the

resulting program becomes:

z∗ = arg min
z
α‖Φz‖1 + β‖z‖TV subject to ‖FU [z]− y‖2 < ε, (10.4.6)

where α ∈ R and β ∈ R are two positive weight parameters. The use of total

variation and `1 norm together for MRI recovery was originally introduced by

the work of [LDP07] and [MYZC08].

We can rewrite the above program in an unconstrained form as

z∗ = arg min
z
α‖Φz‖1 + β

∑

i

‖(∇z)i‖2 +
1

2
‖FU [z]− y‖22. (10.4.7)

Since every term is a convex function of z, the overall objective function is also

convex. Such a program can be efficiently solved by the so-called fixed-point

iteration (see [MYZC08] for more details).

Optimization Algorithm.
We introduce here a simpler (and arguably faster) algorithm by exploiting the

special structure of the program. We observe that the main challenge in solving
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the above program seems to be that the objective function contains two separate

terms, one minimizing the `1-norm of Φz and the other minimizing the sum of

`2 norms of the gradient of z. If we optimize one of the two terms ‖Φz‖1 and

‖z‖TV while treating the other constant, each of the two sub-problems will be

a relatively easy optimization problem. Hence one may utilize the alternating

direction minimization method (ADMM) introduced in Chapter 8 Section 8.5 to

solve this program. This was first suggested by the work of [YZY10]. We here

give a brief description of the algorithm.

The first two terms of (10.4.7) both depend on z. So to utilize ADMM, we need

to separate the variables first. To this end, we introduce some auxiliary variables:

x
.
= Φz ∈ RN

2

for the (sparse) wavelet coefficients and vi
.
= (∇z)i ∈ R2 with

i = 1, . . . , N2 for the (sparse) image gradients. With these auxiliary variables,

the program (10.4.7) becomes

min
z,x,v

α‖x‖1 + β
∑

i

‖vi‖2 + 1
2‖FU [z]− y‖22

subject to x = Φz, vi = (∇z)i ∈ R2 ∀i. (10.4.8)

Consider the augmented Lagrangian formulation of (10.4.8). We define the

two functions associated with these auxiliary variables:

g1(z,x,λ1)
.
= α‖x‖1 + λ∗1(x−Φz) +

µ1

2
‖x−Φz‖22 (10.4.9)

and

g2(z,vi, (λ2)i)
.
= β‖vi‖2 + (λ2)∗i (vi − (∇z)i) +

µ2

2
‖vi − (∇z)i‖22. (10.4.10)

The augmented Lagrangian function of (10.4.8) is given by

L(z,x,v,λ1,λ2)
.
= g1(z,x,λ1)+

∑

i

g2(z,vi, (λ2)i)+
1

2
‖FU [z]−y‖22. (10.4.11)

Then the above constrained optimization program (10.4.8) is equivalent to the

unconstrained one:

min
z,x,v,λ1,λ2

L(z,x,v,λ1,λ2), (10.4.12)

which can be optimized iteratively following the alternating direction method10:




x(k+1) = arg minx g1

(
z(k),x,λ

(k)
1

)
,

v
(k+1)
i = arg minvi g2

(
z(k),vi,λ

(k)
2

)
,

z(k+1) = arg minz L
(
z,x(k+1),v(k+1),λ

(k)
1 ,λ

(k)
2

)
,

λ
(k+1)
1 = λ

(k)
1 + µ1

(
x(k+1) −Φz(k+1)

)
,

λ
(k+1)
2 = λ

(k)
2 + µ2

(
v(k+1) −∇z(k+1)

)
.

(10.4.13)

10 Here, different from the notation we have used in the optimization chapters, we will use

superscript k to indicate iteration of the algorithm since the subscript i is already used for

indexing the pixels.
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We notice that all terms of the Lagrangian function (10.4.11) are convex func-

tions. Hence all the above sub-programs are convex optimization.

To solve the first subprogram in (10.4.13):

x(k+1) = arg min
x
g1

(
z(k),x,λ

(k)
1

)
,

although g1 is non-differentiable with respect to x, it has a closed-form solution

in terms of the proximal operator for `1-norm minimization:

x(k+1) = soft
(
Φz(k) − λ(k)

1 /µ1, α/µ1

)
, (10.4.14)

where recall that soft(·, ·) is the soft-thresholding operator

soft(x, τ)
.
= max{|x| − τ, 0} · sign (x) , x ∈ R (10.4.15)

applied to the vector Φz(k)−λ(k)
1 /µ1 entry-wise. We leave the derivation of this

as an exercise to the reader.

To solve the second subprogram in (10.4.13):

v
(k+1)
i = arg min

vi
g2

(
z(k),vi,λ

(k)
2

)
,

notice that g2 is essentially a 2D version of the 1D proximal operator for the `1

norm:

min
v
β|v|+ µ

2
(v − x)2.

It also has a closed-form solution in terms of a 2D version of the soft thresholding:

v
(k+1)
i = soft2

((
∇z(k)

)
i
−
(
λ

(k)
2

)
i
/µ2, β/µ2

)
, (10.4.16)

where soft2(·, ·) indicates the 2D shrinkage operator:

soft2(x, τ)
.
= max{‖x‖2 − τ, 0} · x/‖x‖2, x ∈ R2. (10.4.17)

Again, we leave the derivation of this as an exercise to the reader.

Finally, to solve the third subprogram in (10.4.13):

z(k+1) = arg min
z
L
(
z,x(k+1),v(k+1),λ

(k)
1 ,λ

(k)
2

)
,

we notice that with x(k+1),v(k+1),λ
(k)
1 ,λ

(k)
2 all being fixed, each term of the

Lagrangian function L(·) is a quadratic function in z. As the optimal solution

z(k+1) satisfies the condition ∂L
∂z

∣∣∣
z(k+1)

= 0, this gives

Mz(k+1) = b or z(k+1) = M−1b, (10.4.18)

where

M = F∗UFU + µ1I + µ2∇∗∇,
b = F∗U [y] + Φ∗

(
µ1x

(k+1) + λ
(k)
1

)
+∇∗

(
µ2v

(k+1) + λ
(k)
2

)
.
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Here, ∇∗ denotes the adjoint of the discrete derivative operator ∇.11

One can show that as long as the step sizes µ1, µ2 are chosen to be reasonably

small, the above alternating minimizing scheme (10.4.13) will always converge

to the optimal solution, starting from any initial conditions [YZY10].

10.5 Notes

MRI was one of the early successful applications of compressive sensing and was

first convincingly verified through a series of seminal work [LDP07, LDSP08].

Many follow-up work have continued to further improve efficiency of the as-

sociated optimization methods [MYZC08, YZY10] or sampling schemes. Today

compressive sensing has been widely practiced in MRI as well as many other sim-

ilar medical imaging systems. For interested readers, more extensive resources

about compressive sensing MRI can be found at [Lus13].

As we have seen through the physical process of MRI, the full potential of

compressive sampling is still somewhat limited by what measurements we can

make and at what locations with the MRI machine. Physical restrictions of the

machine limit what type of sensing matrix A we may construct and hence com-

promise its incoherent or isometric properties. In many scientific or recreational

imaging systems, however, one may have much more freedom in controlling or

designing the type of measurements we may acquire, say through the so-called

coded aperture technique [CF80]. Such methods allow us to design flexible and

rich sensing schemes that can acquire the physical signals with different spatial,

temporal, and spectral patterns that best match the structures of the signals. One

somewhat extreme example along this line of work is the the so-called “single-

pixel” camera [DDT+08]. The intention is to maximize information captured by

every additional measurement in scenarios where measurements are extremely

expensive or difficult (say in some outer space astronomical physical observa-

tions).

10.6 Exercises

10.1 (Compressive Sensing of Shepp-Logan Phantom∗). Design and implement a

pair of efficient encoder and decoder to encode the Shepp-Logan Phantom based

on the principles of compressive sensing. To measure the performance of the

encoder/decoder pair, plot the PSNR curve with respect to the dimension of the

compressed signal.

10.2 (Sparse Gradient Approximation with Debiasing). For each λ ≥ 0, equation

(10.4.5) computes ẑλ from the proximal operator of the total variation. Based on

11 This is the linear operator that satisfies 〈g,∇z〉 = 〈∇∗g,z〉 for all g, z.



10.6 Exercises 443

ẑλ, one may further computer the so-called debiased estimate

ẑλ,debiased = arg min
x

1
2 ‖x− z‖

2
2 subject to supp(‖∇x‖2) ⊆ supp(‖∇ẑλ‖2)

Debiasing improves fidelity to the observation z, by removing shrinkage effects

on the nonzeros. Show that ẑλ,debiased can be computed from ẑλ simply by solving

a linear system of equations.

10.3 (Proximal Operators). What is the optimal solution to the following pro-

gram:

min
v
β|v|+ µ

2
(v − x)2 ? (10.6.1)

Based on this, prove that

1 The optimal solution for x(k+1) in (10.4.13) is given by (10.4.14).

2 The optimal solution for v
(k+1)
i in (10.4.13) is given by (10.4.16).

10.4 (MRI Recovery with Anisotropic Total Variation [WYYZ08,Bir11,BUF07,

CAB+16]). Sometimes, for simplicity, people also consider the anisotropic total

variation (ATV) of the image I:

‖z‖ATV
.
=
∑

i

|(∇1z)i|+ |(∇2z)i|.

Notice that this is exactly the `1 norm of partial derivatives of the image at all

pixels. Hence, minimizing ‖z‖ATV would encourage the image to have a sparse

partial derivatives. Let ∇ be the (finite-difference) gradient operator (∇1,∇2) on

the image z. Then we have ‖z‖ATV = ‖∇z‖1.

We may consider replacing the TV term in (10.4.7) with the ATV: ‖z‖TV →
‖z‖ATV:

z∗ = arg min
z
α‖Φz‖1 + β‖z‖ATV +

1

2
‖FU [z]− y‖22. (10.6.2)

The goal of this exercise is see how to derive a simpler algorithm for the ATV

regulated problem using the ALM and ADMM method discussed in Section 8.5.

Using the operator ∇, the above program can be rewritten as:

z∗ = arg min
z
α‖Φz‖1 + β‖∇z‖1 +

1

2
‖FU [z]− y‖22, (10.6.3)

= arg min
z

∥∥∥
(
αΦ

β∇

)
z
∥∥∥

1
+

1

2
‖FU [z]− y‖22. (10.6.4)

If we denote W
.
=

(
αΦ

β∇

)
and w

.
= Wz ∈ C3m, then the above program becomes

z∗ = arg min
z,w
‖w‖1 +

1

2
‖FU [z]− y‖22 subject to w = Wz. (10.6.5)

Then using the Augmented Lagrange Multiplier method discussed in Chapter 8
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for `1-minimization, z∗ can be solved by alternatively minimizing z, w and a

Lagrange multiplier vector λ ∈ R3m in

z∗ = arg min
z,w,λ

‖w‖1 +λ∗(w−Wz) +
µ

2
‖w−Wz‖22 +

1

2
‖FU [z]−y‖22. (10.6.6)

We leave as an exercise to the reader to derive a detailed algorithm for (10.6.6).



11 Wideband Spectrum Sensing

“We’ll have infinite bandwidth in a decade’s time.”
– Bill Gates, PC Magazine, October, 1994

In this chapter, we present an application of compressive sensing to a crucial

problem in modern wireless (radio) communication: How can cognitive radios

efficiently identify available spectrum? We will see that this problem can be cast

as one of recovering the support of a sparse signal, in the presence of noise.

We will see how the methods and algorithms described in this book will allow

us to break theoretical limits of conventional approaches, and once properly

implemented in hardware, they can significantly advance the state of the art, by

enabling better tradeoffs between energy consumption and scan time. Besides its

practical importance, this application is very interesting as it is kind of dual to

the situation in the magnetic resonance imaging that we studied in the preceding

chapter. In MRI, the measurements are the Fourier transform of the image of

interest and the sparse patterns are in the image domain; whereas for spectrum

sensing, the sparse patterns are in the Fourier domain which we do not measure

directly.

11.1 Introduction

11.1.1 Wideband Communications

In modern wireless (radio) communication systems, it is common for a wide ra-

dio spectrum range to be shared by many users. A classic protocol for sharing

a wide spectrum is to divide the spectrum into multiple narrow bands. Each

individual user transmits a narrow-band signal within the designated channel

band by modulation, typically by multiplying a periodic “carrier signal” with a

frequency at the center of the assigned band. To be more precise, let us assume

that the entire available spectrum is between (fmin, fmax)1. We denote the band-

width of the spectrum as W = fmax − fmin. If the spectrum is divided into N0

1 For a real signal, its Fourier transform is symmetric in the frequency domain. So for
simplicity, we will only talk about the positive (or upper) range of the spectrum

(fmin, fmax), the corresponding negative (lower) spectrum (−fmax,−fmin) is assumed to

be available too by default.
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Figure 11.1 A wideband spectrum between (fmin, fmax) (and (−fmax,−fmin) is divided
into multiple narrow bands of width B. At any given time a (sparse) number of
channels are actively in use.

narrow bands, then each individual channel has a resolution bandwidth (RBW)

B = W/N0. See Figure 11.1 for an illustration.

11.1.2 Nyquist Sampling and Beyond

To recover the signals at the receiver side, one needs to demodulate the signal

from its carrier, sample the signal at a high frequency through an Analog-to-

Digital converter (ADC), and then filter through a low-pass filter. The classic

Nyquist sampling theorem [OSB99] in digital signal processing stipulates that,

to perfectly recover an analog band-limited signal, say x(t), from its discrete

(periodic) samples {x(nT )}n∈Z, one needs to sample the signal at a frequency

fs = 1/T at least twice as the signal’s possible bandwidth, known as the Nyquist

rate. Hence in the above wideband setting, if a receiver does not know the carrier

frequencies of the (active) channels,2 in order to recover the narrow-band signals

in every possible channel, one needs to demodulate the signals by sampling at a

rate higher than twice the spectrum bandwidth W , that is:

fs ≥ 2W.

If so, any signal x(t) within this spectrum can be perfectly recovered from its

samples {x(nT )}n∈Z via the so called cardinal series:

x(t) =
∑

n∈Z

x(nT )sinc(t/T − n),

or other similar interpolation schemes [OSB99].

For wideband communication, however, the Nyquist rate 2W often exceeds

the specifications of typical analog-to-digital converters (ADC) by magnitudes.

For example, in year 2012, the US President’s Council of Advisors on Science

and Technology (PCAST) recommended sharing 1 GHz of federal government

2 which is quite common in many applications such as interference detection. However, if the

carrier frequency is known, the receiver can simply demodulate the signals at the carrier
frequency [Lan67].
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spectrum from 2.7 to 3.7 GHz with nongovernmental entities for public use. The

Nyquist rate would require an ADC of 2 GHz! Given that the actual bandwidth

B of the signals in each channel is rather small3 compared to the entire spectrum,

demodulating at the Nyquist rate for every channel seems rather demanding and

likely unnecessary too.

As mobile wireless devices such as cellular phones and personal computers have

become ubiquitous in modern day life, it has become increasingly critical to im-

prove the efficiency of spectrum sharing as well as improve the power efficiency

of individual mobile devices. In terms of spectrum usage, modern mobile devices

are very different from conventional wireless communication systems such as ra-

dio broadcasting. At any given time and place, only a relatively small number of

devices/users may be active. Hence such devices do not need designated channels

at all time and can share a common spectrum via certain data transmission pro-

tocols (such as in WiFi). As Figure 11.1 has illustrated, although the PCAST

spectrum can simultaneously support N0 narrow bands, at any given time or

place, only a small number of say K0 bands are active and any new user does

not know in advance which bands are being occupied. In such new scenarios,

compressive sensing is relevant and beneficial: if the support of a signal is sparse

in the spectrum, the necessary sampling rate for signal recovery can be signifi-

cantly lower than the Nyquist rate 2W . For instance, using techniques such as

random demodulation [Tro10], one only needs a sampling rate at

fs = O(K0 log(W/K0))

to stably reconstruct the signal, which is exponentially lower than 2W . A more

practical scheme named modulated wideband converter [ME10, ME11] requires

only a sampling rate at

fs = 2K0B,

which is usually magnitudes lower than the Nyquist rate when K0 � N0.

11.2 Wideband Interferer Detection

The next generation 5G technologies like Long-Term Evolution (LTE) aim to uti-

lize under-utilized unlicensed public spectrum (like the PCAST spectrum men-

tioned above) in addition to designated licensed spectrum. Figure 11.2 shows an

example of such a deployment. In order to utilize and share the unlicensed spec-

trum efficiently with all other possible users, the user terminal needs to sense

in real time which channels have been occupied by other users (called inter-

ferers) so that it can opportunistically use other idle channels for subsequence

3 Radios stations are typically assigned a 200 KHz bandwidth. That is more than enough for

most audio signals at 20 KHz ∼ 30 KHz range. For data transmission tasks of mobile

devices, the desired bandwidth is typically 20MHz.
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data transfer. Terminals with such capabilities are called cognitive radio (CR)

terminals.

To model the interference, we may assume that the entire spectrum (fmin, fmax)

are partitioned into N0 bands. We say a band is occupied (or used) by an inter-

ferer (or another user) if the energy on that band is above certain threshold (say

above background radio noise level). At any given time, we assume K0 out of

the N0 bands have been occupied by interferers, as illustrated in Figure 11.3. We

call the aggregated signal of all the interferers as x(t). The problem of interfer-

ence detection is to find out the supports of the K0 bands of X(f), the Fourier

transform of x(t).

11.2.1 Conventional Scanning Approaches

Conventionally, there are two straightforward approaches to detect (the support

of) the interfering signal x(t) in the frequency domain:
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1 Scan one band at a time: For each of the N0 bands, one can first down-convert

the signal using a local oscillator with frequency flo at the center of each band

flo = fmin + 0.5B + iB, i = 0, . . . , N0 − 1,

and then sample the signal at the Nyquist rate for each band

fs = 2B.

This allows one to recover the component of x(t) in each band and determine

if that band has been occupied. Obviously, one needs to repeat this process N0

times, one for each band, or one can build a system with N0 parallel branches,

again one for each band.

2 Recover all bands together: One can first down-convert the signal using a local

oscillator with frequency flo at the center of the entire spectrum

flo = (fmin + fmax)/2,

and then sample the signal at the Nyquist rate for the entire spectrum

fs = 2W = 2(fmax − fmin).

This allows one to recover the entire signal x(t) within the spectrum, regardless

of which bands have been occupied.

Despite their simplicity, these approaches are costly either in time (e.g. scanning

N0 times), or in hardware complexity (e.g. building N0 branches), or in energy

consumption (e.g. sampling at the high Nyquist rate 2W ).

As an example, Figure 11.4 illustrates applying the above schemes to the

PCAST spectrum. For a sweeping spectrum scanner (Fig. 11.4(a)), each fre-

quency bin is scanned sequentially by progressively sweeping the local oscillator

(LO) driving the downconverter. This architecture requires widely tunable, high

quality RF components that are difficult to implement on a chip. Identifying

signals over a 1GHz span with a 20MHz RBW requires a long scan time which

is proportional to the number of bins N0 = 50. This results in large energy

consumption and the risk of missing fast changing interferers.

The scan time in sweeping scanners can in principle be reduced by using a
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multi-branch architecture with multiple narrowband scanners operating in par-

allel. However, the hardware complexity becomes impractical since each branch

requires a separate phase-locked loop (PLL) to generate the LO signal and the

50 PLL frequencies would need to be spaced closely with a distance equal to the

20MHz RBW.

A Nyquist-rate FFT spectrum sensor (Fig. 11.4(b)) for a 1GHz bandwidth

would require a prohibitively high aggregate analog-to-digital (A/D) conversion

rate of 2GSps after I/Q downconversion. Even though the scan time is reduced,

this is a power hungry approach due to the high sampling rate required for the

Nyquist-rate wideband sensing.

How can we do better? As we have mentioned earlier, at any given time, the

number of bands used by other users, K0, is typically sparse with respect to N0.

By exploiting this additional knowledge about the spectrum of the interference

x(t), i.e., X(f) being sparse, we can come up with much more efficient solutions

than the above approaches using techniques from compressive sensing. It has

been well studied in Chapter 3 that one can recover a sparse signal from a small

number of random (incoherent) linear measurements. However, here the sparsity

is in the frequency domain and we need to know how to effectively and efficiently

take random linear measurements of X(f).

11.2.2 Compressive Sensing in the Frequency Domain

To take a random linear measurement of the spectrum X(f), a very clever scheme

has been suggested by [ME10] and [HYP+15]: one can first multiply x(t) with

a periodic mixing function p(t) say of period Tp. The mixed signal is then trun-

cated with a low-pass filter h(t) with cutoff frequency 1/(2Ts) and the filtered

signal is then sampled at rate fs = 1/Ts. The hope is that, for properly chosen

mixing function p(t), Tp, and Ts, the (discrete-time) Fourier transform of the
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output sequence, say y(n), would be precisely random linear measurements of

the (sparse) spectrum X(f). Below we give a brief sketch of this scheme.

The mixing function p(t), as a Tp-periodic function, can be written as a Fourier

expansion:

p(t) =

∞∑

l=−∞
cle

i 2π
Tp
lt
, (11.2.1)

where i =
√
−1 is the imaginary unit and cl is the Fourier coefficient: cl =

1
Tp

∫ Tp
0

p(t)e
−i 2π

Tp
lt
dt.

After x(t) is mixed with p(t), the Fourier transform of the mixed signal x̃(t) =

x(t)p(t) would be

X̃(f) =

∞∑

l=−∞
clX(f − lfp), (11.2.2)

where fp = 1/Tp. Since X(f) is band-limited, the above sum will only have finite

terms.

If the subsequent filter h(t) is perfect low-pass filter, only the frequencies in the

interval
(
− 1

2fs,+
1
2fs
)

will stay in the sequence y[n]. Hence, the discrete-time

Fourier transform of y[n] has the expression:

Y (f) =

L0∑

l=−L0

clX(f − lfp), f ∈
(
− 1

2
fs,+

1

2
fs

)
, (11.2.3)

where L0 is large enough to cover the support of X(f).

For simplicity, we may stack all the coefficients cl into a vector

c
.
= [cL0

, . . . , c−L0
]∗

of length L = 2L0 + 1 and X(f − lfp) into another vector:

z(f)
.
= [X(f − L0fp), . . . , X(f + L0fp)]

∗. (11.2.4)

The vector z(f) is sparse if X(f) is. We can write the above expression as

Y (f) = c∗z(f). (11.2.5)

The remaining question is how to properly choose the Tp-periodic mixing func-

tion p(t) so that the expression in (11.2.3) would be a sufficiently random (or

incoherent) measure of non-zero components in X(f). An easy scheme is to make

the values of p(t) in each of its period (0, Tp) be a pseudo-random bit sequence

(PRBS) of length L:

p(t) = αk, k
Tp
L
≤ t ≤ (k + 1)

Tp
L
, 0 ≤ k ≤ L− 1, (11.2.6)

where αk is a random variable taking binary values in {−1,+1} of equal proba-

bility. For so-chosen p(t), its Fourier coefficients cl can be computed as

cl =
1

Tp

∫ Tp
L

0

L−1∑

k=0

αke
−i 2π

Tp
l(t+k

Tp
L )
dt =

L−1∑

k=0

αke
−i 2πL lk 1

Tp

∫ Tp
L

0

e
−i 2π

Tp
lt
dt.
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Let us define the scalar dl
.
= 1

Tp

∫ Tp
L

0
e
−i 2π

Tp
lt
dt and let D be the diagonal matrix

with dl on its diagonal. Notice that {e−i 2πL lk} are exactly the (k, l)-th entry of

the discrete Fourier transform matrix F of size L× L. So we have

c∗ = a∗FD, (11.2.7)

where a = [α0, α1, . . . , αL−1]∗ is the sequence of random bits.

Combining the above equation with the measurement equation (11.2.5), we

have

Y (f) = a∗FDz(f). (11.2.8)

The above equation is obtained from mixing with one signal p(t) from one pseudo

random bit sequence a. To recover the sparse vector z(f), we can mix the input

x(t) with multiple signals pi(t), i = 1, . . . ,m, each with an independent pseudo

random bit sequence ai. We collect all the measurements Yi(f) into one vector

y(f) = [Y1(f), . . . , Ym(f)]∗. Then we have

y(f) = AFDz(f), (11.2.9)

where A is m × L matrix containing all the independent pseudo random bit

sequences ai as its rows.

Notice that the diagonal operator D does not change the sparsity of z(f) and

the DFT matrix F is unitary. As we have known from the analysis in Chapter

3, the m × L measurement matrix AF would be highly incoherent and the

so obtained measurements y(f) would be a set of incoherent measurements of

z(f). As long as m is large enough, say in the order O(K0 log(L/K0)), we are

guaranteed to correctly recover the sparse vector z(f) using the `1-minimization:

min ‖z(f)‖1 subject to y(f) = AFDz(f). (11.2.10)

In theory, one may solve the above `1-minimization problem to identify the

support of the used bands. However, to minimize processing memory and power

in hardware implementation, instead of using generic convex optimization meth-

ods introduced in Chapter 8, the greedy algorithms such as the Orthogonal

Matching Pursuit (OMP) Algorithm 8.11 of Chapter 8 becomes well suited for

our purpose here: The OMP is a simple greedy heuristic for sparse recovery,

which forms an estimate of the signal support one element at a time. In each

iteration, the algorithm involves minimal set of columns of the sensing matrix,

here the matrixAFD. It offers an attractive trade-off between algorithm simplic-

ity and recovery guarantees [TG07], hence better suited for low-level hardware

implementation than other generic `1 solvers.

11.3 System Implementation and Performance

The remaining issue is how one can implement the above spectrum sensing

scheme with a practical real hardware system design? The resulting system
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Figure 11.5 System diagram of the quadrature analog to information converter
(QAIC).

should be able to realize the theoretical benefits of compressive sensing and

break a good balance between power consumption, scanning time, and hard-

ware complexity. The goal is to achieve significantly improved performance than

the conventional approaches mentioned earlier. We here introduce one such sys-

tem, the so-called Quadrature Analog to Information Converter (QAIC) sys-

tem [HYP+15,YHW+15], for energy-efficient wideband spectrum sensing.

11.3.1 Quadrature Analog to Information Converter

The QAIC illustrated in Figure 11.5 consists of three major functional blocks -

an RF downconverter, I and Q path modulator banks (mixers, filters and analog-

to-digital converters), and a pairwise complex combiner. The input signal x(t)

is first down-converted to complex baseband with the in-phase branch I and the

quadrature-phase Q. The downconverter outputs I(t) and Q(t) are multiplied by

a periodic pseudo-random bit sequence (PRBS) pi(t), then filtered and sampled

at a low rate in the I and Q path modulator banks. The QAIC exploits the

compressive spectrum sensing principles discussed above: multiplication by the

PRBS aliases the spectrum such that a potion from each band of the downcon-

verter output signals I(t) and Q(t) appears at a low frequency centered around

DC. The outputs of the I and Q path modulator banks are pairwise added by the

complex combiner to select either the upper (fmin, fmax) or lower (−fmax,−fmin)

band cluster of the input signal x(t). The I and Q modulator banks of the QAIC

consist of multiple branches each employing a different PRBS such that in prin-

ciple a sufficiently large number of band mixtures output y1[n] . . . ym[n] allows

us to recover the sparse multiband signal x(t).

For QAIC, the frequency of the downconverter is chosen to be

fc = (fmax + fmin)/2
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Figure 11.6 QAIC downconverter output at complex baseband.

and ωc = 2πfc. This shifts the spectrum of x(t) from (fmin, fmax)4 to the base

range
(
− (fmax−fmin)/2,+(fmax−fmin)/2

)
, centered around the DC, as shown

in Figure 11.6. The low-pass filter hI,Q(t) extracts this base band with a cutoff

frequency

fI,Q = (fmax − fmin)/2.

The I and Q path modulator banks employed by the QAIC together process

a complex signal I(t) + j · Q(t) at baseband. As a result, the QAIC is able to

isolate and process either the upper (fmin, fmax) or the lower (−fmax,−fmin)

band cluster of the x(t). The spectrum of the QAIC downconverter complex

output configured to retain the upper band cluster of x(t) is shown in Figure

11.6.

The span of the QAIC extends from roughly fmin to fmax and QAIC simultane-

ously observes all bands within this frequency span. Therefore the instantaneous

bandwidth of the QAIC is roughly (fmax − fmin) Hz, which is partitioned into

N0 = d(fmax−fmin)/Be bands with K0 active bands. With the downconversion,

the frequency of the pseudo random bit sequence fp can be chosen to be

fp = (fmax − fmin)/2.

Based on the theory of compressive sensing, the number of measurements we

need is m = CQK0 log(N0/K0). Due to the quadrature configuration, the total

number of branches is then

M = 2m = 2CQK0 log(N0/K0),

and the output sampling rate (hence the cutoff frequency of the filter h(t) in

Figure 11.5) can be half of the band resolution:

fs = B/2.

The number of branches M may be traded (say reduced by an integer factor q)

for the branch sampling rate fs (increased by the same factor q).

4 Similar for the lower (−fmax,−fmin) band cluster.
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11.3.2 A Prototype Circuit Implementation

Based on the above design, a first prototype circuit implementation of the QAIC

system for detecting up to three interferers in the 2.7–3.7 GHz PCAST spectrum

was introduced by [YHW+15]. The circuit was integrated in a chip implemented

with the 65 nm CMOS GP technology, with an active area of 0.428 mm2. A

photograph of the die of the prototype system is shown in Figure 11.7. We in

this section give a brief description of the prototype system.
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Figure 11.8 shows the block diagram of the prototype system that employs the

QAIC design. The system controller configures the QAIC hardware and software

resources according to user specified system constants and performance targets

such as RBW, sensitivity, maximum and minimum frequencies of interest, fmax

and fmin etc.

The PCAST spectrum is a 1GHz spectrum ranging from 2.7 to 3.7GHz with a

RBW of 20MHz. For the QAIC design, m = 8 I/Q branches would be sufficient,

which is a total of M = 16 physical branches. The length of random sequence is

chosen to be L = 63. More detailed justification of the chosen parameters and

other specifications of the system can be found in [YHW+15].

Compared to the conventional approaches mentioned in section 11.2.1, the

QAIC based spectrum sensor is 50 times faster scan time compared to the sweep-

ing spectrum scanners while 6.3 times compression in the aggregate sampling rate

(or in the number of branches) compared to multi-branch spectrum sensors and

Nyquist-rate FFT spectrum scanners.

Circuit Implementation of the RF Front-End Blocks.
The 2.7-3.7GHz QAIC prototype circuit implementation is shown in Fig. 11.9. It

implements the functions in the shaded box in the system diagram in Fig. 11.8.

The chip has been implemented in a 65nm CMOS GP technology. The QAIC chip

uses a wideband noise-canceling low-noise amplifier (LNA) [BKN04,BKLN08]. A

wideband noise-canceling LNA is preferred since impedance matching is required

for an instantaneous bandwidth of 1GHz. The post-layout simulated LNA gain

for typical process corner is 15.8dB to 14.6dB from 2.7 to 3.7GHz and the sim-

ulated S11 < −10dB for a wide bandwidth from 1 to 3.7GHz for typical process

corner. The measured LNA power consumption is 14mW from 1.1V supply.



11.3 System Implementation and Performance 457

The LNA is followed by current-driven passive I/Q mixers and transimpedance

amplifiers (TIAs) [MDL+09, BMC+06, Raz98]. The input stage is implemented

as a transconductance Gm amplifier operating at an RF frequency range 2.7 to

3.7GHz followed by four pairs of CMOS transmission gate switches driven by

complementary clock phases at 3.2GHz. An off-chip RF clock fed to the chip

is 6.4GHz and 3.2GHz quadrature LO signals with a 50% duty cycle driving

the RF I/Q downconverter mixers, cos(ωlot) and sin(ωlot), are generated by the

on-chip divide-by-2 circuit that is followed by clock buffers and a non overlap

generator that is formed by two cross-coupled NAND gates with inverter chains

to generate complementary phase clocks for transmission gate type passive mixer

switches. The down-converted current signal is converted into a voltage output

by a transimpedance amplifier that is configured as an RF I/Q filter. Single

stage OTA topology [Raz01] is chosen for RF I/Q filter design since it was

critical to achieve a wide 500MHz bandwidth while driving the 8 I/Q paths and

minimizing the power consumption. Measured power consumption of the RF

I/Q downconversion stage including the current-driven passive I/Q mixers, TIA

based filters and I/Q LO generation based on divide-by-2 circuitry is 20.9mW

from 1.1V supply.

PN Sequence Generation and CS Baseband Circuits.
The RF TIAs drive eight I/Q paths, each with a current-driven passive mixer

and TIA used as a baseband filter loaded with 400fF emulating the equivalent

load of an 8-bit ADC (CADC in Fig. 11.9). Measured power consumption of the

8 I/Q PN branches is 38.9mW from a 1.1V supply.

The I/Q mixing stages are driven by 8 unique gold sequences [PSM82,Gol67]

generated on-chip with a gold sequence generator. Gold sequences are preferred

because a large set of periodic sequences with good cross-correlation and auto-

correlation properties can be generated with less circuitry compared to a shift

register implementation [PSM82]. Gold sequences generated from preferred m-

sequence pairs satisfy the following inequalities for cross-correlation, θ [PSM82,

Gol67]: |θ| ≤ t = 2(n+2)/2 + 1, n even and |θ| ≤ t = 2(n+1)/2 + 1, n odd . The

on-chip gold sequence generator (Fig. 11.10) has various length options of 15, 31,

63 and 127 for programmable RBW options and the switches C 0, C 0b , C 4, C 4b ,

C 5, C 6 and C 7 are used to control the length of the gold sequences by chang-

ing the length of the m-sequences. It generates 8 (2n − 1) long gold sequences

by XORing two m-sequences generated by two n-flip-flop LFSRs. By keeping

one m-sequence (Fig. 11.10(a)) the same and delaying the other one before the

XOR, up to 2n−1 distinct gold sequences (Fig. 11.10(b)) can be generated with

sufficiently low cross-correlation. Fig. 11.11(a) shows the autocorrelation and

cross-correlation properties of one of the 8 unique gold sequences for a length

of 63 which satisfy the sequence requirements (i.e. θ). Fig. 11.11(b) shows the

measured input referred conversion gain from 2.7 to 3.7GHz of the 8 PN I/Q
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Figure 11.10 Circuit implementation details of gold sequence generator for 8 unique
gold sequences with low cross-correlation operating at 1.26GHz for length 15, 31, 63
and 127; (a) Two unique m-sequence generators based on an LFSR implementation
(b) 8 unique gold sequences generation based on the two unique m-sequences with
RBW programmability.
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Figure 11.11 Properties of the 8 unique gold sequences generated on chip; (a)
Autocorrelation and cross-correlation properties of one of the 8 gold sequences is
shown for a shift of 63 for a length 63; (b) Input referred conversion gain from 2.7 to
3.7GHz of the 8 PN mixing stages driven by the 8 gold sequences for a length of 63,
and RBW of 20MHz.

mixing stages driven by 8 unique gold sequences for a RBW of 20MHz5. Mea-

5 Some of the implemented gold sequences are balanced while others are unbalanced.
Balanced gold sequences have better spectral properties (i.e. are more evenly
distributed) [Hol07]. Also 8 unique m-sequences that are known to have uniform (evenly
distributed) spectrum can be used in future work to overcome the conversion gain

fluctuations over frequency.
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sured power consumption of the on-chip gold sequence generator for the nominal

length of 63 is 7.04mW from 1.1V supply.

CS Digital Signal Processing.
As we have mentioned before, the Orthogonal Matching Pursuit (OMP) Al-

gorithm 8.11 of Chapter 8 is used to identify the input bands that exceed a

user-defined threshold. The OMP stopping criterion is derived from the system

dimension and a user-defined threshold. This threshold can be set to maximize

the detection probability PD or minimize the false alarm probability PFA. In

this work, the threshold is set close to the QAIC noise floor to maximize PD

performance of the system.

Overall System Performance.
The prototype QAIC system front end is implemented in 65 nm CMOS with

a size 0.43 mm2 and consumes 81 mW from a 1.1 V supply. It can detect up

to three interferers in a frequency span of 1 GHz ranging from 2.7 to 3.7 GHz

(PCAST Band) with a resolution bandwidth of 20 MHz in 4.4µS, 50 times faster

than traditional sweeping spectrum scanners. Rapid interferer detector with the

bandpass QAIC is two orders of magnitude more energy efficient than traditional

Nyquist-rate architectures and one order of magnitude more energy efficient than

previous low-pass CS methods. The aggregate sampling rate of the QAIC inter-

ferer detector is compressed by 6.3 compared to traditional Nyquist-rate archi-

tectures for the same instantaneous bandwidth.

11.3.3 Recent Developments in Hardware Implementation

Since the first prototype [YHW+15], two new chips have been designed to fur-

ther improve the system’s efficiency and compatibility with other communication

hardware systems.

Time-segmented QAIC.
[YHK+16] introduced a new chip design that realizes a rapid interferer sensing

solution that employs compressed sampling with a time-segmented quadrature

analog-to-information converter (TS-QAIC). TS-QAIC enables system scalabil-

ity by adaptive thresholding in the information recovery engine and by extending

the 8 physical I/Q branches of the QAIC to 16 with time segmentation, while

limiting the silicon cost and complexity. TS-QAIC can detect up to 6 interferers

(compared to 3 for QAIC) over a 1GHz bandwidth between 2.7-3.7GHz in 10.4µS

with only 8 I/Q physical branches. The TS-QAIC prototype is implemented in

65nm CMOS on a 0.517 mm2 active area and consumes 81.2mW from a 1.2V

supply.
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Direct RF-to-Information Converter.
The Direct RF-to-information Converter (DRF2IC) [HBZ+17] unifies high sensi-

tivity signal reception, narrowband spectrum sensing, and energy-efficient wide-

band interferer detection into a fast-reconfigurable and easily scalable architec-

ture. In reception mode, the DRF2IC RF front-end (RFFE) consumes 46.5mW

and delivers 40MHz RF bandwidth, 41.5dB conversion gain, 3.6dB NF and -

2dBm B1dB. 72dB out-of-channel blocker rejection is achieved in narrowband

sensing mode. In compressed sensing wideband interferer detection mode, 66dB

operational dynamic range, 40dB instantaneous dynamic range, 1.43GHz instan-

taneous bandwidth is demonstrated and 6 interferers scattered over 1.26GHz are

detected in 1.2µS consuming 58.5mW.

11.4 Notes

This chapter is based on a series of work [YHW+15, YHK+16, HBZ+17]. Acute

readers may already draw some interesting comparisons between the spectrum

sensing problem and the MRI problem studied in the previous Chapter 10: For

MRI, our direct measurements are Fourier transform of a signal (the brain image)

in the spectral domain and yet the sparse structure of the signal is in a different

wavelet domain or is in the spatial characteristics (spatial derivatives) of the

signal. In the spectrum sensing problem, our measurements are samples of a

temporal signal whose sparse structure is in its spectral domain. Hence in MRI,

we need to transform the measurements back to the spatial domain to impose

sparsity whereas in spectrum sensing, we are very much doing the opposite: need

to transform the signal to its spectral domain first in order to discover the sparse

structure.

Signal versus Support Recovery.
There is also another difference in what we are interested in about the signals.

In the MRI problem, we are interested in recovering the signal as accurately as

possible whereas in the spectrum sensing, we are interested in recovering only

the support of the sparse pattern in the spectral domain, as long as the signal

is above certain confidence threshold on a band of interest. Related theory was

characterized in Section 3.6.4 of Chapter 3. This will also be the case for the face

recognition problem to be studied in Chapter 13 and more general classification

problems in Chapter 16. The difference in purpose would determine how much

resources we should allocate in terms of the number of measurements and the

computational complexity. In particular, we can choose different algorithms to

achieve different accuracies in the sparse solution recovered. Of course, the choice

in algorithms and accuracies also depend on whether the recovery needs to be

in real time (for spectrum sensing) or can be done offline (for recovering MRI).

The principles and methods introduced in this book, once properly customized
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for every different application, would enable us to achieve different goals with

the minimal measurement and computational resources.



12 Scientific Imaging Problems

“Where the telescope ends, the microscope begins. Which of the two has the grander
view?”

– Victor Hugo, Les Misérables

12.1 Introduction

In this chapter, we consider a form of low-dimensional structure that arises in

many applications in scientific data analysis: we consider datasets consisting of

a few basic motifs, repeated at different locations in space and/or time. Fig-

ure 12.1 shows three examples of this structure: in neuroscience, in which the

motifs represent spike patterns of a neuron [SGHK03, GK12], in image deblur-

ring [CW98,RBZ06,LWDF11], and in microscopy, in which the motifs represent

repeated features of interest in a sample [CSL+20]. This is a very simple and fun-

damental type of low-dimensional structure. However, it raises challenges both

for theory and computation. Typically, both the motifs and their locations are

not known ahead of time. As discussed in Chapter 7, this naturally leads to non-

convex optimization problems, which can be studied through their symmetries,

and solved efficiently using methods introduced in Chapter 9. In this chapter, we

motivate this model in more depth using an example from a particular scientific

imaging modality, scanning tunneling microscopy [BR83]. We also emphasize the

particular challenges arising in motif finding, which force us to go beyond the

simpler theoretical settings of Chapter 7.

12.2 Data Model and Optimization Formulation

In this section, we focus on one particular imaging modality, Scanning Tunneling

Microscopy (STM), which gives rise to images that consist of repeated motifs.

STM produces atomic resolution images of the quantum electronic structure of

the surface of a material [BR83]. In this modality, a conducting tip is rastered

across the surface of a sample of interest. A two-dimensional image of the surface

can be constructed by recording at each spatial location the tip height needed
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Figure 12.1 Natural Signals with Short-and-Sparse Structures. In calcium
imaging (top), each neuronal spike induces a fluorescence pattern measuring a
transient increase in calcium concentration. In photography (middle), photos with
sharp edges (sparse in the gradient domain) are often obfuscated by blurring due to
shaking the camera. In scanning tunneling microscopy (bottom), dopants embedded
in some base material produce individual electronic signatures. For each of these
cases, the observed signal can be modeled as a convolution between a short kernel and
a sparse activation map.

to maintain a constant current. It is also possible to interrogate the quantum

mechanical structure of the material at different energies by operating the device

in an open-loop fashion and varying the voltage difference between the tip and

surface. This produces a three-dimensional observation y ∈ Rw×h×E , which we

visualize in Figure 12.2 (left).

STM Data Analysis as Finding Repeated Motifs.
The broad goal in analyzing STM data is to extract information about the quan-

tum electronic structure of the material; this bears on questions about physical

phenomena such as superconductivity. In many concrete instances, this prob-

lem boils down to extracting repeated motifs from the observation y. Physical

properties in the material are strongly influenced by way in which electrons in-

teract with “defects” in the crystal lattice, which occur at different locations

(i1, j1), . . . , (ik, jk) in space. The interaction between electrons and a defect pro-

duces a characteristic motif a ∈ Rw×h×E , which is a three dimensional function

of both spatial location and energy. An example of such a pattern is visualized

in Figure 12.2 (middle). Typically, these motifs are spatially localized, i.e., their

spatial extent is small relative to the size of the sample. The overall observation

y can be modeled as a superposition of translated versions of the motif a, one
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Figure 12.2 Convolutional Data Model for STM: the data y (left) is expressed
as a convolution of a basic motif a and a sparse spike train x, plus noise z. Here, each
two-dimensional slice of y is the convolution the corresponding two-dimensional slice
of a and the common sparse signal x. The data analysis goal is, given y, to determine
both the motif a and the sparse spike train x, neither of which is known ahead of
time.

for each of the defect locations (i`, j`):

y(i, j, e)
data

=

k∑

`=1

a(i− i`, j − j`, e)
translated motif

+ z(i, j, e)
noise

. (12.2.1)

This expression can be written more concisely, as the convolution of a(·, ·, e) and

a two-dimensional sparse signal x ∈ Rw×h, which takes on value 1 at locations

(i`, j`) and zero elsewhere:

y(·, ·, e) = a(·, ·, e) ∗ x + z(·, ·, e). (12.2.2)

Combining these equations for all energy levels e, we obtain a model for the

dataset as a whole, which we write as

y
data

= a
motif

∗ x
sparse spikes

+ z
noise

, (12.2.3)

where in this expression, each two-dimensional slice of a is convolved with

the two-dimensional spike train x to produce one two-dimensional slice of y

[CSL+20]. This model is visualized in Figure 12.2.

Sparse Optimization for Motif Finding.
Our goal is to recover both the motif a and spike train x from the observation

y. This is an underdetermined problem; to make progress we need to leverage

low-dimensional structure in both a and x. We will use the fact that

1 a is spatially localized, i.e., it is a short signal, whose spatial extent is small

compared to that of y;

2 x is sparse, since it contains only one nonzero entry for each instance of the

motif in y.

We call this a short-and-sparse model, and call the corresponding recovery prob-

lem short-and-sparse deconvolution (SaSD). This model was studied in the 90’s

[Hay94b,LB95b,KH96] and has drawn increased interests in recent years due to
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Figure 12.3 Scaling-Shift Symmetry. The SaS convolution model exhibits a scaled
shift symmetry: αs`[a0] and α−1s−`[x0] have the same convolution as a0 and x0.
Therefore, the ground truth (a0,x0) can only by identified up to some scale and shift
ambiguity.

improved computation capability and understanding of its geometry [ZLK+17,

KZLW19]. This structure is common to many motif finding problems, in mi-

croscopy, neuroscience, astronomy, etc. Using ideas from Chapters 2, 3, and 7, we

can formulate an optimization problem that attempts to simultaneously recover

both a and x:

min
a,x

ϕBL(a,x)
.
= 1

2 ‖y − a ∗ x‖
2
F

data fidelity

+ λ‖x‖1
x sparse

such that a ∈ A.
a short

(12.2.4)

Here, the data fidelity term is the sum of the squared differences between a ∗ x
and y. The regularizer ‖x‖1 encourages x to be sparse. This objective function

is sometimes referred to as the Bilinear Lasso (hence, the notation ϕBL, since

it composes the Lasso objective with the bilinear map (a,x) 7→ a ∗ x [CSL+20,

ZLK+17,KZLW19]. The constraint a ∈ A asks a to be short. One way of doing

this is constraining a to be supported on a relatively small region {1, . . . , w} ×
{1, . . . , h} × {1, . . . , E}, with w � W and h � H. There is a further bilinear

degree of freedom between a and x: for any nonzero λ, (λa) ∗ (λ−1x) = a ∗ x.

We eliminate this degree of freedom by constraining a to have unit Frobenius

norm, setting

A .
= {a | supp(a) ⊆ {1, . . . , w} × {1, . . . , h} × {1, . . . , E}, ‖a‖F = 1} .

(12.2.5)

As we will see in the next section, due to the symmetries of the convolution

operator ∗, this problem is nonconvex. As with the simpler model problems in

Chapter 7, particular choice ‖a‖F = 1 plays an important role in shaping the

geometry of this nonconvex problem, by interacting with the objective to create

regions of negative curvature.
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12.3 Symmetry in Short-and-Sparse Deconvolution

The short-and-sparse model admits a basic shift symmetry, which is inherited

from the symmetries of the convolution operator ∗: letting sτ denote a shift by

τ pixels, we have

sτ [a] ∗ s−τ [x] = a ∗ x. (12.3.1)

In the two dimensional setting of STM, τ represents a two-dimensional shift in

space. In Figure 12.3, we illustrate this symmetry in a one-dimensional setting.

The shift symmetry is a form of discrete symmetry, similar to those studied in

Chapter 7. Because of this symmetry, natural formulations of short-and-sparse

deconvolution admit multiple equivalent solutions, and are nonconvex. Indeed,

viewed as a function of the pair (a,x), the objective (12.2.4) is a nonconvex

function; the constraint set is also nonconvex.

Similar to Chapter 7, it is possible to study the geometry of deconvolution

problems through their symmetries [ZLK+17, ZKW18, KZLW19]. For example,

it is possible to derive simpler approximations ϕABL ≈ ϕBL to the objective in

(12.2.4) that can be studied mathematically. If a is shift incoherent, i.e., for any

shift τ 〈a, sτ [a]〉 ≈ 0, then the loss in (12.2.4) can be approximated as

1
2 ‖y − a ∗ x‖

2
F = 1

2‖y‖2F + 1
2‖a ∗ x‖2F − 〈y,a ∗ x〉

≈ 1
2‖y‖2F + 1

2‖x‖2F − 〈y,a ∗ x〉 . (12.3.2)

This gives:

ϕABL(a,x)
.
= 1

2‖y‖2F + 1
2‖x‖2F − 〈y,a ∗ x〉+ λ‖x‖1, a ∈ A. (12.3.3)

Exercise 12.1 explores this approximation in more detail; the key intuition is

that this approximation is accurate when the shift-coherence

µs = max
τ 6=0
|〈a, sτ [a]〉| (12.3.4)

is small. Figure 12.4 visualizes the geometry of this approximation for shift-

incoherent problems. As expected, equivalent (symmetric) solutions are local

minimizers, and there is negative curvature in symmetry breaking directions.

The theory points to a key difference between real deconvolution problems

and the idealized models studied in Figure 12.4 and Chapter 7. As the motif

a becomes more shift-coherent, the problem becomes more challenging, both

numerically and theoretically. This can be quantified in terms of a sparsity-

coherence tradeoff, illustrated in Figure 12.5. The less coherent a is, the denser

x can be. This tradeoff is reminiscent of our discussion of coherence in matrix

completion and recovery in Chapters 4-5.

This tradeoff points to an important challenge in practical deconvolution prob-

lems: deconvolution problems in imaging and the sciences tend to be highly co-

herent – the motif or blur kernel a is typically spatially smooth. In contrast to
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(a) a single shift s`1 [a0] (b) two shifts s`1 [a0], s`2 [a0] (c) multiple shifts

Figure 12.4 Geometry of Approximate Bilinear Lasso Objective ϕABL(a) near
superpositions of shifts of a0 [KZLW19]. Top: function values of ϕABL(a) visualized
as height. Bottom: heat maps of ϕABL(a) on the sphere Sn−1. (a) the region near a
single shift is strongly convex; (b) the region between two shifts contains a
saddle-point, with negative curvature pointing towards each shift and positive
curvature pointing away; (c) region near the span of several shifts of a0.

(a) spiky (easiest) (b) generic (easy) (c) lowpass (difficult)

µs ≈ 0 µs ≈ n−1/2 µs ≈ constant

θ ≈ n−1/2 θ ≈ n−3/4 θ ≈ n−1

Figure 12.5 Sparsity-Coherence Tradeoff [KZLW19]: examples with varying
coherence parameter µs(a0) and sparsity rate θ (i.e., probability a given entry is
nonzero). Smaller shift-coherence µs(a0) allows SaSD to be solved with higher θ, and
vice versa. In order of increasing difficulty: (a) when a0 is a Dirac delta function,
µs(a0) = 0; (b) when a0 is sampled from a uniform distribution on the sphere Sn−1,
its shift-coherence is roughly µs(a0) ≈ n−1/2 ; (c) when a0 is low-pass,
µs(a0)→ const. as n grows.

orthogonal dictionary learning (Chapter 7) and certain neural network learn-

ing problems (Chapter 16), we have to contend directly with highly coherent

kernels. Approximations such as (12.3.3) break down, and we have to contend

directly with the more complicated geometry of (12.2.4). In the next section, we
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Algorithm 12.1 Alternating Descent Method (ADM)

Input: observation y, stepsizes t0 and τ0; penalty λ > 0.

Initialize a0 at random on the sphere, x0 ← 0n, and k ← 0.

while not converged do

Fix ak and take a proximal gradient step on x with stepsize tk

xk+1 ← proxtkλg [xk − tk∇xψ (ak,xk)] .

Fix xk+1 and take a Riemannian gradient step on a with stepsize τk

ak+1 ← PA [ak − τk∇aψ (ak,xk+1)] .

Update k ← k + 1.

end while

Output: Final iterate a?, x?.

will describe some algorithmic ideas for coping with high-coherence instances of

SaSD.

12.4 Algorithms for Short-and-Sparse Deconvolution

In this section, we describe practical algorithms for (12.2.4), which leverage ideas

from Chapters 8-9, to contend with the complicated geometry of practical de-

convolution problems. Our problem is a specific instance of the general form

min
a,x

Ψ(a,x) = ψ(a,x) + λ · g(x), s.t. a ∈ M, (12.4.1)

where ψ(a,x) is twice continuously differentiable, and g(x) is a convex (possibly

nonsmooth) sparse promoting penalty, andM is a smooth Riemannian manifold

such as a sphere.

12.4.1 Alternating Descent Method

We begin by introducing a vanilla first-order method for solving (12.4.1) based

on an alternating descent method (ADM). The method reduces the objective by

alternating between taking descent steps on one variable with the other fixed.

The basic algorithm pipeline is summarized in Algorithm 12.1. We provide more

detailed explanation for each of the steps below.

Fix a and take a proximal gradient step on x.
Fix a, and consider the marginal function

Ψa(x) = ψ(a,x) + λg(x) (12.4.2)
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as a function of x only. This is a sum of a smooth function ψ which is convex in x

and a nonsmooth convex function g(x). This form is familiar from our discussion

of proximal gradient methods in Chapter 8. We can express the derivative of ψ

with respect to x as

∇xψ(a,x) = ι∗x ǎ ∗ (a ∗ x− y). (12.4.3)

Here, ι∗x restricts to the interval {1, . . . , n}. ǎ denotes the reversal of the signal

a. In Exercise 12.3 we verify this formula for the gradient, by verifying that

convolution ǎ ∗ · with the reversal of a is the formal adjoint of the convolution

operator x 7→ a ∗ x. For a fixed, the gradient ∇xψ(a,x) is a Lipschitz function

of x. The Lipschitz constant L is the norm of the operator x 7→ ι∗xǎ ∗ a ∗ x.1

Following our discussion in Chapter 8, we can reduce the function Ψa(x) by

taking a gradient step and then applying the proximal operator associated with

the regularizer λg:

xk+1 = proxtλg [xk − t∇xψ(ak,xk)] . (12.4.4)

As long as t ≤ 1/L, this reduces the objective: Ψ(ak,xk+1) ≤ Ψ(ak,x). The

Lipschitz constant L can be estimated from the discrete Fourier transform of ak,

or an effective step size can be determined by backtracking (i.e., reducing the

step size until a sufficient reduction in objective is observed). Our regularizer

g is the `1 norm; the proximal operator associated with this convex function is

simply the soft thresholding operation:

proxτλg (x) = Stλ (x) , (12.4.5)

where Stλ(x) = sign(x) (|x| − λt)+ shrinks the entries of the vector x towards

zero (see Section 8.2 for more discussion and derivation of this operator).

Fix x and take a projected gradient step on a.
Proceeding in a similar manner, we can calculate the derivative of ψ(a,x) with

respect to a:

∇aψ(a,x) = ι∗ax̌ ∗ (a ∗ x− y) . (12.4.6)

Here, again ι∗a restricts to the allowed support of a. Taking a gradient step

a 7→ a− τ∇aψ(a,x) for appropriate step size (chosen smaller than 1/La, where

La is the norm of the operator a 7→ ι∗ax̌ ∗ x ∗ a and the Lipschitz constant of

∇aψ) reduces the objective function Ψ. However, the resulting a+ may not have

unit norm, and hence may not reside in the feasible set A. We address this by

projecting onto A, simply by scaling a+ to have unit `2 norm:

ak+1 = PA [ak − τk∇aψ (ak,xk+1)] . (12.4.7)

This projected gradient approach to a update is simple and often quite effective

in practice. It is also possible to derive a variety of algorithms through the

1 Since convolution in time is equivalent to multiplication in frequency, this can be
controlled in terms of the largest Fourier coefficient of a.
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perspective of Riemannian optimization – viewing the constraint ‖a‖F = 1 as

forcing a to reside on a particular smooth manifold.

12.4.2 Additional Heuristics for Highly Coherent Problems

Although the Bilinear Lasso is able to account for interactions between a and x

even when a is highly coherent, the smooth term ‖a ∗ x− y‖22 nonetheless be-

comes ill-conditioned as µ(a) increases, leading to slow convergence for practical

problem instances. Here we will discuss a number of heuristics which will help

to obtain faster algorithmic convergence and produce better solutions in such

settings.

Momentum Acceleration.
When µs(a) is large, the Hessian of ψBL becomes ill-conditioned as a converges

to single shifts. the objective landscape contains “narrow valleys” in which first-

order methods tend to exhibit severe oscillations. For a nonconvex problem such

as the Bilinear Lasso, iterates of first-order methods could encounter many nar-

row and flat valleys along the descent trajectory, resulting in slow convergence.

One remedy here is to add momentum [Pol64, BT09] to standard first-order

iterations, as we have introduced in Appendix D. For example, when updating

x, we could modify the iterate in (12.4.4) by

wk = xk + β · (xk − xk−1)︸ ︷︷ ︸
inertial term

, (12.4.8)

xk+1 = prox tkg [wk − tk∇xψ (ak,wk)] . (12.4.9)

Here, the inertial term incorporates the momentum from previous iterations, and

β ∈ (0, 1) controls the inertia2. In a similar fashion, we can modify the iterate

for updating a in (12.4.7). This algorithm is sometimes referred to as inertial

alternating descent method (iADM) [AMS09]3.

The additional inertial term improves convergence by substantially reducing

oscillation effects for ill-conditioned problems. The acceleration of momentum

methods for convex problems are well-known in practice4. Recently, momentum

methods have also been proven to improve convergence for nonconvex and non-

smooth problems [PS16,JNJ18].

Homotopy Continuation.
It is also possible to improve optimization by modifying the objective ΨBL di-

rectly through the sparsity penalty λ. Variations of this idea appear in both

2 Setting β = 0 here removes momentum and reverts to standard proximal gradient descent.
3 It modifies iPALM [PS16] to perform updates on a via retraction on the sphere.
4 In the setting of strongly convex and smooth function f(z), the momentum method

improves the iteration complexity from O(κ log(1/ε)) to O(
√
κ log(1/ε)) with κ being the

condition number, while leaving the computational complexity approximately
unchanged [B+15].
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[ZLK+17] and [KZLW19], and can also help to mitigate the effects of large shift-

coherence in practical problems.

When solving (12.2.4) in the noise-free case, it is clear that larger choices of

λ encourage sparser solutions for x. Conversely, smaller choices of λ place local

minimizers of the marginal objective ϕBL(a)
.
= minx ψBL(a,x) closer to signed-

shifts of a0 by emphasizing reconstruction quality. When µ(a) is large, however,

ϕBL becomes ill-conditioned as λ → 0 due to the poor spectral conditioning of

a0, leading to severe flatness near local minimizers or the creation of spurious

local minimizers when noise is present. At the expense of precision, larger values

of λ limit x to a small set of support patterns and simplify the landscape of ϕBL.

It is therefore important both for fast convergence and accurate recovery for λ

to be chosen appropriately.

When problem parameters – such as noise level or sparsity – are not known a

priori, a homotopy continuation method [HYZ08,WNF09,XZ13] can be used to

obtain a range of solutions for SaSD. Using a random initialization as in ADM,

a rough estimate (â1, x̂1) is first obtained by solving (12.2.4) with iADM using a

large choice for λ1; this estimate is refined by gradually decreasing λn to produce

the solution path
{

(ân, x̂n;λn)
}

. By ensuring that x remains sparse along the

solution path, homotopy provides the objective ΨBL with (restricted) strong

convexity w.r.t. both a and x throughout optimization [ANW10]; in numerical

experiments, this often leads to a linear rate of convergence.

Data Driven Initialization.
The structure of the SaSD problem suggests a means of initializing the motif a0.

Our goal is to recover a, up to shift symmetry. That is, the goal is to recover

a single shift of a. The data y is the convolution of a with a sparse signal x.

This implies that small pieces of y are themselves superpositions of a few shifted

copies of a0. This suggests a means of initialization: one selects a small window

of the data and then normalizes it to lie on the sphere.

12.4.3 Computational Examples

Figure 12.6 shows an example of motif finding in STM data using the method

introduced above, which is featured in the recent work [CSL+20]. The particular

dataset consists of measurements across a 100×100nm2 area at E = 41 different

bias voltages. In the left pane, the figure shows the modulus of the two dimen-

sional Fourier transform of two spatial slices. This relatively noisy product is the

basis for conventional data analysis techniques in the area. In the right pane is

a much cleaner analysis produced by solving a SaSD problem. Panels (f) and

(g) show two slices of the motif signature a?, while pane (e) shows the sparse

activation map x?. The modulus Fourier transforms of (f) and (g) are cleaner

and easier to interpret than their counterparts in (c) and (d).
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Figure 12.6 Short and Sparse Deconvolution on Real NaFeAs Data. Left: two
slices of a dataset at different energy levels (a)-(b). One conventional approach to
analyzing such data is to visualize the magnitude of the Fourier transform (c)-(d). In
dense samples, this produces a “phase noise” which obscures physically meaningful
structures. Right: deconvolution via the Bilinear Lasso. Sparse activation map x (e)
and motif a (f)-(g). The Fourier transform (h)-(i) of the motif is clearer and reveals
more structure than that of the original data (c)-(d).

12.5 Extensions: Multiple Motifs

In many scientific problems, the data consist of superpositions of more than

one type of basic motif. For example, in scanning tunneling microscopy, data

may contain multiple types of impurities, or multiple states of matter. In neural

spike sorting, data may consist of spike patterns from multiple neurons. Many of

the algorithmic ideas discussed above extend very naturally to handle data with

multiple motifs. One simply introduces variables of optimization a1, . . . ,aK , with

corresponding sparse spike trains x1, . . . ,xK , and solves:

min
a1,...,aK ,x1,...,xK

1
2

∥∥∥y −
K∑

`=1

a` ∗ x`
∥∥∥

2

F
+ λ

K∑

`=1

‖x`‖1

subject to a` ∈ A, ` = 1, . . . ,K. (12.5.1)

This extension is sometimes referred to as multi-channel sparse blind deconvo-

lution [QLZ19] or convolutional dictionary learning [QZL+20a]. This problem is

again nonconvex. In addition to the shift symmetry described above, this problem

exhibits a permutation symmetry: reordering the motifs a` and their correspond-

ing sparsity maps x` does not change the objective. Nevertheless, many of the

algorithmic ideas described above generalize naturally to this higher-dimensional

problem. Ideas of momentum acceleration, continuation and reweighting remain

essential to obtaining high quality results on practical data. There are many

open theoretical issues associated with deconvolution and convolutional dictio-

nary learning. One avenue to theoretical progress is to solve for the motifs a`
one at a time. If the shifts of the a` are mutually incoherent, it is possible to an-

alyze the geometry of the resulting problem and prove that nonconvex methods



12.6 Exercises 473

produce accurate estimates of the ground truth. Interested readers may refer to

some of the latest progress on these topics [QLZ19,QZL+20a].

12.6 Exercises

12.1 (Approximate Bilinear Lasso and Incoherent Problems). Consider a length-

k signal a ∈ Rk of unit `2 norm. Consider the partial convolution matrix

Ca =
[
a s1[a] s2[a] . . . sk−1[a]

]
. (12.6.1)

Argue that

‖C∗aCa − I‖ ≤ k(k − 1)µs(a), (12.6.2)

where µs is the shift coherence. For what a is the approximation ‖a∗x‖22 ≈ ‖x‖22
accurate?

12.2 (Coherence of a Gaussian Motif). Consider a Gaussian signal a of length

k, with ai = β exp(−(i − k)2/σ2), (i = 1, . . . , k), where β is chosen to ensure

that a has unit `2 norm. Argue that (i) as σ → 0, µs(a) approaches 0, while as

σ → ∞, µs → 1/k, µs → k − 1/
√
k. In the latter (large coherence) setting, the

approximation ϕABL is inaccurate.

12.3 (Gradient of Quadratic Loss under Convolution). Consider the quadratic

loss

ψ(a,x) = 1
2 ‖a ∗ ιx− y‖

2
2 . (12.6.3)

Show that the gradient of this loss with respect to x is given by

∇xψ = ι∗ (a ∗ ιx− y) . (12.6.4)



13 Robust Face Recognition

“Machines take me by surprise with great frequency.”
– Alan Turing, Computing Machinery and Intelligence

13.1 Introduction

In human perception, the role of sparse representation has been studied exten-

sively. As we have alluded to in the Introduction, Chapter 1, investigators in

neuroscience have revealed that in both low-level and mid-level human vision,

many neurons in the visual pathway are selective for recognizing a variety of

specific stimuli, such as color, texture, orientation, scale, and even view-tuned

object images [OF97,Ser06]. Considering these neurons to form an over-complete

dictionary of base signal elements at each visual stage, the firing of the neurons

with respect to a given input image is typically highly sparse.

As we discussed in the earlier part of the book, the original goal of sparse

representation was not inference nor classification per se, but rather represen-

tation and compression of signals, potentially using lower sampling rates than

the Shannon-Nyquist bound. Therefore, the algorithm performance was mea-

sured mainly by the sparsity of the representation and the fidelity to the original

signals. Furthermore, individual base elements in the dictionary were not as-

sumed to have any particular semantic meaning – they were typically chosen

from standard bases (e.g., Fourier, Wavelets, Curvelets, Gabor filters etc.), or

learned from data with PCA [PMS94, CJG+15], or a deep convolution neural

network (as we will detail in Chapter 16), or even generated from random projec-

tions [WYG+09,CJG+15]. Nevertheless, the sparsest representation is naturally

discriminative: amongst all subsets of base vectors, it would select the subset

which most compactly expresses the input signal and rejects all other possible

but less compact representations.

In this chapter, we exploit the discriminative nature of sparse representation

to perform classification.1 Instead of using the generic dictionaries mentioned

above, we represent a test sample using a data-driven dictionary, whose base

elements are the training samples themselves. If sufficient training samples are

1 In Chapter 16, we will revisit the discriminative nature of low-dimensional models,

including sparsity, in a broader context of deep networks for classification.



13.1 Introduction 475

=

0 100 200 300 400 500 600 700
−50

0

50

100

150

200

250

300

× +

=

0 100 200 300 400 500 600 700
−10

0

10

20

30

40

50

60

70

80

× +

Figure 13.1 An Overview of the Formulation. We represent a test image (left),
which is potentially occluded (top) or corrupted (bottom), as a sparse linear
combination of all the training images (middle) plus sparse errors (right) due to
occlusion or corruption. Red (darker) coefficients correspond to training images of the
correct individual. The algorithm determines the true identity (indicated with a red
box at second row and third column) from 700 training images of 100 individuals (7
each) in the standard AR face database [MB98].

available from each class, it will be possible to represent the test sample as

a linear combination of just those training samples from the same class. This

representation is naturally sparse, involving only a small fraction of the overall

training database. We will see that in many problems of interest, it is actually

the sparsest linear representation of the test sample in terms of this dictionary,

and can be recovered efficiently via sparse optimization. Seeking the sparsest

representation therefore automatically discriminates between the various classes

present in the training set. Figure 13.1 illustrates this simple idea using face

recognition as an example. Sparse representation also provides a simple yet sur-

prisingly effective means of rejecting invalid test samples not arising from any

class in the training database: these samples’ sparsest representations tend to

involve many dictionary elements, spanning multiple classes.

We will motivate and study this new approach to classification within the

context of automatic face recognition. Human faces are arguably the most ex-

tensively studied object in image-based recognition. This is partly due to the

remarkable face recognition capability of the human visual system [SBOR06],

and partly due to numerous important applications for face recognition technol-

ogy [ZCPR03]. In addition, technical issues associated with face recognition are

sufficiently representative of object recognition and even data classification in

general. In this chapter, the application of sparse representation and compressed

sensing to face recognition yields new insights into compensating gross image

error or facial occlusion in the context of face recognition.

It has been known that facial occlusion or disguise poses a significant obsta-

cle to robust real-world face recognition [LB00,Mar02,SSL06]. This difficulty is

mainly due to the unpredictable nature of the error incurred by occlusion: it
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may affect any part of the image, and may be arbitrarily large in magnitude.

Nevertheless, this error typically corrupts only a fraction of the image pixels, and

is therefore sparse in the standard pixel space basis. When the error has such

a sparse representation, it can be handled uniformly within the classical sparse

representation framework (see Figure 13.1 for an example). Yet in experiments,

we further discovered that as the dimension of the problem grows higher, spar-

sity solvers such as `1-minimization seem to be able to recover dense error with

ease. In this context, the general theory of sparse representation and compressive

sensing falls short in explaining the phenomena of dense error correction with

a special kind of dictionaries, called the cross-and-bouquet model. We will dis-

cuss the conditions in which `1-minimization guarantees to recover dense error

approaching 100% under the cross-and-bouquet model.

13.2 Classification Based on Sparse Representation

A basic problem in object recognition is to use labeled training samples from

k distinct object classes to correctly determine the class to which a new test

sample belongs. We arrange the given ni training samples from the i-th class as

columns of a matrix Ai
.
= [vi,1,vi,2, . . . ,vi,ni ] ∈ Rm×ni . In the context of face

recognition, we will identify a w × h grayscale image with the vector v ∈ Rm

(m = wh) given by stacking its columns. Then the columns ofAi are the training

face images of the i-th subject.

An immense variety of statistical models have been proposed for exploiting

the structure of the Ai for recognition. One particularly simple and effective

approach models the samples from a single class as lying on a linear subspace.

Subspace models are flexible enough to capture much of the variation in real

datasets. In particular in the context of face recognition, it has been observed

that images of a face under varying lighting and expression lie on a special low-

dimensional subspace [BHK97, BJ03], often called a face subspace. This is the

only prior knowledge about the training samples we will be using in proposing

a solution using sparse representation.

Given sufficient training samples of the i-th object class, Ai ∈ Rm×ni , any

new (test) sample y ∈ Rm from the same class approximately lie in the linear

span of the training samples associated with object i:

y = αi,1vi,1 + αi,2vi,2 + · · ·+ αi,nivi,ni , (13.2.1)

for some scalars αi,j ∈ R, j = 1, 2, . . . , ni.

Since the membership i of the test sample is initially unknown, we define a new

matrix A for the entire training set as the concatenation of the n = n1 + · · ·+nk
training samples from all k object classes:

A
.
= [A1,A2, . . . ,Ak] = [v1,1,v1,2, . . . ,vk,nk ]. (13.2.2)

Then the linear representation of y can be rewritten in terms of all training
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samples as

y = Axo ∈ Rm, (13.2.3)

where xo = [0, . . . , 0, αi,1, αi,2, . . . , αi,ni , 0, . . . , 0]∗ ∈ Rn is a coefficient vector

whose entries are zero except those associated with the i-th class.2

This motivates us to seek the sparsest solution to y = Ax via sparse opti-

mization, such as `1-minimization:

x̂ = arg min ‖x‖1 subject to Ax = y. (13.2.4)

Given a new test sample y from one of the classes in the training set, we first

compute its sparse representation x̂ via (13.2.4). Ideally, the nonzero entries in

the estimate x̂ will be all associated with the columns of A from a single object

class i, and we can easily assign the test sample y to that class. However, noise

and modeling error may lead to small nonzero entries associated with multiple

object classes (for example, see Figure 13.1 bottom case). Based on the global,

sparse representation, one can design many possible classifiers to resolve this.

For instance, we can classify y based on how well the coefficients associated with

all the training samples of each object reproduce y.

More specifically, for each class i, let δi(·) : Rn → Rn be the characteristic

function which selects the coefficients associated with the i-th class. For x ∈ Rn,

δi(x) ∈ Rn is a new vector whose only nonzero entries are the entries in x that

are associated with class i. Using only the coefficients associated with the i-th

class, one can approximate the given test sample y as ŷi = Aδi(x̂). We then

classify y based on these approximations by assigning it to the object class that

minimizes the residual between y and ŷi:

min
i

ri(y)
.
= ‖y − ŷi‖2. (13.2.5)

Algorithm 13.1 below summarizes the complete recognition procedure, in which

for the `1-minimization problem (13.2.6) in Step 3, one can use any of the method

introduced in Chapter 8 to solve. In particular, the ALM method in Section 8.4

is well suited for this constrained optimization problem.

Example 13.1. (`1-Minimization vs. `2-Minimization) To illustrate how Algo-

rithm 13.1 works, we randomly select half of the 2, 414 images in the Extended

Yale Face Database B [GBK01], as the training set, and the rest for testing. In

this example, we subsample the images from the original 192×168 to size 12×10.

The pixel values of the downsampled image are used as 120-D features – stacked

as columns of the matrix A in the algorithm. Hence matrix A has size 120×1207,

and the system y = Ax is underdetermined. Figure 13.2 top illustrates the sparse

coefficients recovered by Algorithm 13.1 for a test image from the first subject.

2 Notice that in the practice of deep network for classification (as we will see in Chapter 16),
people typically use the network to map a given image, here y, to a “one-hot” vector

[0, . . . , 0, 1, 0 . . . , 0]∗ ∈ Rk that indicates its class out of k classes. So essentially, the deep
network plays the same role as any algorithm that solves the sparse solution x here.



478 Robust Face Recognition

Algorithm 13.1 : Sparse Representation-based Classification (SRC)

1: Input: a matrix of training samples A = [A1,A2, . . . ,Ak] ∈ Rm×n for k

classes, a test sample y ∈ Rm.

2: Normalize the columns of A to have unit `2-norm.

3: Solve the `1-minimization problem (13.2.4).

x̂ = arg min
x
‖x‖1 subject to Ax = y. (13.2.6)

4: Compute the residuals ri(y) = ‖y −A δi(x̂)‖2 for i = 1, . . . , k.

5: Output: identity(y) = arg mini ri(y).

The figure also shows the features and the original images that correspond to the

two largest coefficients. The two largest coefficients are both associated with train-

ing samples from subject 1. Figure 13.2 bottom shows the residuals with respect

to the 38 projected coefficients δi(x̂1), i = 1, 2, . . . , 38. With 12 × 10 downsam-

pled images as features, Algorithm 13.1 achieves an overall recognition rate of

92.1% across the Extended Yale B database. Whereas the more conventional min-

imum `2-norm solution to the underdetermined system y = Ax is typically quite

dense, minimizing the `1-norm favors sparse solutions, and provably recovers the

sparsest solution when this solution is sufficiently sparse. To illustrate this con-

trast, Figure 13.3 top shows the coefficients of the same test image given by the

conventional `2-minimization, and Figure 13.3 bottom shows the corresponding

residuals with respect to the 38 subjects. The coefficients are much less sparse

than those given by `1-minimization (in Figure 13.2), and the dominant coef-

ficients are not associated with subject 1. As a result, the smallest residual in

Figure 13.3 does not correspond to the correct subject.

13.3 Robustness to Occlusion or Corruption

In many real-world scenarios, the test image y could be partially occluded or

corrupted. In this case, the linear model (13.2.3) should be modified as

y = yo + eo = Axo + eo, (13.3.1)

where eo ∈ Rm is a vector of errors – a fraction, ρ, of its entries are nonzero. The

nonzero entries of eo represent which pixels in y are corrupted or occluded. The

locations of corruption can differ for different test images and are not known to

the algorithm. The errors may have arbitrary magnitude and therefore cannot

be ignored or treated with techniques designed for small noise.

A fundamental principle of coding theory [MS81] is that redundancy in the

measurement is essential to detecting and correcting gross errors. Redundancy
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Figure 13.2 A Valid Test Image. Top: Recognition with 12× 10 downsampled
images as features. The test image y belongs to subject 1. The values of the sparse
coefficients recovered from Algorithm 13.1 are plotted on the right together with the
two training examples that correspond to the two largest sparse coefficients. Bottom:
The residuals ri(y) of a test image of subject 1 with respect to the projected sparse
coefficients δi(x̂) by `1-minimization. The ratio between the two smallest residuals is
about 1:8.6.

arises in object recognition because the number of image pixels is typically far

greater than the number of subjects that have generated the images. In this

case, even if a fraction of the pixels are completely corrupted, recognition may

still be possible based on the remaining pixels. On the other hand, traditional

feature extraction schemes discussed in the previous section would discard useful

information that could help compensate for the occlusion. In this sense, no rep-

resentation is more redundant, robust, or informative than the original images.

Thus, when dealing with occlusion and corruption, we should always work with

the highest possible resolution, performing downsampling or feature extraction

only if the resolution of the original images is too high to process.

Of course, redundancy would be of no use without efficient computational

tools for exploiting the information encoded in the redundant data. The dif-

ficulty in directly harnessing the redundancy in corrupted raw images has led

researchers to instead focus on spatial locality as a guiding principle for robust

recognition. Local features computed from only a small fraction of the image

pixels are clearly less likely to be corrupted by occlusion than holistic features.

In face recognition, methods such as ICA [KCYT05] and LNMF [LHZC01] ex-

ploit this observation by adaptively choosing filter bases that are locally concen-

trated. Local Binary Patterns [AHP06] and Gabor wavelets [LVB+93] exhibit

similar properties, since they are also computed from local image regions. A re-

lated approach partitions the image into fixed regions and computes features for
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Figure 13.3 Non-sparsity of the `2-Minimizer. Top: Coefficients from
`2-minimization, using the same test image as Figure 13.2. The recovered solution is
not sparse and hence less informative for recognition (large coefficients do not
correspond to training images of this test subject). Bottom: The residuals of the test
image from subject 1 with respect to the projection δi(x̂) of the coefficients obtained
by `2-minimization. The ratio between the two smallest residuals is about 1:1.3. The
smallest residual is not associated with subject 1.

each region [PMS94, Mar02]. Notice, though, that projecting onto locally con-

centrated bases transforms the domain of the occlusion problem, rather than

eliminating the occlusion. Errors on the original pixels become errors in the

transformed domain, and may even become less local. The role of feature ex-

traction in achieving spatial locality is therefore questionable, since no bases or

features are more spatially localized than the original image pixels themselves. In

fact, the most popular approach to robustifying feature-based methods is based

on randomly sampling individual pixels [LB00].

Now, let us show how the sparse representation classification framework can

be extended to deal with occlusion. Let us assume that the corrupted pixels are

a relatively small portion ρ of the total image pixels. Then the error vector eo,

like the vector xo, should be sparse nonzero entries. Since yo = Axo, we can

rewrite (13.3.1) as

y =
[
A, I

] [xo
eo

]
.
= Bwo. (13.3.2)

Here, B = [A, I] ∈ Rm×(n+m), so the system y = Bw is always underdeter-

mined and does not have a unique solution for w. However, in theory, the correct

generating wo = [xo, eo] has at most ni+ρm nonzeros. We might therefore hope

to recover wo as the sparsest solution to the system y = Bw. As before, we at-

tempt to recover the sparsest solutionwo via sparse optimization, such as solving
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Algorithm 13.2 Robust Sparse Representation-based Classification

1: Input: a matrix of training samples A = [A1,A2, . . . ,Ak] ∈ Rm×n for k

classes, a test sample y ∈ Rm, (and an optional error tolerance ε > 0.)

2: Normalize the columns of A to have unit `2-norm.

3: Solve the `1-minimization problem:
[
x̂

ê

]
= arg min

x
‖x‖1 + ‖e‖1 subject to [A, I]

[
x

e

]
= y. (13.3.4)

4: Compute the residuals ri(y) = ‖y − ê−A δi(x̂)‖2 for i = 1, . . . , k.

5: Output: identity(y) = arg mini ri(y).

the following `1-minimization problem:

ŵ = arg min ‖w‖1 subject to Bw = y. (13.3.3)

Algorithm 13.2 summarizes the complete recognition procedure.

More generally, one can assume that the corrupting error eo has a sparse

representation with respect to some basis Ae ∈ Rm×ne . That is, eo = Aeuo for

some sparse vector uo ∈ Rm. Here, we have chosen the special case Ae = I ∈
Rm×m as eo is assumed to be sparse in the natural pixel coordinates. If the error

eo is instead more sparse with respect to another basis, e.g., Fourier or Haar, we

can simply redefine the matrix B by appending Ae to A and instead seek the

sparsest solution wo to the equation:

y = Bw with B = [A, Ae] ∈ Rm×(n+ne). (13.3.5)

In this way, the same formulation can handle more general classes of sparse

corruption.

Experimental Verification of the Algorithm.
We test the robust version of SRC applied to face recognition using the Extended

Yale Face Database B [GBK01]. We choose Subsets 1 and 2 (717 images, normal-

to-moderate lighting conditions) for training, and Subset 3 (453 images, more

extreme lighting conditions) for testing. Without occlusion, this is a relatively

easy recognition problem. This choice is deliberate, in order to isolate the effect

of occlusion. The images are resized to 96× 84 pixels, so in this case B = [A, I]

is an 8, 064× 8, 761 matrix, a manageable size for most computers.

We then corrupt a percentage of randomly chosen pixels from each of the test

images, replacing their values with i.i.d. samples from a uniform distribution.

The corrupted pixels are randomly chosen for each test image and the locations

are unknown to the algorithm. We vary the percentage of corrupted pixels from

0% to 90%. Figure 13.4 shows several example test images. To the human eye,

beyond 50% corruption, the corrupted images (Figure 13.4(a) second and third

rows) are barely recognizable as face images; determining their identity seems out
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Figure 13.4 Recovered Sparse Representation and Sparse Error under
Random Corruption. (a) Test images y from the Extended Yale Face Database
B [GBK01], with random corruption. Top row: 30% of pixels are corrupted, Middle
row: 50% corrupted, Bottom row: 70% corrupted. (b) Estimated errors ê1. (c)
Estimated sparse coefficients x̂1. (d) Reconstructed images yr. SRC correctly
identifies all three corrupted face images.

of the question. Yet even in this extreme circumstance, SRC correctly recovers

the identity of the subjects.

We quantitatively compare the sparse method to four popular techniques

for face recognition in the vision literature. The Principal Component Analy-

sis (PCA) approach of [TP91] is not robust to occlusion. Although there are

many variations to make PCA robust to corruption or incomplete data, some of

which have been applied to robust face recognition, e.g., [SSL06], here we use the

basic PCA to provide a standard baseline for comparison. The remaining three

techniques are designed to be more robust to occlusion. Independent Component

Analysis (ICA) architecture I [KCYT05] attempts to express the training set as

a linear combination of statistically independent basis images. Local Nonnega-

tive Matrix Factorization (LNMF) [LHZC01] approximates the training set as

an additive combination of basis images, computed with a bias toward sparse

bases. For PCA, ICA and LNMF, the number of basis components is chosen to

give the best performance over the range {100, 200, 300, 400, 500, 600}. Finally, to

demonstrate that the improved robustness is really due to the use of the `1-norm,

we compare to a least-squares technique that first projects the test image onto

the subspace spanned by all face images, and then performs nearest subspace.

Figure 13.5 plots the recognition performance of SRC and five competitors,

as a function of the level of corruption. We see that the algorithm dramatically

outperforms others. From 0% up to 50% occlusion, SRC correctly classifies all
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Figure 13.5 Recognition Rates with Random Corruption. The recognition rate
across the entire range of corruption for various algorithms. SRC (red curve)
significantly outperforms others, performing almost perfectly up to 60% random
corruption (see table below).

subjects. At 50% corruption, none of the others achieves higher than 73% recog-

nition rate, while the proposed algorithm achieves 100%. Even at 70% occlusion,

the recognition rate is still 90.7%. This greatly surpasses the theoretical bound of

worst-case corruption (13.3%) that the algorithm is ensured to tolerate. Clearly,

the worst-case analysis is too conservative for random corruption.

13.4 Dense Error Correction with the Cross and Bouquet

In this section, we will take a closer look at the sparsity model (13.3.2). Re-

call in the classical sparse representation theory, one of the conditions for the

successful recovery of a sparse signal is that the dictionary under which the

sparsity is represented must be sufficiently incoherent. However, the dictionary

B = [A, I] ∈ Rm×(n+m) is quite special.

In its first part, the matrix A consists of column vectors that represent the

pixel values of all face images. As m grows higher, the convex hull spanned

by all the face image vectors becomes an extremely tiny portion of the unit

sphere in Rm, which means they are highly correlated.3 As an example, all the

face images of the example in Figure 13.4 lie in Rm where m = 8, 064, and

calculation shows that all the image vectors are contained within a spherical cap

of volume ≤ 1.5 × 10−229, as shown in Figure 13.6. These vectors are tightly

bundled together as a “bouquet.” Hence it is fair to say that identifying a face

3 Notice that we have encountered a similar issue with coherence with real world problems
in the scientific imaging problems in Chapter 12: the sifted versions of the motif can be

coherent. In such cases, certain heuristics can be used to improve the performance, as

discussed in Section 12.4.2.
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Figure 13.6 The Cross-and-Bouquet Model for Robust Face Recognition. The
raw images of human faces expressed as columns of A are clustered with a very tiny
variance.

image within a big pool of candidates is like finding a needle in a haystack which,

in turn, lies on a tip of a needle.

In the second part of B, I is a standard m-by-m identity matrix, which is also

called a standard pixel basis. Then I and its negative copy −I form a “cross” in

Rm, also illustrated in Figure 13.6. We call this type of dictionaries a cross and

bouquet (CAB) model. It is important to understand how such special (coherent

and incoherent) structures may affect the performance of `1 minimization in

finding the correct (sparse) solution.

The CAB model belongs to a special class of sparse representation problems

where the dictionary is a concatenation of two or more sub-dictionaries. Ex-

amples include the merger of wavelet and heavy-side dictionaries [CDS01] and

the combination of texture and cartoon dictionaries in morphological component

analysis [ESQD05]. However, in contrast to most other examples, not only is the

CAB dictionary as a whole inhomogeneous as we discussed above, in fact the

ground-truth signal (xo, eo) is also very inhomogeneous, namely, the sparsity

of xo is limited by the number of training images per subject for the purpose

of recognition, while we would like to handle as dense corruption error eo as

possible, to guarantee good error correction performance. The above experiment

is indeed a concrete demonstration that shows sparse optimization such as `1-

minimization seems to be able to recover very dense error eo. This further con-

tradicts our understanding in the classical sparse representation theory, where

the corruption error to be recovered is typically assumed to be sparse.

The reason sparse optimization could recover even dense error is mainly due

to the special nature of the sparsity of the signal xo, which is called weak pro-

portional growth. Again, assume the signal

wo = Axo + eo,

where eo ∈ Rm is a vector of error of arbitrary magnitude. We also assume the
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columns of A are i.i.d. samples from a Gaussian distribution: A = [v1, . . . ,vn] ∈
Rm×n, where vi ∼iid N (µ, ν

2

m Im), and ‖µ‖2 = 1, ‖µ‖∞ ≤ Cµm−1/2.

Definition 13.2 (Weak Proportional Growth). A sequence of signel-error prob-

lems (xo, eo) exhibits weak proportional growth with parameters δ > 0, ρ ∈ (0, 1),

C0 > 0, and η0 > 0, denoted as WPGδ,ρ,C0,η0 , if as m→∞,

n

m
→ δ,

‖eo‖0
m

→ ρ, ‖xo‖0 ≤ C0m
1−η0 . (13.4.1)

In other words, in the weak proportional growth scenario, ‖eo‖0 grows linearly

with respect to m, but ‖xo‖0 is sublinear.

Theorem 13.3 (Dense Error Correction with the Cross and Bouquet). For any

δ > 0, there exists ν0(δ) > 0 such that if ν < ν0 and ρ < 1, in WPGδ,ρ,C0,η0 with

A distributed according to (13.4.1), if the error support and the signs of nonzero

elements are chosen uniformly at random then as m → ∞, the probability of

successfully recovering (xo, eo) via Algorithm 13.2 approaches to one.

That is, as long as the bouquet is sufficiently tight, under the assumption

of weak proportional growth, asymptotically `1-minimization recovers any non-

negative sparse signal from almost any error with support size less than 100%!

A detailed proof of this theorem can be found in [WM10]. Although in general

sparse representation problems may not satisfy the weak proportional growth

assumption, the assumption is valid in the face recognition example, whereby the

number of training samples per subject ni usually does not grow proportionally

with the dimension of the image.

13.5 Notes

Results in this chapter are based on the work [WYG+09], which has provided the

earliest evidences that sparse representation can be extremely discriminative and

robust for object recognition purposes. As we will reveal in Chapter 16, similar

properties of sparse representation have been implicitly exploited by modern

deep neural networks for general classification tasks.

Nonuniform Incoherence.
The robust face recognition example also provides a good lesson on the practice of

principles introduced in this book. Depending on the applications, “incoherence”

is not an absolute notion: Relative to corruptions and errors, the face images are

rather coherent among themselves. That is actually the reason why error correc-

tion for face images (together) can be so effective. Nevertheless, the seemingly

coherent face images have just enough incoherence to allow correct identification

of the input image. Like the spectrum identification problem studied in Chapter

11, here we are only interested in the support of the recovered sparse signals; fur-

thermore, unlike applications where one needs to recover a signal with as many
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nonzero entries as possible, here the correct solution is preferably the sparser the

better. These special conditions significantly relax the incoherence requirement

on the sensing matrix (here face images or features). Motivated by these empir-

ical observations, a more rigorous analysis of this type of incoherence was given

in the follow-up work [WM10].

Contiguous Occlusion.
In this chapter, for corruption or occlusion of the pixels, we only consider their

sparse structure as individual pixels. In practice, however, if the corruption is due

to real occlusions, the occluded pixels are not entirely random in their locations.

Occluded pixels are often spatially contiguous in their locations. Such structures

can probably be better captured by the notion of group sparsity mentioned in

Section 6.1.1 of Chapter 6. Empirically, it has been verified that if one can ex-

plicitly model and harness such structure in occluded pixels, say as a Markov

random field, one can achieve even higher level of robustness to contiguous oc-

clusion for face recognition [ZWMM09]. But to our best knowledge, a rigorous

analysis and justification remains elusive at this point.

Importance of Alignment.
In this chapter, we have assumed the test image and images in the gallery are

all well aligned. This is however not necessarily the case with real-world face

images. As one may see from testing the algorithm, although the scheme is

extremely robust to corruption in the pixels, it is rather sensitive to any (small)

misalignment in the input face images. This is the case even for the highly

engineered and trained modern deep neural networks [AW18,ETT+17], as we will

discuss more in Chapter 16. In this situation, we need to consider an extended

model to (13.3.1):

y ◦ τ = Axo + eo

for some unknown deformation τ of the image domain (say translation). Nev-

ertheless, in such cases, one may still exploit sparsity for finding the correct

alignment and identification simultaneously, as shown in the work [WWG+09,

WWG+12]. In the case even gallery images (as columns {vi} of the matrix A)

are not so well aligned themselves, one may have to align them first before ap-

plying the scheme here. To align multiple gallery face images together, one may

exploit the fact that the images become highly correlated (hence form a low-rank

matrix) when they are correctly aligned. That is, the following matrix

M(τ) = [v1 ◦ τ1,v2 ◦ τ2, . . .vn ◦ τn]

would have the lowest rank when the correct transformations {τi} are found for

each of the gallery image vi. Hence efficient techniques on robust low-rank matrix

recovery introduced in this book can be used to automatically align multiple face

images, as demonstrated in the work [PGW+12]. We will see how similar robust

low-rank techniques can be utilized to correct other common deformations in

images in Chapter 15.
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13.6 Exercises

13.1 (Robust Face Recognition∗). Download the Extended Yale B database. Using

the cropped face image set in the database to form a gallery set and a query set.

Code a robust face recognition system and demonstrate its performance in the

same setting discussed in the experiment of this chapter.

13.2 (Randomfaces∗). In the literature, there are facial feature extraction meth-

ods that reduce the dimensionality of face images according to some linear trans-

formations. In this exercise, we will implement two well-established methods, and

compare their performance in terms of recognition accuracy with the results using

random projection in compressive sensing.

1 Code a function that extracts Eigenface features. Demonstrate the recognition

accuracy of robust face recognition in Exercise 13.1 in the Eigenface space with

respect to different feature dimensions.

2 Code a function that extracts Fisherface features. Demonstrate its recognition

accuracy with respect to different feature dimensions.

3 Code a function that extracts lower-dimensional features using random projec-

tion. This is called Randomface features. Demonstrate its recognition accuracy

with respect to different feature dimensions, and compare with those of Eigen-

face and Fisherface features.

13.3 (Receiver Operating Characteristic (ROC)∗). In the presence of potential

irrelevant test samples, it is important to evaluate the performance of a classifier

not only based on the true positive rate, but often more importably on false

positive rate. The curve that measures the true positive rates under various false

positive rates is known as the receiver operating characteristic (ROC) curve.4

In this exercise, code a program that plots a representative ROC curve of the

robust face recognition algorithm. Exclude half of the subject classes from the

gallery set of the Extended Yale B database, and designate them as outlying

subjects. Implement the outlier rejection rule based on the sparse coefficient con-

centration, and plot the ROC curve with respect to different threshold values of

the concentration index.

4 There are different definitions of the ROC curve. There are four basic performance rates:

true positive, false positive, true negative, and false negative.
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“All the variety, all the charm, all the beauty of life is made up of light and shadow.”
– Leo Tolstoy, Anna Karenina

14.1 Introduction

One of the most fundamental problems in computer vision is to capture the 3D

shape of an object or a scene. Most popular 3D shape capturing techniques fall

into one of the two categories:

1 The so-called structure from motion approach reconstructs the 3D geometry

by taking multiple images of an object or a scene from different viewpoints

[HZ00, MSKS04]. See Figure 14.1(a) for illustration. The images are usually

taken under the same or a similar lighting condition since such methods rely

on establishing correspondence of common feature points across all the images.

2 The active light approach captures the 3D shape by taking multiple images of

the object or a scene under different illumination conditions or patterns, but

usually at a fixed viewpoint. Methods such as structured lights, photometric

stereo, and shape from shading all belong to this category. See Figure 14.1(b)

and (c) for illustration.

One can tell from the setup that these two approaches are rather complementary

to each other: one varies the camera viewpoints while fixing the lighting whereas

the other varies the lighting conditions with a fixed view. Their results are also

complementary to each other: structure from motion techniques typically recover

3D positions of a sparse set of points in the scene that have distinguishable local

textures for easy correspondence across views; whereas active lighting techniques

usually recover a dense per-pixel geometry (depth or surface normal) of the scene

even for non-textured regions.

Both approaches have been developed in computer vision and related fields

with a long and rich history, and there has been a vast body of literature asso-

ciated with each method within both categories. In hindsight, though, it would

be illuminating to understand now, from the perspective of high-dimensional

data analysis, how 3D geometric information of the scene is encoded in the vast
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(a) structure from motion (b) structured lights (c) photometric stereo

Figure 14.1 Representative Techniques for Capturing 3D Shapes: (a)
structure-from-motion takes multiple images of an object from different viewpoints to
triangulate its shape; (b) structured light methods cast different light patterns onto
an object surface to reveal its 3D geometry; (c) photometric stereo illuminates the
object with multiple directional lights to recover its surface normal.

data measured in both approaches,1 and why one can efficiently and accurately

recover such information from the data.

According to the settings of both approaches, all the images are capturing a

common object or a scene. Then, under some reasonable assumptions such as the

scene being mostly static and most surfaces having well-conditioned photometric

properties, these imagery data should be highly correlated. It has been well-

studied and understood that in the structure-from-motion setting, no matter

how many corresponding feature points are captured in arbitrarily many views,

they form a large measurement matrix, the so-called multiple-view matrix, whose

rank will always be bounded below one or two. Such a low-rank matrix precisely

encodes all the camera poses and the depths of all the feature points. Essentially

all structure from motion algorithms harness the same low-rank properties to

recover the camera poses and depth of feature points. We refer interested readers

to [MSKS04] for a full account.

The situation is similar in the active light approach. In this chapter, we will use

photometric stereo as an example to show that how low-dimensional structures

naturally arise from the physical model of the data generation process and how

to harness such low-dimensional structures (using tools from this book) to deal

with imperfections in the measurement process so as to accurately recover the

object’s 3D geometry.

14.2 Photometric Stereo via Low-Rank Matrix Recovery

Photometric stereo [Woo80,Sil80] has been a very popular method for 3D shape

capture. It estimates surface orientations of the scene from images taken from a

fixed viewpoint under multiple directional lights. As we will soon see, photometric

1 Typically hundreds or thousands of feature points in structure-from-motion and millions of

pixels for the active light methods.
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stereo can produce a dense field of surface normals at the level of detail that

cannot be achieved by any other feature-based approaches such as structure-

from-motion.

14.2.1 Lambertian Surface under Directional Lights

In the setting for photometric stereo, the relative position of the camera and

object is usually fixed. The intrinsic parameters of the camera is usually pre-

calibrated and known. We do not need to know the camera pose (the extrinsic

parameters) as all geometric quantities can be expressed with respect to the

camera frame.

For simplicity, we assume a static object is illuminated by a single point light

source at infinity.2 The direction of the light source can be represented as a

vector l ∈ R3 (with respect to the camera frame). If we take multiple, say n,

images under n different lighting directions, we denote the directions as vectors

l1, . . . , ln ∈ R3. The magnitude of the vector l is assigned to be proportional to

the power of the light source.

Next, we need to know that under the illumination, how much light is reflected

from the surface and then measured by the sensor of the camera. Notice that

this could be a very complicated process. For every point on the surface, we

need to describe by how much the incoming light energy, known as irradiance in

radiometry, in any direction is absorbed and emitted in any other outgoing di-

rection, known as radiance. This relationship fully characterizes the photometric

properties of the surface and is formally known as the bidirectional reflectance

distribution function (BRDF). In general, the BRDFs for different material sur-

faces can be very different. For example, metal, plastic, and cloth look very

different under the same light.

Nevertheless, for the majority of the objects and scenes we encounter in the

real world, their surface photometric property can be approximately modeled

by a simple reflectance function known as the Lambertian model. For an ideal

Lambertian surface, when illuminated by a light source, the surface diffuses and

reflects the light equally in all directions. The fraction of light reflected only de-

pends on the angle between the incoming light direction and the surface normal.

More precisely, for a point p on a Lambertian surface illuminated under a light

in direction l, if the surface normal vector at p is n ∈ R3, then the amount of

light radiated from point p in all direction is given by (the radiance R):

R
.
= ρ 〈n, l〉 = ρn∗l = ρ cos(θ)‖l‖2, (14.2.1)

where ρ is the diffuse albedo that models the percentage of light gets reflected

by the surface at point p, 〈·, ·〉 is the inner product, and θ is the angle between

the light direction l and surface n. See Figure 14.2 for a basic idea. It is easy to

see from the model that the brightness of the point p does not depend on the

view direction v.
2 In practice, we only need the light source to be relatively far from the object.
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Figure 14.2 Illustration of an Ideal Lambertian Surface Reflectance Model:
incoming light is diffused equally to all directions and the amount of diffused light is
proportional to the angle θ between the light direction l and the surface normal n.
Right: an image of a Lambertian (diffusive) sphere.

The albedo ρ of a purely black surface would be zero, hence photometric stereo

does not apply to black surfaces or surfaces with very small albedo. Note that the

above expression is only valid when n and l form an acute angle (θ < 90◦) since

radiance R is nonnegative. That is, the surface needs to face the light source. In

the case when the surface is facing away from the light source (i.e. θ > 90◦), it

receives no irradiance hence R = 0. We say such area is in the shadow. See the

bottom of the image of the sphere in Figure 14.2.

We further assume that there is no inter-reflection,3 which is often the case

if the object is convex or approximately convex. So the corresponding pixel on

imaging sensor receives only radiance R contributed from a single point p. If the

imaging sensor responses linearly to the radiance, the value of the pixel (x, y)

(at the image of the point p) would simply be

I(x, y) = R = ρn∗l. (14.2.2)

Let the region of interest be composed of a total of m pixels in each image.4

We order the pixels with a single index i ∈ {1, . . . ,m}, and let Ij(i) denote

the observed intensity at pixel i in image Ij . With this notation, we have the

following relation about the observation Ij(i):

Ij(i) = ρi n
∗
i lj , (14.2.3)

where ρi is the albedo of the scene at pixel i, ni ∈ R3 is the (unit) surface

normal of the scene at pixel i, and lj ∈ R3 represents the light direction vector

corresponding to image Ij .
5

Consider the matrix D ∈ Rm×n constructed by stacking all the vectorized

3 Inter-reflection is a phenomenon where lights bound off surfaces multiple times before
reaching the sensor.

4 Typically, m is much larger than the number of images n.
5 The convention here is that the lighting direction vectors point from the surface of the

object to the light source.
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images vec(I) as

D
.
= [vec(I1) | · · · | vec(In)] , (14.2.4)

where vec(Ij) = [Ij(1), . . . , Ij(m)]∗ for j = 1, . . . , n. It follows from (14.2.3) that

D can be factorized as follows:

D = N ·L, (14.2.5)

where N
.
= [ρ1n1 | · · · | ρmnm]∗ ∈ Rm×3, and L

.
= [ l1 | · · · | ln ] ∈ R3×n.

Suppose that the number of images n ≥ 3. Here N · L is a regular matrix

multiplication between N and L and we use a “·” to emphasize its (i, j)-th

entry is the inner product between the surface normal ni and the light direction

lj . Then, irrespective of the number of pixels m and the number of images n,

the rank of the matrix D is at most

rank (D) ≤ 3. (14.2.6)

14.2.2 Modeling Shadows and Specularities

The low-rank structure of the observation matrix D (14.2.5) is seldom observed

with real images. This is due to the presence of shadows and specularities in real

images.

Shadows
Shadows arise in real images in two possible ways. As we have discussed before

in the Lambertian model, some areas on the object will be entirely dark in the

image because they face away from the light source. Such dark pixels in the

image are referred to as attached shadows [KMK97]. See the image of a sphere in

Figure 14.2 as an example, where the bottom of the sphere is dark as that part

of surface is facing away from the light source. In deriving the low-rank model

(14.2.5) from (14.2.3), we have implicitly assumed that all pixels of the object

are illuminated by the light source in every image. However, that is impossible to

achieve in reality: for a generic object (other than a flat surface), almost in every

image, there will always be some pixels facing away from the light source and

in the shadows. Mathematically, this implies that (14.2.3) should be modified as

follows:

Ij(i) = max {ρi n∗i lj , 0} . (14.2.7)

Shadows can also occur in images when the shape of the object’s surface is

not entirely convex: parts of the surface can be occluded from the light source by

other parts. Even though the normal vectors at such occluded pixels may form

an acute angle with the lighting direction, these pixels appear entirely dark. We

refer to such dark pixels as cast shadows. See the image of Caesar in Figure 14.5

as an example, where, unlike the sphere, the face is not exactly convex and the

sporadic shadows around the left side of Caesar’s face are cast shadows due to

occlusions.
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Figure 14.3 A Phong Reflectance Model: incoming light is diffused equally to all
directions and an extra amount of light is reflected close to the direction of reflection
r, known as a specular lobe.

We may pre-detect all the dark shadowed pixels in each images by testing if

Ij(i) ≈ 0.

These pixels are associated with a set entries {(k, j)} in the data matrix D

where D(i, j) ≈ 0. We denote the support of these shadowed entries as Ωc and

all the other valid entries as its complement as Ω. With this notation, the valid

measurements of the (low-rank) data matrix D are given by

PΩ[D] = PΩ[N ·L]. (14.2.8)

For the remaining pixels not in the shadows, we have assumed that each pixel

measures the radiance directly from each point on the surface. For a non-convex

object like a human face, that is not entirely the case. Lights can bound back

and forth between different part of the surfaces and create the so-called inter-

reflection. The radiance that some pixels receive might be compounded by such

inter-reflection. Nevertheless, studies have shown that if the object is approx-

imately convex, pixels that are affected by inter-reflection will be relatively

few [ZMKW13]. We may model such effect as a sparse error E1 in the data

matrix:

PΩ[D] = PΩ[N ·L+E1]. (14.2.9)

Specularities
Specular reflection arises when the object of interest is not perfectly diffusive,

i.e., when the surface luminance is not purely isotropic. Mirror is an extreme

case which reflects the light with the same angle as the in coming light on the

opposite side of the surface normal:

r = 2(n∗l)n− l.

Many real surfaces have both diffusive and reflective characteristics and their

reflectance model is a combination of a Lambertian component and a reflec-

tive component. The so-called Phong model [Pho75] is a correction to the pure
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Figure 14.4 Comparison of a Lambertian (diffusive) sphere and a Phong (specular)
sphere under the same (directional) lighting condition.

Lambertian model with such a reflective component:

R = ρn∗l+ k(r∗v)α, (14.2.10)

where v is the viewing direction (to the sensor), k ≥ 0 is a weight parameter,

and α > 0 is an exponent parameter. Figure 14.3 illustrates such a reflectance

model. In the computer vision and graphics literature, people have also used

other functions to model the reflective component, such as the Cook-Torrance

reflectance model [CT81].

In general, for a surface of the Phong model (or of the Cook-Torrance model),

the intensity of radiance depends on the viewing direction: part of the light is

reflected in a mirror-like fashion that generates a specular lobe when the viewing

direction v is close to the reflecting direction r. This gives rise to some bright

spots or shiny patches on the surface of the object, known as specularities. Figure

14.3 illustrates this concept and Figure 14.4 compares the Phong model to the

Lambertian model with the images of a sphere.

For most real surfaces, the reflective components are usually benign in the

sense that the value of the reflective term is significant only when the view

direction is very close to the reflecting direction.6 The specular lobe is usually

very small, and from any given viewing angle, only a small fraction of the surface

has the specular effect. See Figure 14.5 for some examples of object surfaces with

specular effect.

As the surface normals and the viewing angles are not known a priori, we

cannot determine which part of the surface is specular. Nevertheless, knowing

that specularities are few and sporadic, we may model them as an additional

sparse error E2 to the measured data matrix D:

D = N ·L+E2, (14.2.11)

Now, if we combine the sparse errors E1 due to inter-reflections and E2 due

6 In the Phong model, that corresponds to choosing a large exponent α.
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(a) Sphere (b) Caesar (c) Elephant (d) Caesar 

(with texture) 

Figure 14.5 Synthetic image samples used for experiments.

to specularities and let E = E1 +E2, then, instead of the ideal low-rank model:

(14.2.5), a more realistic model for the image measurements should be:

PΩ[D] = PΩ[N ·L+E], (14.2.12)

where Ω marks out pixels in the shadows and the sparse matrix E accounts for

corruptions by inter-reflections or specularities.

In order to find out the light directions L and the surface normals N , we need

to recover the complete matrix A = N · L. Since A is of rank at most 3, the

problem becomes a low-rank matrix completion problem subject to sparse errors

E. That is we need to solve the following optimization problem:

min
A,E

rank (A) + γ ‖E‖0 subject to PΩ[D] = PΩ[A+E], (14.2.13)

where ‖ · ‖0 denotes the `0-norm (number of non-zero entries in the matrix),

and γ > 0 is a parameter that trades off the rank of the solution A versus the

sparsity of the error E.

Let (A?,E?) be the optimal solution to (14.2.13). If the lighting directions L

are given, we can easily recover the matrix N of surface normals from A? as:

N = A?L
†, (14.2.14)

where L† denotes the Moore-Penrose pseudo-inverse of L. The surface normals

n1, . . . ,nm can then be estimated by normalizing each row of N to have unit

norm.

14.3 Robust Matrix Completion Algorithm

While (14.2.13) follows from our formulation, it is not tractable since both rank

and `0-norm are non-convex and discontinuous functions. As we have learned

from earlier chapters, we can try to solve the convex version of this program:

min
A,E

‖A‖∗ + λ ‖E‖1 subject to PΩ[D] = PΩ[A+E]. (14.3.1)
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The above problem is almost identical to the PCP program studied in Chapter

5, except that the linear equality constraint is now applied only on the subset Ω

of pixels that are not in the shadows. In the rest of this section, we show how the

Augmented Lagrange Multiplier (ALM) method, earlier introduced for matrix

completion or matrix recovery in Chapter 5, can be adapted to efficiently solve

the problem (14.3.1) that requires simultaneously completing and correcting a

low-rank matrix.

Recall the basic idea of the ALM method, introduced in Section 8.4 of Chap-

ter 8, is to minimize the augmented Lagrangian function instead of the original

constrained optimization problem. For our problem (14.3.1), the augmented La-

grangian is given by

Lµ(A,E,Y ) = ‖A‖∗ + λ‖E‖1 + 〈Y ,PΩ[D −A−E]〉+
µ

2
‖PΩ[D −A−E]‖2F ,

(14.3.2)

where Y ∈ Rm×n is a Lagrange multiplier matrix, µ is a positive constant, 〈·, ·〉
denotes the matrix inner product,7 and ‖ · ‖F denotes the Frobenius norm. For

appropriate choice of the Lagrange multiplier matrix Y and sufficiently large

constant µ, it can be shown that the augmented Lagrangian function has the

same minimizer as the original constrained optimization problem. The ALM

algorithm iteratively estimates both the Lagrange multiplier and the optimal

solution. The basic ALM iteration is given by





(Ak+1,Ek+1) = argminA,E Lµk(A,E,Y k),

Y k+1 = Y k + µk PΩ[D −Ak+1 −Ek+1],

µk+1 = ρ · µk,
(14.3.3)

where {µk} is a monotonically increasing positive sequence (ρ > 1).

We now focus our attention on solving the non-trivial first step of the above

iteration. Since it is difficult to minimize Lµk(·) with respect to both A and E

simultaneously, we adopt an alternating minimization strategy as follows:

{
Ej+1 = argminE λ‖E‖1 − 〈Y k,PΩ[E]〉+ µk

2 ‖PΩ[D −Aj −E]‖2F ,
Aj+1 = argminA ‖A‖∗ − 〈Y k,PΩ[A]〉+ µk

2 ‖PΩ[D −A−Ej+1]‖2F .
(14.3.4)

Without loss of generality, we assume that the Y k’s and the Ek’s (and hence,

Y and E, respectively) have their support in Ωc. Then, the above minimization

problems in (14.3.4) can be solved as described below.

Recall from the proximal gradient method in Chapter 8 that the soft-thresholding

(or shrinkage) operator for scalars is as follows:

soft(x, α) = sign (x) ·max{|x| − α, 0}, (14.3.5)

where α > 0.8 When applied to vectors or matrices, the shrinkage operator acts

7 〈X,Y 〉 .= trace (X∗Y ).
8 If α = 0, then the shrinkage operator reduces to the identity operator.
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Algorithm 14.1 (Matrix Completion and Recovery via ALM).

INPUT: D ∈ Rm×n, Ω ⊂ {1, . . . ,m} × {1, . . . , n}, λ > 0.

Initialize A1 ← 0, E1 ← 0, Y 1 ← 0.

while not converged (k = 1, 2, . . .) do

Ak,1 = Ak, Ek,1 = Ek;

while not converged (j = 1, 2, . . .) do

Ek,j+1 = soft
(
PΩ[D] + 1

µk
Y k − PΩ[Ak,j ],

λ
µk

)
;

t1 = 1; Z1 = Ak,j ; Ak,j,1 = Ak,j ;

while not converged (i = 1, 2, . . .) do

(U i,Σi,V i) = SVD
(

1
µk
Y k + PΩ[D]−Ek,j+1 + PΩc [Zi]

)
;

Ak,j,i+1 = U i soft
(
Σi,

1
µk

)
V ∗i , ti+1 = 0.5

(
1 +

√
1 + 4t2i

)
;

Zi+1 = Ak,j,i+1 + ti−1
ti+1

(Ak,j,i+1 −Ak,j,i), Ak,j+1 = Ak,j,i+1;

end while

Ak+1 = Ak,j+1; Ek+1 = Ek,j+1;

end while

Y k+1 = Y k + µk PΩ[D −Ak+1 −Ek+1], µk+1 = ρ · µk;

end while

OUTPUT: (A?,E?) = (Ak,Ek).

element-wise. Then, the first step in (14.3.4) has a closed-form solution given by

Ej+1 = soft

(
PΩ[D] +

1

µk
Y k − PΩ[Aj ],

λ

µk

)
. (14.3.6)

Since it is not possible to express the solution to the second step in (14.3.4) in

closed-form, we adopt an iterative strategy based on the Accelerated Proximal

Gradient (APG) algorithm discussed in Section 8.3 of Chapter 8 to solve it. The

iterative procedure is given as:




(U i,Σi,V i) = SVD
(

1
µk
Y k + PΩ[D]−Ej+1 + PΩc [Zi]

)
,

Ai+1 = U i soft
(
Σi,

1
µk

)
V ∗i ,

Zi+1 = Ai+1 + ti−1
ti+1

(Ai+1 −Ai),

(14.3.7)

where SVD(·) denotes the singular value decomposition operator, and {ti} is a

positive sequence satisfying t1 = 1 and ti+1 = 0.5
(

1 +
√

1 + 4t2i

)
. The entire

algorithm to solve (14.3.1) has been summarized as Algorithm 14.1.

14.4 Experimental Evaluation

In this section, we verify the effectiveness of the proposed method using both

synthetic and real-world images. We compare results of the above robust matrix
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Figure 14.6 Specular Scene Results. 40 different images of Caesar were generated
using the Cook-Torrance model for specularities. (a) Ground truth normal map with
reference sphere. (b) and (c) show the surface normals recovered by the robust matrix
completion (RMC) method and LS, respectively. (d) and (e) show the pixel-wise
angular error w.r.t. the ground truth.

completion (RMC) method with a simple Least Squares (LS) approach, which

assumes the ideal diffusive model given by (14.2.5). However, we do not use those

pixels that were classified as shadows (the set Ω). Thus, the LS method can be

summarized by the following optimization problem:

min
N
‖PΩ[D −N · L]‖F . (14.4.1)

We first test the algorithms using synthetic images whose ground-truth normal

maps are known. In these experiments, we quantitatively verify the correctness

of the algorithms by computing the angular errors between the estimated normal

map and the ground-truth. We then test the algorithms on more challenging real

images. Throughout this section, we denote by m the number of pixels in the

region of interest in each image, and by n the number of input images (typically,

m� n).

14.4.1 Quantitative Evaluation with Synthetic Images

In this section, we use synthetic images of three different objects (see Fig. 14.5(a)-

(c)) under different scenarios to evaluate the performance of the algorithms. Since

these images are free of any noise, we use a pixel threshold value of zero to detect

shadows in the images. Unless otherwise stated, we set λ = 1/
√
m in (14.3.1).

a. Specular Objects.
In this experiment, we generate images of an object under 40 different lighting

conditions, where the lighting directions are chosen at random from a hemi-

sphere with the object placed at the center. The images are generated with some

specular reflection. For all experiments, we use the Cook-Torrance reflectance

model [CT81] to generate images with specularities. Thus, there are two sources

of corruption in the images – attached shadows and specularities.
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A quantitative evaluation of our method and the Least Squares approach is

presented in Table 14.1. The estimated normal maps are shown in Fig. 14.6(b),(c).

Object
Mean error Max. error % of corrupted pixels

LS RMC LS RMC Shadow Specularity

Sphere 0.99 5.1 × 10−3 8.1 0.20 18.4 16.1

Caesar 0.96 1.4 × 10−2 8.0 0.22 20.7 13.6

Elephant 0.96 8.7 × 10−3 8.0 0.29 18.1 16.5

Table 14.1 Specular Scene Results. Statistics of angle error (in degrees) in the
normals for different objects. In each case, 40 images were used. In the rightmost column,
we indicate the average percentage of pixels corrupted by attached shadows and
specularities in each image.

We use the RGB channel to encode the 3 spatial components (XYZ) of the nor-

mal map for display purposes. The error is measured in terms of the angular

difference between the ground truth normal and the estimated normal at each

pixel location. The pixel-wise error maps are shown in Fig. 14.6(d),(e). From the

mean and the maximum angular error (in degrees) in Table 14.1, we see that

the RMC method is much more accurate than the LS approach. This is because

specularities introduce large magnitude errors to a small fraction of pixels in each

image whose locations are unknown. The LS algorithm is not robust to such cor-

ruptions while RMC can correct these errors and recover the underlying rank-3

structure of the matrix. The column on the extreme right of Table 14.1 indicates

the average percentage of pixels in each image (averaged over all images) that

were corrupted by shadows and specularities, respectively. We note that even

when more than 30% of the pixels are corrupted by shadows and specularities,

RMC can efficiently retrieve the surface normals.

b. Textured Objects.

We also test the RMC method using a textured scene. Like the traditional pho-

tometric stereo approach, the RMC method does not have a dependency on the

albedo distribution and works well on such scenes.

We use 40 images of Caesar for this experiment with each image generated

under a different lighting condition (see Fig. 14.5(d) for example input image).

The estimated normal maps as well as the pixel-wise error maps are shown

in Fig. 14.7. We provide a quantitative comparison in Table 14.2 with respect

to the ground-truth normal map. From the mean and maximum angular errors,

it is evident that the RMC performs much better than the LS approach in this

scenario.
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Figure 14.7 Textured Scene with Specularity. 40 different images of Caesar were
generated with texture and using the Cook-Torrance model for specularities. (a)
Ground truth normal map with reference sphere. (b) and (c) show the surface
normals recovered by RMC and LS, respectively. (d) and (e) show the pixel-wise
angular error w.r.t. ground truth.

Object
Mean error (in degrees) Max error (in degrees)
LS RMC LS RMC

Caesar 2.4 0.016 32.2 0.24

Table 14.2 Textured Scene with Specularity: Statistics of angle errors. We use 40
images under different illuminations.

c. Effect of the Number of Images.
In the above experiments, we have used images of the object under 40 different

illuminations. In this experiment, we study the effect of the number of illumi-

nations used. In particular, we would like to find out empirically the minimum

number of images required for the RMC method to be effective. For this experi-

ment, we generate images of Caesar using the Cook-Torrance reflectance model,

where the lighting directions are generated at random. The mean percentage

of specular pixels in the input images is maintained approximately constant at

10%. The angular difference between the estimated normal map and the ground

truth is used as a measure of accuracy of the estimate.

Num of images 10 20 30 40

Mean error LS 0.52 0.53 0.59 0.57
(in degrees) RMC 0.23 0.026 0.019 0.013

Max. error LS 34.5 9.0 7.6 7.0
(in degrees) RMC 56.6 5.8 0.48 0.37

Table 14.3 Effect of Number of Images. We use synthetic images of Caesar under
different lighting conditions. The number of illuminations is varied from 10 to 40. The
angle error is measured with respect to the ground truth normal map. The illuminations
are chosen at random, and the error has been averaged over 20 different sets of
illumination.

The experimental results are given in Table 14.3. We observe that with less
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Figure 14.8 Effect of Increasing Size of Specular Lobes. We use synthetic images
of Caesar under 40 randomly chosen lighting conditions. (a) Mean angular error, (b)
Maximum angular error w.r.t. the ground truth. The illuminations are chosen at
random, and the error has been averaged over 10 different sets of illumination. (a)
contains illustrations of increasing size of specular lobe.

than 10 input illuminations, estimates of both algorithms are very inaccurate

but RMC is worse than LS. However, when the number of illuminations is larger

than 10, we observe that the mean error in the LS estimate becomes higher than

that RMC. Upon increasing the number of images further, the proposed method

consistently outperforms the LS approach. If the number of input images is less

than 20, then the maximum error in the LS estimate is smaller than that of RMC.

However, RMC performs much better when more than 30 different illuminations

are available. Thus, the proposed technique performs significantly better as the

number of input images increases.

d. Varying Amount of Specularities.
From the above experiments, it is clear that the proposed technique is quite

robust to specularities in the input images when compared to the LS method. In

this experiment, we empirically determine the maximum amount of specularity

that can be handled by RMC. We use the Caesar scene under 40 randomly

chosen illumination conditions for this experiment. On an average, about 20% of

the pixels in each image is corrupted by attached shadows. We vary the size of the

specular lobe in the input images (as illustrated in Fig. 14.8(a)), thereby varying

the number of corrupted pixels. We compare the accuracy of RMC against the

LS technique using the angular error of the estimates with respect to the ground-

truth.

The experimental results are illustrated in Fig. 14.8. We observe that RMC

is very robust when up to 16% of all pixels in the input images are corrupted

by specularities. The LS method, on the other hand, is extremely sensitive to
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C 1.0 0.8 0.6 0.4

Mean error (in degrees) 1.42 0.78 0.19 0.029

Max. error (in degrees) 8.78 8.15 1.86 0.91

Table 14.4 Handling More Specularities by Tuning λ. We use 40 images of
Caesar under different lighting conditions with about 28% specularities and 20% shadows,
and set λ = C/

√
m.

even small amounts of specularities in the input images. The angular error in

the estimates of both methods rises as the size of the specular lobe increases.

e. Enhancing Performance by Tuning λ.
We recall that λ is a weighting parameter in our formulation given by (14.3.1).

In all the above experiments, we have fixed the value of the parameter λ =

1/
√
m, as suggested by the theory in Chapter 5. While this choice promises a

certain degree of error correction, it may be possible to correct larger amounts

of corruption by choosing λ appropriately, as demonstrated in [GWL+10] for

instance. Unfortunately, the best choice of λ depends on the input images, and

cannot be determined analytically.

We demonstrate the effect of the weighting parameter λ on a set of 40 images

of Caesar used in the previous experiments. In this set of images, approximately

20% of the pixels are corrupted by attached shadows and about 28% by specu-

larities. We choose λ = C/
√
m, and vary the value of C. We evaluate the results

using angular error with respect to the ground-truth normal map. We observe

from Table 14.4 that the choice of C influences the accuracy of the estimated

normal map. For real-world applications, where the data is typically noisy, the

choice of λ could play an important role in the efficacy of RMC.

f. Computation.
The core computation of RMC is solving a convex program (14.3.1). For the

specular Caesar data (Fig. 14.5(b)) with 40 images of 450 × 350 resolution,

a single-core MATLAB implementation of RMC takes about 7 minutes on a

Macbook Pro with a 2.8 GHz Core 2 Duo processor and 4 GB memory, as

against 42 seconds taken by the LS approach. While RMC is slower than the LS

approach, it is much more accurate in a wide variety of scenarios and is more

efficient than other methods (e.g. [MHI10]).

14.4.2 Qualitative Evaluation with Real Images

We now test the algorithms on real images. We use a set of 40 images of a toy Do-

raemon and Two-face taken under different lighting conditions (see Fig. 14.9(a),

(d)). A glossy sphere was placed in the scene for light source calibration when

capturing the data. We used a Canon 5D camera with the RAW image mode.9

9 We did not apply Gamma correction.
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(a) Doraemon 

(d) Two-face 

(b) Our method (c) Least Squares 

(e) Our method (f) Least Squares 

Close-up view 
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Color map 

Figure 14.9 Qualitative Comparison on Real Images. We use images of
Doraemon and Two-face taken under 40 different lighting conditions to qualitatively
evaluate the performance of the RMC method against the LS approach. (a),(d)
Sample input images. (b),(e) Normal map estimated by RMC. (c),(f) Normal map
estimated by Least Squares. Close-up views of the dotted rectangular areas are shown
on the top-right.

These images present new challenges to RMC. In addition to shadows and spec-

ularities, there is potentially additional noise inherent to the acquisition process

as well as possible deviations from the idealistic Lambertian model illuminated

by distant lights. In this experiment, we use a threshold of 0.01 to detect shadows

in images.10 We also found experimentally that setting λ = 0.3/
√
m works well

for these datasets.

Since the ground truth normal map is not available for these scenes, we com-

pare the RMC method and the LS approach by visual inspection of the output

normal maps shown in Fig. 14.9(b),(c),(e),(f). We observe that the normal map

estimated by RMC appears smoother and hence, more realistic. This can be

observed particularly around the necklace area in Doraemon and nose area in

Two-face (see Fig. 14.9) where the LS estimate exhibits some discontinuity in

the normal map.

10 All pixels are normalized to have intensity between 0 and 1.
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14.5 Notes

Low-dimensionality from Illumination.
It is well understood that when a Lambertian surface is illuminated by at least

three known lighting directions, the surface orientation at each visible point

can be uniquely determined from its intensities. From different perspectives, it

has long been shown that if there are no shadows, the appearance of a convex

Lambertian scene illuminated from different lighting directions span a three-

dimensional subspace [Sha92] or an illumination cone [BK96]. Basri and Ja-

cobs [BJ03] and Georghiades et al. [GBK01] have further shown that the images

of a convex-shaped object with cast shadows can also be well-approximated by a

low-dimensional linear subspace. The more recent study [ZMKW13] has shown

that even for a nonconvex Lambertian object, the images can be well modeled

as a low-rank matrix plus some sparse errors. The aforementioned works indi-

cate that there exists a degenerate structure in the appearance of Lambertian

surfaces under variation in illumination. This is the key property that all photo-

metric stereo methods harness to determine the surface normals.

Classical Methods for Photometric Stereo.
Previously, photometric stereo algorithms for Lambertian surfaces generally find

surface normals as the Least Squares solution to a set of linear equations that

relate the observations and known lighting directions, or equivalently, try to

identify the low-dimensional subspace using conventional Principal Component

Analysis (PCA) [Jol86]. Such a solution is known to be optimal if the measure-

ments are corrupted by only i.i.d. Gaussian noise of small magnitude. Unfortu-

nately, in reality, photometric measurements rarely obey such a simplistic noisy

linear model: the intensity values at some pixels can be severely affected by

specular reflections (deviation from the basic Lambertian assumption), sensor

saturations, or shadowing effects. As a result, the Least Squares solution nor-

mally ends up with incorrect estimates of surface orientations in practice. To

overcome this problem, researchers have explored various heuristic approaches

to eliminate such deviations by treating the corrupted measurements as outliers,

e.g., using the so-called RANSAC scheme [FB81, CHC08], or a median-based

approach [MHI10]. To identify the different types of corruptions in images more

carefully, Mukaigawa et al. [MMMS01,MIS07] have proposed a method for clas-

sifying diffuse, specular, attached, and cast shadow pixels based on RANSAC

and outlier elimination.

Low-rank Matrix Approach.
The method presented in this chapter was first introduced through the work

[WGS+10]. In contrast to previous robust approaches, this method is compu-

tationally more efficient and provides theoretical guarantees for robustness to

large errors. More importantly, the method is able to use all the available infor-

mation simultaneously for obtaining the optimal result, instead of pre-processing
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measurements which might discard useful information, e.g., by either selecting

the best set of illumination directions [CHC08] or using the median estima-

tor [MHI10]. The method in this chapter can also be used to improve virtu-

ally any existing photometric stereo method, including uncalibrated photometric

stereo [Hay94a], where traditionally, corruption in the data (e.g., by speculari-

ties) is either neglected or ineffectively dealt with conventional heuristic robust

estimation methods.



15 Structured Texture Recovery

“What humans do with the language of mathematics is to describe patterns... To
grow mathematically children must be exposed to a rich variety of patterns appropriate
to their own lives through which they can see variety, regularity, and interconnections.”

– Lynn Arthur Steen, The Future of Mathematics Education

15.1 Introduction

In man-made environments, most objects of interest are rich of regular, repet-

itive, symmetric structures. Figure 15.1 shows images of some representative

structured objects. An image of such an object clearly inherits such regular

structures and encodes rich information about the 3D shape, pose, or identity of

the object. If we view the image of such an object as a matrix, columns of the

matrix will obviously be correlated to one another hence the rank of the matrix

will be very low, or approximately so. For example, for reflectively symmetric

objects like a face or a car, the rank of their images will be at most half of the

size of the matrices. Besides being symmetric, images of such objects typically

have other additional structures (e.g. piecewise smooth etc) which will render

the rank of the image even much lower.1 We generally refer to images (or im-

age regions) associated with such structure objects as “structured textures” to

separate them from other random textures.

In this chapter, we will study how the low-dimensional structures of such struc-

tured textures may help us to robustly and accurately recover the appearance,

pose, and shape of the associated objects in 2D or 3D. This makes structured tex-

tures extremely important for many computer vision tasks such as recognition,

localization, and reconstruction of objects in man-made environments. From a

compressive sensing perspective, we will see in this chapter how to recover a low-

rank matrix (that models structured textures) despite significant corruption (due

to occlusion) or transformation2 (due to pose, shape or camera lens distortion

etc.) To be more precise, we first introduce some notation.

1 The reader should test validity of this assumption by computing the actual rank of real

images similar to those in Figure 15.1. We leave this as an exercise.
2 in the 2D domain of the matrix
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(a) a calibration rig (b) a carpet (c) windows (d) a door

(e) a license plate (f) characters (g) a car (h) a face

Figure 15.1 Representative examples of structured objects. These images viewed as
matrices are all (approximately) low-rank matrices. The face image is from the
Extended Yale Face Database B [GBK01].

15.2 Low-Rank Textures

Strictly speaking, an image (viewed as a matrix3) is a discrete sampling of a

continuous texture (function) defined on a 2D domain. Consider a 2D texture

as a function Io(x, y), defined in R2. We say that Io is a low-rank texture if

the family of one-dimensional functions {Io(x, y) | y ∈ R} span a finite low-

dimensional linear subspace i.e.,

r
.
= dim(span{Io(x, y) | y ∈ R}) ≤ k (15.2.1)

for some small positive integer k. If r is finite, then we refer to Io as a rank-r

texture. It is easy to see that a rank-1 function Io(x, y) must be of the form

u(x) · v(y) for some functions u(x) and v(y); and in general, a rank-r function

Io(x, y) can be explicitly factorized as as the combination of r rank-1 functions:

Io(x, y)
.
=

r∑

i=1

ui(x) · vi(y). (15.2.2)

Figure 15.2 shows some ideal low-rank textures: edges and corners were tradi-

tionally used in computer vision to characterize local features of an object and

they can be viewed as the simplest low-rank textures. An ideal vertical edge

(or slope) as shown in Figure 15.2 left can be considered a rank-1 texture with

u(x) = −sign(x) and v(y) = 1. An ideal corner as shown in Figure 15.2 is also a

rank-1 texture with u(x) = sign(x) and v(y) = sign(y).

Thus, in a sense, the notion of low-rank textures unifies many of the conven-

tional local features but goes beyond that: By its definition, it is easy to see

3 Hence, in this chapter, we will use the bold face symbol I to denote an image because we

will mostly identify the image as a matrix.
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(a) an edge (b) a corner

Figure 15.2 Examples of some ideal low-rank textures: an edge and a corner.

that images of regular, repetitive, symmetric patterns typically lead to low-rank

textures. Low-rank textures of rank higher than one would be able to represent

much richer class of structured objects than local edges or corners and they can

capture the global characteristics of a structured object.

Given a low-rank texture, obviously its rank is invariant under any scaling of

the function, as well as scaling or translation in the x and y coordinates. That

is, if

I(x, y)
.
= α · Io(ax+ t1, by + t2)

for some constants α, a, b ∈ R+, t1, t2 ∈ R, then I(x, y) and Io(x, y) have the

same rank according to the definition in (15.2.1). For most practical purposes,

it suffices to recover any scaled or translated version of the low-rank texture

Io(x, y), as the remaining ambiguity left in the scaling can often be easily resolved

in practice by imposing additional constraints on the texture. Hence, in this

chapter, unless otherwise stated, we view two low-rank textures equivalent if

they are scaled and translated versions of each other:

Io(x, y) ∼ Io(ax+ t1, by + t2),

for some a, b, c ∈ R+, t1, t2 ∈ R. In homogeneous representation, this equivalence

group of transformations consists of all elements of the form:

g ∈







a 0 t1
0 b t2
0 0 1


 ∈ R3×3

∣∣∣ a, b ∈ R+, t1, t2 ∈ R



 . (15.2.3)

It is however easy to see that the low-rank form 15.2.2 will not be preserved

under a general linear transform of the domain:

I(x, y)
.
= Io(ax+ bx+ t1, cx+ dy + t2) (15.2.4)

will have a different (usually much higher) rank than that of Io(x, y). For in-

stance, if we rotate the edge or the corner in Figure 15.2 by 45◦, the resulting

image will become full rank (as a matrix). Similarly, the rank will mostly increase

under more general nonlinear distortions or transformations of the domain. As

we will see in this chapter, this fact is actually rather beneficial: it suggests that
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the correct transformation that can undo the distortion would be the one that

makes the rank of the texture the lowest.

In practice, an image of a 2D texture is not a continuous function defined on

R2. We only have its values sampled on a finite discrete grid in Z2, of size m×n
say. In this case, the 2D texture Io(x, y) is represented by an m×n matrix of real

numbers. For a low-rank texture, we always assume that the size of the sampling

grid is significantly larger than the intrinsic rank of the texture,4 i.e.

r � min{m,n}.

It is easy to show that as long as the sampling rate is not one of the aliasing

frequencies of the functions ui(x) or vi(x) of the continuous Io(x, y) defined in

(15.2.2), the resulting matrix has the same rank as the continuous function.5

Thus, the 2D texture Io(x, y) when discretized as a matrix, denoted by Io(i, j)

for convenience, has very low rank relative to its dimensions.

For the remaining of this chapter, for convenience, we will treat the continuous

2D function and its sampled matrix form as the same, with the understanding

that whenever we talk about distortion or transformation of a texture or an

image, we mean a transformation in the 2D domain of its underlying continuous

function. When only an image (a matrix of sampled values) is given, values

of the function off the sampling grid can be obtained through any reasonable

interpolation schemes.6

15.3 Structured Texture Inpainting

In this section, we will see how to automatically repair a structured texture when

it is severely corrupted or occluded. From Chapters 4, we know if a texture Io
is a low-rank matrix, we can recover it even if only a small fraction of its entries

(pixels), say with support Ω, are observable. Let Ω be the set of pixels given.

The problem to recover the full texture image Io is simply a low-rank matrix

completion problem:

min
L

rank (L) subject to L(i, j) = Io(i, j) ∀(i, j) ∈ Ω. (15.3.1)

Although being low-rank is a necessary condition for most regular, structured

textures, it is certainly not sufficient. Figure 15.3 shows three images that have

exactly the same rank. Obviously the first two are more smooth and regular than

the third one. As discussed in the preceding section, a rank-r texture is a 2D

function Io(x, y), defined on R2. Then Io(x, y) can be factored as

Io(x, y) =

r∑

i=1

ui(x)vi(y).

4 The scale of the window needs to be large enough to meet this assumption.
5 In other words, the resolution of the image cannot be too low.
6 From our experience, the bicubic interpolation is good enough for most purposes.
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Figure 15.3 Different textural patterns: all three textures have exactly the same rank,
but they go from purely regular, to nearly regular, and to almost irregular texture.

If Io represents a more realistic regular or near regular pattern, it is typically

piecewise smooth. Hence, the functions ui and vi are not arbitrary and they may

have additional structures. As we have discussed in earlier chapters of the book,

piecewise smooth functions are typically sparse in certain transformed domain

(say, by a wavelet transform).

So, in the discrete setting, the low-rank matrix Io can be factorized as

Io = UV ∗,

where U and V can be represented as

U = B1X1 and V = B2X2

for some pair of bases (B1,B2). If the bases are properly chosen, both X1 and

X2 will be sufficiently sparse. Or equivalently, if we write

Io = B1X1X
∗
2B
∗
2
.
= B1W oB

∗
2,

then the matrix W o
.
= X1X

∗
2 will be a sparse matrix, which has the same (low)

rank as Io.

Hence, if we want the recovered image from a partially observed I (of the

ground truth Io) to be both low-rank and sparse (in certain transformed do-

main), we could modify the low-rank matrix completion problem (15.3.1) as

follows to impose additional spatial structures:

min
L,W

rank (L) + λ‖W ‖0 s.t. PΩ[L] = PΩ[I], L = B1WB∗2, (15.3.2)

where ‖W ‖0 denotes the number of non-zero entries in W . That is, we aim to

find the ground truth texture image Io as the lowest possible rank matrix L?
and the matrix W ? = B∗1L?B2 with the fewest possible non-zero entries that

agrees with the partial observation PΩ[I]. Here, λ is a weighting parameter which

trades off the rank and sparsity of the recovered image.

As we have learned from earlier chapters, in the above problem (15.3.2), both

the rank function and the `0-norm are difficult to optimize directly. Instead, they

can be replaced by their convex surrogates: the matrix nuclear norm ‖L‖∗ for
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rank (L) and the `1-norm ‖W ‖1 for ‖W ‖0, respectively. Thus, we end up with

the following optimization problem:

minL,W ‖L‖∗ + λ‖W ‖1 s.t. PΩ[L] = PΩ[I], L = B1WB∗2. (15.3.3)

If we further assume that the bases B1 and B2 used are orthonormal, we have

‖Io‖∗ = ‖B1WB∗2‖∗ = ‖W ‖∗. The convex program (15.3.3) is equivalent to:

min
W
‖W ‖∗ + λ‖W ‖1 s.t. PΩ[B1WB∗2] = PΩ[I]. (15.3.4)

This formulation allows us to enforce that the recovered texture image be si-

multaneously low-rank and sparse in certain transformed domain. As we have

discussed in Section 6.3 of Chapter 6, the above convex relaxation is only subop-

timal for enforcing simultaneous sparse and low-rank structures on W o. Never-

theless, as we will see, in practice this formulation is sufficient for our purposes

of recovering low-rank images.

Notice that entry-wise observation operator PΩ[·] is not incoherent with a

sparse matrix. However, here instead of directly sampling W o, the operator

samples a transformed version of W o by the bases B1 and B2. As we will see in

experiments, apparently such transforms make the operator PΩ[·] “incoherent”

with both the sparse and low-rank structures W o.
7

Furthermore, notice that the above convex program (15.3.4) is different from

the convex program we have encountered before in problems like PCP where the

nuclear norm and `1 norm were for two different matrices. To utilize the same

optimization techniques, we only have to introduce an auxiliary variable L to

replace W in the low-rank term and render the variables separable:

minL,W ‖L‖∗ + λ‖W ‖1 s.t. L = W , PΩ[B1WB∗2] = PΩ[I]. (15.3.5)

The reader may recognize this program falls into the same class of programs as

PCP that we have dealt with in Chapter 5, and they can be solved efficiently by

methods such as ALM and ADMM introduced in Chapter 8.8

Example 15.1. (Texture Inpainting). To demonstrate the importance of enforc-

ing the sparse and low-rank prior together, we here conduct some texture inpaint-

ing experiments on real images and compare the solution to the above program

with that to low-rank matrix completion algorithm from Chapter 4.

Here we choose λ = 0.001, and we use the discrete cosine transform (DCT)

basis for both B1 and B2.9 We test the recovery under three different types of

corruptions: uniform random corruptions, one disk corruption, and random block

7 To our best knowledge, there is little result that rigorously characterizes conditions on
such transforms such that correct recovery of W o can be guaranteed, despite compelling
empirical success.

8 More detailed implementation of this particular program can be found in [LRZM12].
9 DCT is the basis used in the JPEG image compression standard. Here the choice of DCT

is for simplicity. One may also use a wavelet basis, such as the one used in JPEG2000, to
obtain likely better performance.
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(a) Input image (b) Sparse + Low-rank (c) Low-rank only

Figure 15.4 Qualitative comparison of sparse low-rank texture recovery and low-rank
completion only. The first row is a checkerboard texture with 91% randomly chosen
pixels corrupted (recall Theorem 5.10 of Chapter 5); the second row is a real texture
with about 30% pixels occluded by a disk; and the third row is a real texture with
about 40% pixels corrupted by random small blocks.

corruptions on three representative low-rank textures: a checkerboard image (typ-

ically used in camera calibration) and two real texture images. The checkerboard

is of precise rank 2 and the other two are full rank but approximately low-rank.

From the completion results it is clear to see that the recovered results are signif-

icantly better by imposing both low-rank and sparse priors than low-rank alone.

Almost all methods for image inpainting or completion need information about

the support Ω of the corrupted regions (e.g., [BSBC00], [MES08], [FlSM09],

etc.). This information is usually obtained through manually marked out by the

user or detected by other independent methods. This often severely limits the

applicability of all the image completion or inpainting methods.
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In many practical scenarios, the information about the support of the cor-

rupted regions might not be known or only partially known. Hence the pixels in

the given region Ω can also contain some corruptions that violate the low-rank

and sparse structures. Similar to the Robust PCA problem in Chapter 5, we

could model such corruptions with unknown support as a sparse error term Eo:

I = Io +Eo = B1W oB
∗
2 +Eo.

To recover the image Io = B1W oB
∗
2, we now only have to solve the following

PCP like program:

min
W
‖W ‖∗ + λ‖W ‖1 + α‖E‖1 s.t. PΩ[B1WB∗2 +E] = PΩ[I]. (15.3.6)

Notice that if we know nothing about the corruption areas, we only need to set Ω

to be the entire image. Just like PCP, the above convex program will decompose

the image into a low-rank component and a sparse one. Of course, the nonzero

entries in estimated E can help us to further refine the support Ω. For instance,

we could simply set:

supp(E)
.
= {(i, j) ∈ Ω, |Eij | > ε}, (15.3.7)

for some threshold ε > 0. Or we could estimate the support of E using more

sophisticated model to encourage additional structures such as spatial continuity

[ZWMM09]. Once supp(E) is known, we can exclude those corrupted entries from

Ω (the support of presumably good entries).

We could further iterate between the image completion and support estima-

tion:

(W k,Ek) = argminW ,E ‖W ‖∗ + λ‖W ‖1 + α‖E‖1
subject to PΩk [B1WB∗2 +E] = PΩk [I],

Ωk+1 = Ωk \ supp(Ek+1),

(15.3.8)

where α is a weighting parameter between sparsity and low-rankness. We could

continue the above process till convergence and obtain the repaired image I? =

B1W ?B
∗
2. In practice, we notice a good side effect of adding the additional E

term: It not only helps estimate support of the corrupted regions but also helps

reduce noise on the repaired texture image I?.

Example 15.2. (Texture Recovery) In this experiment, we conduct some com-

parison between the above method and some typical image completion methods

used in highly engineered commercial systems: Patch Match (PM) used by Adobe

Photoshop [BSFG09, BSGF10], Image Completion with Structure Propagation

(SP) developed by Microsoft [SYJS05]. Figure 15.5 shows the result on three

different images: a simulated non-uniform low-rank texture, a uniform building

facade, and a somewhat less uniform building facade, which correspond to three

rows in Figure. 15.5, respectively.

The other two methods all share the spirit of sample-based texture synthesis:

they stitch sampled local patches together to ensure certain global statistical con-

sistency. As these methods rely mostly on local statistics and structures, they
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Figure 15.5 Comparison Results with Microsoft SP [SYJS05] and Adobe
Photoshop [BSFG09]. Columns 1-2: inputs and results of the structured texture
recovery method; Columns 3-4: inputs and results of SP; Columns 5-6: inputs and
results of Adobe Photoshop.

tend to work on natural images or random textures too while our method does

not. However, as we see from the results, when applied to completing or repairing

regular or near regular low-rank patterns, they often fail to preserve the global

regularity accurately. The reason is partially because these methods normally do

not or cannot exploit global structural information about the textures.

Unlike the structured texture recovery method introduced here, these image

completion systems typically require the user to mark out rather precisely the to-

be-corrected region or regions (as the contours of the regions for Photoshop shown

in the figure), and even to provide additional information about the structures to

be recovered (such as suggested lines marked out in the red regions that required by

the SP method). However, the structured texture recovery method does not need

any knowledge about the support of the corrupted regions nor any information

about the structure.

15.4 Transform Invariant Low-Rank Textures

15.4.1 Deformed and Corrupted Low-rank Textures

Although a structured object that has regular or repetitive 2D or 3D textu-

ral patterns in space is often low-rank, its image I under an arbitrary camera

viewpoint may exhibit much higher rank compared to its upright frontal view

Io(x, y). An example is illustrated in Figure 15.6. In order to extract the intrinsic
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(a) Low-rank texture Io

τ←−
(b) Its image I under a different
viewpoint

Figure 15.6 An example of a transformed low-rank texture: The upright low-rank
texture Io on the left is associated with the region in the green window. The matrix I
associated with the region in the red window is clearly not low-rank.

low-rank textures from such deformed images, we need to carefully model the

effect of deformation and see how to undo it correctly.

Deformed Low-rank Textures.
Suppose a low-rank texture Io(x, y) lies on certain surface in the scene. The

image I is Io taken from a certain camera viewpoint. We use τ to denote the

transform where τ : R2 → R2 belongs to a certain Lie group G on R2 (We here

only consider the case where τ is invertible). Hence I ◦ τ = Io or the image I

can be viewed as transformed version of the original function Io(x, y):

I(x, y) = Io ◦ τ−1(x, y) = Io
(
τ−1(x, y)

)
, τ ∈ G.

If the texture is on a planar surface in the 3D space, under typical perspective

camera model, one can assume G to be either the 2D affine group Aff(2,R), or

the homography group GL(3,R) acting linearly on the image domain. Neverthe-

less, in principle, the formulation also works for more general classes of domain

deformations or camera projection models as long as they can be modeled well

by a finite-dimensional parametric group [ZMM11, ZLM11]. We will see a few

concrete examples soon in Section 15.5.

Corrupted Low-rank Textures.
In addition to domain transformations, the observed image of the texture might

be corrupted by pixel noise and occlusion. As before, we can model such nuisance

by an error matrix Eo as follows:

I = Io +Eo.

As a result, the image I might no longer be a low-rank texture. In the low-rank

texture framework, we assume that only a small fraction of the image pixels are

corrupted by gross errors. Hence, Eo is generally a sparse matrix.

So the problem we are facing here is: Given a possibly corrupted and deformed
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image of a low-rank texture: I = (Io+Eo)◦τ−1, can we recover both the intrinsic

low-rank texture representation Io and the domain transformation τ ∈ G?

The answer to this problem is whether we are able to find solutions to the

following optimization program:

min
L,E,τ

rank(L) + γ‖E‖0 subject to I ◦ τ = L+E. (15.4.1)

That is, we aim to find the upright ground truth texture Io as the lowest possible

rank L? and the error E? with the fewest possible nonzero entries that agrees

with the observation I up to a domain transformation τ . Here, γ > 0 is a

weighting parameter that trades off the rank of the texture versus the sparsity

of the error. For convenience, we refer to the so rectified solution Io of the

observed tilted pattern I as a Transform Invariant Low-rank Texture (TILT),

coined by [ZLGM10,ZGLM12] .10

15.4.2 The TILT Algorithm

As we studied in previous chapters, the rank function and the `0-norm in the

original problem (15.4.1) are extremely difficult to optimize, let alone with an

unknown deformation τ . However, under fairly broad conditions, they can be

replaced by their convex surrogates: the matrix nuclear norm ‖Io‖∗ for rank(Io)

and the `1-norm ‖E‖1 for ‖E‖0, respectively. Thus, we end up with the following

optimization problem:

min
L,E,τ

‖L‖∗ + λ‖E‖1 subject to I ◦ τ = L+E. (15.4.2)

Dealing with Domain Deformation via Linearization.
Note that although the objective function in (15.4.2) is convex, the constraint

I ◦ τ = L+E is nonlinear in τ ∈ G, and hence the overall problem is no longer

convex. We have seen a similar problem in Section 5.5. As we have discussed

there, we may overcome this difficulty by linearizing the constraint around the

current estimate and iterate, which is a typical technique to deal with nonlinear-

ity in mathematical programming [LK81,BM04]. If we approximate the nonlinear

constraint up to its first order (with respect the deformation parameter τ), the

constraint for the linearized version of the above program becomes

I ◦ τ +∇I · dτ ≈ L+E, (15.4.3)

10 By a slight abuse of terminology, we also refer to the procedure of solving the optimization
problem as TILT.
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Algorithm 15.1 (The TILT Algorithm)

INPUT: Input image I ∈ Rw×h, initial transformation τ ∈ G (affine or pro-

jective), and a weight λ > 0.

WHILE not converged DO

Step 1: Normalization and compute Jacobian:

I ◦ τ ← I ◦ τ
‖I ◦ τ‖F

; ∇I ← ∂

∂ζ

(
vec(I ◦ ζ)

‖vec(I ◦ ζ)‖2

)∣∣∣
ζ=τ

;

Step 2 (inner loop): Solve the linearized problem:

(L?,E?, dτ?) ← arg minL,E,dτ ‖L‖∗ + λ‖E‖1
subject to I ◦ τ +∇I · dτ = L+E;

Step 3: Update the transformation: τ ← τ + dτ?;

END WHILE

OUTPUT: Converged solution L?, E?, τ? to problem (15.4.2).

where ∇I is the Jacobian (derivatives of the image with respect to the transfor-

mation parameters in τ).11 The optimization problem in (15.4.2) reduces to

min
L,E,dτ

‖L‖∗ + λ‖E‖1 subject to I ◦ τ +∇I · dτ = L+E. (15.4.4)

The linearized problem above is a convex program as the constraint is linear in

all unknowns L,E, dτ hence it is amenable to efficient solution. One may use

the algorithms introduced in Chapter 8 to solve the above convex program.

Since the linearization is only a local approximation to the original nonlinear

problem, we solve it iteratively in order to converge to a (local) minimum of

the original non-convex problem (15.4.2). The resulting optimization scheme is

summarized as Algorithm 15.1.

The iterative linearization scheme outlined above is a common technique in

optimization to solve nonlinear problems. It can be shown that this kind of

iterative linearization converges quadratically to a local minimum of the original

non-linear problem. A complete proof is out of the scope of this paper. We refer

the interested reader to [Cro78,JO80] and the references therein.

Solving the Linearized Inner Loop Program.
To implement Algorithm 15.1 numerically, the most computationally expensive

part is solving the inner loop convex program in Step 2. This can be cast as a

semidefinite program and solved using conventional algorithms such as interior-

point methods. However, as we discussed in Chapter 8, while interior-point meth-

ods have excellent convergence properties, they do not scale very well with the

11 Strictly speaking, ∇I is a 3D tensor: it gives a vector of derivatives at each pixel whose
length is the number of parameters in the transformation τ . When we “multiply” ∇I with

another matrix or vector, it contracts in the obvious way which should be clear from the

context.
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problem size. As TILT is a very very useful tool for computer vision, we here

derive in more details a fast implementation based on the augmented Lagrangian

method (ALM) via alternating direction method of multipliers (ADMM), which

was also covered in Chapter 8.

First, for the problem given in (15.4.4), its augmented Lagrangian is defined

as:

Lµ(L,E, dτ,Y )
.
= ‖L‖∗ + λ‖E‖1 + 〈Y , I ◦ τ +∇I · dτ −L−E〉

+
µ

2
‖I ◦ τ +∇I · dτ −L−E‖2F , (15.4.5)

where µ > 0, Y is a Lagrange multiplier matrix, 〈·, ·〉 denotes the matrix in-

ner product. To optimize the above augmented Lagrangian, the augmented La-

grangian method require to solve the following steps iteratively:

(Lk+1,Ek+1, dτk+1) = arg minL,E,dτ Lµk(L,E, dτ,Y k),

Y k+1 = Y k + µk(I ◦ τ +∇I · dτk+1 −Lk+1 −Ek+1).

Throughout the rest of the paper, we will always assume that µk = ρk µ0 for

some µ0 > 0 and ρ > 1, unless otherwise specified.

We only have to solve the first step of the above iterative scheme. In general,

it is computationally expensive to minimize over all the variables L, E and dτ

simultaneously. So, we adopt a common strategy to solve it approximately by

adopting an alternating minimizing, strategy i.e. minimizing with respect to L,

E and dτ one at a time:




Lk+1 = arg minL Lµk(L,Ek, dτk,Y k),

Ek+1 = arg minE Lµk(Lk+1,E, dτk,Y k),

dτk+1 = arg mindτ Lµk(Lk+1,Ek+1, dτ,Y k).

(15.4.6)

Due to the special structure of our problem, each of the above optimization

problems has a simple closed-form solution, and hence, can be solved in a single

step. More precisely, recall the proximal operators for the `1 norm and the nuclear

norm in Chapter 8, the solutions to (15.4.6) can be expressed explicitly using

the soft-thresholding operator as follows:




Lk+1 ← Uksoft(Σk, µ
−1
k )V ∗k,

Ek+1 ← soft(I ◦ τ +∇I · dτk −Lk+1 + µ−1
k Y k, λµ

−1
k ),

dτk+1 ← (∇I)†(−I ◦ τ +Lk+1 +Ek+1 − µ−1
k Y k),

(15.4.7)

where UkΣkV
∗
k is the SVD of

(
I ◦ τ + ∇I · dτk − Ek + µ−1

k Y k

)
, and (∇I)†

denotes the Moore-Penrose pseudo-inverse of ∇I.

We summarize the ADMM scheme for solving (15.4.4) as Algorithm 15.2. We

note that the operations in each step of the algorithm are very simple with the

SVD computation being the most computationally expensive step.12

12 Empirically, we notice that for larger window sizes (over 100× 100 pixels), it is much faster

to run the partial SVD instead of the full SVD, if the rank of the texture is known to be
very low.
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Algorithm 15.2 (Inner Loop of TILT)

INPUT: The current (deformed and normalized) image I ◦ τ ∈ Rm×n and its

Jacobian ∇I against current deformation τ (from the outer loop), and λ > 0.

Initialization: k = 0,Y 0 = 0,E0 = 0, dτ0 = 0, µ0 > 0, ρ > 1;

WHILE not converged DO

(Uk,Σk,V k) = SVD
(
I ◦ τ +∇I · dτk −Ek + µ−1

k Y k

)
;

Lk+1 = Uksoft(Σk, µ
−1
k )V ∗k;

Ek+1 = soft(I ◦ τ +∇I · dτk −Lk+1 + µ−1
k Y k, λµ

−1
k );

dτk+1 = (∇I)†(−I ◦ τ +Lk+1 +Ek+1 − µ−1
k Y k);

Y k+1 = Y k + µk(I ◦ τ +∇I · dτk+1 −Lk+1 −Ek+1);

µk+1 = ρµk;

END WHILE

OUTPUT: Converged solution (L?, E?, dτ?) to problem (15.4.4).

Connection to Compressive Principal Component Pursuit.
Notice that there is another way to view the linearized constraint (15.4.3):

I ◦ τ +∇I · dτ = L+E. (15.4.8)

Let Q be the left kernel of the Jacobian ∇I, that is PQ[∇I] = 0. Applying PQ[·]
to both sides of the equation, we obtain:

PQ[I ◦ τ ] = PQ[L+E]. (15.4.9)

Then the program (15.4.4) becomes equivalent to:

min
L,E,dτ

‖L‖∗ + λ‖E‖1 subject to PQ[I ◦ τ ] = PQ[L+E]. (15.4.10)

Notice that this is exactly the compressive principal component pursuit prob-

lem (5.5.2) discussed in Chapter 5. However, Theorem 5.9 only provides recovery

guarantee for random projection operator PQ[·] but the above kernel projection is

certainly not random. To our best knowledge, there is little result that character-

izes how such projection is incoherent with the low-rank and sparse component

so that correct recovery is guaranteed. Empirical results below with images show

that that is obviously the case for typical types of transformations (e.g. 2D lin-

ear or affine transformation groups or 3D curved surfaces). Rigorous theoretical

analysis of the interplay of group transformations and low-dimensional structures

remains to be established. We will discuss more in the Notes as well as see more

interplay between the two in the next Chapter.

Now putting all together, we see that the original problem (15.4.2) is essentially

a nonlinear optimization problem that tries to recover both the low rank texture

and its deformation. The TILT Algorithm 15.1 relies on linearizing the nonlin-

ear constraint locally and then iteratively solves the locally linearized version

using Algorithm 15.2. Hence, in general, there is no guarantee if the algorithm

converges to the globally optimal (usually the correct) solution. As studies in
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the literature [ZLGM10,ZGLM12] has shown, if the above algorithm is properly

implemented, the range of convergence for typical deformations encountered in

practice can be surprisingly large. For instance, for a typical checkerboard pat-

tern tilted in front of a camera, the algorithm manages to converge correctly

even if the tilting angle is around 50◦! For details of implementing the TILT

algorithm and a careful quantitative examination of the range of convergence

for the TILT algorithm, the reader can refer to [ZLGM10, ZGLM12]. Again, a

rigorous characterization of the global landscape of this nonlinear program and

justification for the large range of contraction remains widely open.

15.5 Applications of TILT

The above algorithm is derived for τ being an arbitrary (parametric) transform in

a prescribed group G. In this section, we show how to apply the above algorithm

to several typical types of transformations we often encounter in computer vision

applications:

1 The low-rank texture is (approximately) on a planar surface and the camera is

an ideal perspective projection. In this case, the deformation τ belongs to the

group of general linear transforms on a plane (also known as the homography

in the computer vision literature). The TILT algorithm allows us to recover

the precise location and orientation of the plane in 3D relative to the camera.

2 The low-rank texture is on a generalized cylindrical surface. The TILT algo-

rithm would allow use to recover both the 3D shape of the surface as well as

its location and orientation relative to the camera.

3 The camera is not projective and its lens has certain nonlinear distortion. The

images of a standard calibration rig (a planar checkerboard pattern) would

allow us to recover the camera lens distortion.

15.5.1 Rectifying Planar Low-Rank Textures

If a low-rank texture Io is on a planar surface, then at an arbitrary viewpoint, its

image I (under ideal perspective projection) is related to the original (rectified)

texture Io by a homography τ [MSKS04], or formally known as a projective

transformation. Figure 15.6 shows one such example. More precisely, let (u, v)

be the coordinates of the image I, and (x, y) be the coordinates of the original

texture Io. If we represent both image planes with the homogeneous coordinates

[u, v, 1]∗ ∈ R3 and [x, y, 1]∗ ∈ R3, respectively. Then the coordinates of a point

on Io and those of its (projective) image on I will be related by

τ(x, y) =



u

v

1


 ∼



h11 h12 h13

h21 h22 h23

h31 h32 h33





x

y

1


 , (15.5.1)
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where “∼” means equal up to a scale and H = [hij ] ∈ R3×3 is an invertible

matrix belonging to the general linear group GL(3):

GL(3)
.
=
{
H ∈ R3×3

∣∣∣det(H) 6= 0
}
. (15.5.2)

However, there is a little caveat in this formulation. If we allow the transfor-

mation τ in the TILT algorithm to be free in the entire group GL(3), it could

lead to a trivial solution in which the algorithm will choose a black region and a

τ to blow it up to the size of Io so that the value of the objective function will

be nearly zero. To avoid such degenerate solutions, one way is to fix the scale

of the region which we like to rectify. We may restrict the transform to be in a

subgroup of GL(3) with scale normalized, known as the special linear group:

SL(3)
.
=
{
H ∈ R3×3

∣∣∣det(H) = 1
}
. (15.5.3)

This imposes additional (nonlinear) constraints among the parameters of the

transformation.13 In practical implementation of the TILT algorithm for the

projective case, to fix the scale, we may simply specify and fix two diagonal

corners of the region we would like to rectify. Interested readers may find more

implementation details in [ZGLM12]. Figure 15.7 shows some of the represen-

tative results of the TILT algorithm applied to low-rank textures on a plane.

Notice that the rectification is typically accurate to the pixel level.

15.5.2 Rectifying Generalized Cylindrical Surfaces

In man-made environments, structured objects do not always have planar sur-

faces. In many cases, the surface can be curved and cannot be approximated by

a planar one, as the example in Figure 15.8 left shows. Clearly, if we approximate

the surface by a plane outlined as the red window (adapted to the orientation of

the facade), the texture will not be regular. Instead, the texture enclosed in the

green window would be close to an ideal low-rank texture. However, to recover

such low-rank texture, it would require us to recover the shape of the surface as

well (in addition to the unknown camera projection in the planar case).

In this section, we see how TILT can be extended to rectify and recover low-

rank texture on such curved surfaces in 3D space. Let us assume the image I(u, v)

is a transformed version of low-rank texture Io(x, y) wrapped on a curved surface

C, as illustrated in Figure 15.8 right.

Presumably there exists a composite map from the intrinsic texture coordinate

(x, y) to the image coordinate (u, v) as

g(x, y) : (x, y) 7→ (u, v), (15.5.4)

13 A systematical way to handle any additional constraints on the parameters of the

transformation τ is to linearize it and then add the additional linear constraints to the

Inner Loop of the TILT algorithm.
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Figure 15.7 Representative Results of TILT on several categories of structured
objects: textures with repetitive patterns, building facades, bar codes, characters and
texts, bilateral symmetrical objects etc. In each case, the red window denotes the
initial input of the TILT algorithm and the green window denotes the final converged
output. The (matrix associated with the) green window is displayed to highlight the
recovered low-rank texture.

such that I ◦ g = Io in the noise-free case. In this section, we will explain how to

parametrize such a transformation g based on a generalized cylindrical surface

model for the surface [ZLM11]. The model represents a very important family

of 3D shapes as they describe majority of curved building facades or deformed
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Figure 15.8 Left: An example of a curve building facade. Red window is a planar
approximation to the surface; and green window outlines the true low-rank texture of
the facade. Right: generalized cylindrical surface C viewed by a perspective camera
K.

texts on curved surfaces. Mathematically, a generalized cylindrical surface can

be described as

c(s, t) = tp+ h(s) ∈ R3, (15.5.5)

where s, t ∈ R, p,h(s) ∈ R3, and p ⊥ ∂h(s).

Without loss of generality, we may choose a 3D coordinate frame (X,Y, Z) for

the surface such that the center o is on the surface and the Y -axis aligns with

the direction of p. If we limit our calculation within a “rectangular” section of

the surface whose X-coordinate is in the interval [0, Xm], then the expression of

the function h(·) can be simplified and uniquely determined by a scalar function

Z = f(X), as shown in Figure 15.8 right.

Without loss of generality, we may choose to parametrize the function Z =

f(X) by a polynomial up to degree d+ 2, where typically d ≤ 4 for most natural

images. So an explicit expression of the surface can be written as:

Z = fc(X)
.
= X(X −Xm)

d∑

i=0

aiX
i, (15.5.6)

where we use c
.
= {a0, a1, . . . , ad} to denote the collection of surface parameters.

Further note that when all ai’s are zero, the surface reduces to a planar surface

Z = 0 in 3D as considered in the previous section.

For any point (x, y) in the rectified and flattened texture coordinates, we

need to find its 3D coordinates (Xc, Yc, Zc) on the cylindrical surface C. We can

calculate the geodesic distance from the origin O to (Xm, 0, 0) on the surface as

Lc
.
=

∫ Xm

0

√
1 + f ′c(X)2dX. (15.5.7)

The the following set of equations uniquely determine the wrapping map between
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(x, y) and (Xc, Yc, Zc):




x = Xm
Lc

∫Xc
0

√
1 + f ′c(X)2dX,

y = Yc,

Zc = fc(Xc).

(15.5.8)

Finally, suppose we are given a perspective camera model with intrinsic pa-

rameters K =

[
fx α ox
0 fy oy
0 0 1

]
∈ R3×3,14 and its relative position with respect to

the surface coordinate frame is described by an unknown Euclidean transform

(R,T ) ∈ SE(3,R), where R ∈ R3×3 is a rotation matrix and T ∈ R3 is a trans-

lation vector. Then a point with 3D coordinates (Xc, Yc, Zc) is mapped to the

image pixel coordinates (u, v) according to the following relationship:

[
xn
yn

]
=

[
R11Xc+R12Yc+R13Zc+T1

R31Xc+R32Yc+R33Zc+T3
R21Xc+R22Yc+R23Zc+T2

R31Xc+R32Yc+R33Zc+T3

]
,
[
u
v
1

]
= K

[ xn
yn
1

]
=

[
fxxn+αyn+ox
fyyn+oy

1

]
.

(15.5.9)

Therefore the transformation g from the texture coordinates (x, y) to the image

coordinates (u, v) is a composition of the following mappings specified above:

g : (x, y) 7→ (Xc, Yc, Zc) 7→ (xn, yn) 7→ (u, v). (15.5.10)

The parameters needed to specify g include the parameters for the surface c,

the camera pose (R,T ) (and the camera intrinsic parameters K if unknown).

Although here the deformation group G is not explicitly defined, the so defined

mappings g are all one-to-one and invertible. For our purposes, it suffices if such

transformations are defined in a range around the identity mapping.15

In order to recover the low-rank component Io subject to some possible sparse

error component Eo, we can now solve the following optimization problem:

min
L,E,c,R,T

‖L‖∗ + λ‖E‖1 subject to I ◦ g = L+E. (15.5.11)

As we have done in the TILT algorithm, this nonlinear problem can be estimated

iteratively by solving its linearized version as:

min
L,E,dg

‖L‖∗ + λ‖E‖1 subject to I ◦ g +∇Ig · dg = L+E, (15.5.12)

where∇Ig is the Jacobian matrix of the image with respect to both the unknown

general cylindrical surface parameters c and the unknown Euclidean transform

(R,T ) (and the camera calibration K if unknown too), and dg is the differential

of these unknown variables. Notice that the above program is exactly the same at

the program that we have solved for the TILT problem in the previous Section.

The only difference is the deformation τ (or dτ) is replaced by g (or dg) here.

14 Be aware that here fx, fy stand for focus length and are not to be confused with the curve

function fc above. In practice, the intrinsic parameters can be well approximated from the
EXIF information in the image file recorded by modern digital cameras. For more details,

please refer to [ZLM11].
15 Strictly speaking, such set of transformations form a groupoid.
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We can use the same Algorithm 15.1 to solve the above program. For a more

detailed implementation, please refer to [ZLM11]. Figure 15.9 shows some real

examples and results of curved low-rank textures unwrapped and recovered by

the TILT Algorithm 15.1 with the transformation g described above.

15.5.3 Calibrating Camera Lens Distortion

In the above planar and curved surface cases, we have always assumed that

the image of a low-rank texture is taken by a (calibrated) camera which can be

represented by an ideal perspective projection. However, with the proliferation of

low-cost cameras, many cameras (and their images) we encounter in practice are

not carefully calibrated by the manufacturer; and some cameras are deliberated

made with different projection models from the perspective one (in order to

maximize the use of the imaging sensors and increase the field of view), such

as the fisheye cameras or omnidirectional cameras. Figure 15.10 left shows an

example of an image taken by a fisheye camera. Figure 15.10 right shows an

image of the same building by an ideal perspective camera. Notice that for the

later case, there is no distortion caused by the lens and all straight lines in the

scene are straight in the image.

Camera calibration is arguably the most crucial task for any applications that

requires the computer or machine to perceive and interact with the 3D world

through a camera (such as 3D reconstruction, mapping, navigation, and manip-

ulation etc.) When calibrating a camera (with respect to certain world coor-

dinate frame), in addition to the aforementioned lens distortion, we also need

to calibrate the intrinsic parameters K for its perspective projection and the

extrinsic parameters (R,T ) for the camera viewpoint. For conventional calibra-

tion methods such as the popular toolbox [Bou], one needs to take a few images

of a calibration rig (usually a planar checkerboard pattern with known geome-

try [Zha00]). The corners of the checkerboard then need to be carefully marked

out for calibration. Figure 15.11 shows an example.

As we see, the calibration rig is typically a regular pattern hence is low-rank.

The imaging process of an uncalibrated camera is a sequence of mappings that

transform the low-rank texture to the image plane. Instead of marking the cor-

ners manually which is tedious and time-consuming,16 in principle we could

utilize the low-rankness of the calibration pattern and use the TILT algorithm

to automatically estimate all unknown parameters associated with the imaging

process.

Similar to the previous section, we here give a brief description of the sequence

of mappings involved in the imaging process of an uncalibrated camera, which

16 Automatically detecting the corner features is a seemingly simple but remains a difficult

problem that is not yet entirely solved under general conditions.
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Figure 15.9 Unwrapping low-rank texture on curved surfaces based on a generalized
cylindrical surface model. Left: Input image. The red bounding box indicates the
manually labeled initial position of the texture region. The green bounding box
indicates the recovered texture surface. Right: Unwrapped low-rank texture.
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Figure 15.10 Left: typical image of a fisheye camera. Right: image of a perspective
camera.

Figure 15.11 Left two: Images of a typical calibration rig. Right: Corners need to be
marked (or detected) for conventional calibration methods.

can then be used in customizing the TILT algorithm for calibration purposes.

For a more careful and complete description of camera models, the reader may

refer to [HZ00,MSKS04].

We first briefly describe the common mathematical model used for camera

calibration and introduce notation used in this paper. We use a vector P =

[X0, Y0, Z0]∗ ∈ R3 to denote the 3D coordinates of a point in the world coordi-

nate frame, use pn = [xn, yn]∗ ∈ R2 to denote its projection on the canonical

image plane in the camera coordinate frame. For convenience, we denote the

homogeneous coordinates of a point p as p̃ = [ p1 ] ∈ R3.

As before, we use R ∈ SO(3) and T ∈ R3 to denote the rotation and transla-

tion from the world coordinate frame to the camera frame – so-called extrinsic

parameters.17 So we have

p̃n ∼ RP + T ∈ R3.

If the lens of the camera is distorted, on the image plane, the coordinates of a

point pn may be transformed to a different one, denoted as pd = [xd, yd]
∗ ∈ R2. A

very commonly used general mathematical model for this distortion D(·) : pn 7→
17 As in [MSKS04], the rotation R can be parameterized by a vector ω = [ω1, ω2, ω3]∗ ∈ R3

using the Rodrigues formula: R(ω) = I + sin ‖ω‖ ω̂
‖ω‖ + (1− cos ‖ω‖) ω̂2

‖ω‖2 , where ω̂

denotes the 3× 3 matrix form of the rotation vector ω, defined as

ω̂ = [0,−ω3, ω2;ω3, 0,−ω1;−ω2, ω1, 0] ∈ R3×3.
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pd is given by a polynomial distortion model by neglecting any higher-order

terms as below [Bro71]:





r
.
=

√
x2
n + y2

n,

f(r)
.
= 1 + kc(1)r2 + kc(2)r4 + kc(5)r6,

pd =

[
f(r)xn + 2kc(3)xnyn + kc(4)(r2 + 2x2

n)

f(r)xn + 2kc(4)xnyn + kc(3)(r2 + 2y2
n)

]
.

(15.5.13)

Notice that this model has a total of five unknowns kc(1), . . . , kc(5) ∈ R. If there

is no distortion, simply set all kc(i) to be zero, and then it becomes pd = pn.

The intrinsic matrix K ∈ R3×3 represents a linear transformation of points

on the image plane to their pixel coordinates, denoted as p = [u, v]∗ ∈ R2. K

also has five unknowns; the focal length along x and y-axes fx and fy, skew

parameter θ, and coordinates of the principle point (ox, oy). In the matrix form,

it is described as

K
.
=



fx θ ox
0 fy oy
0 0 1


 ∈ R3×3. (15.5.14)

With all the notation, the overall imaging process of a point P in the world

to the camera pixel coordinates p by a pinhole camera can be described as:

p̃ = Kp̃d = K ◦D(p̃n); λp̃n = RP + T , (15.5.15)

where λ is the depth of the point. If there is no lens distortion (p̃d = p̃n), the

above model reduces the typical perspective projection with an uncalibrated

camera: λp̃ = K(RP + T ).

For compact presentation, we will let τ0 denote the intrinsic parameters and

lens distortion parameters all together. When we take multiple, say N , images

to calibrate the intrinsic parameters and the lens distortion, we use τi (i =

1, 2, . . . , N) to denote the extrinsic parameters Ri and T i for the i-th image. By

a slight abuse of notation, we will occasionally use τ0 to represent the combined

transformation of K and D(·) acting on the image domain, i.e., τ0(·) = K ◦
D(·), and use τi (i = 1, 2, . . . , N) to represent the transforms from the world

frame to each individual image plane. Using this notation, each image Ii and

the calibration rig (low-rank texture) Io are related by:

Ii ◦ (τ0 ◦ τi) = Io +Ei, i = 1, 2, . . . , N, (15.5.16)

where we use a sparse error term Ei to model possible occlusion or corruption

introduced in the imaging process.

It seems that we now can use TILT to estimate all the transformation pa-

rameters in τ0 and τi without using any marked feature points. However, there

is one caveat: as we have discussed in the beginning of the chapter in Section

15.2, there is some ambiguity in the notion of a low-rank texture, a scaled or

translated version of the same texture would have the same rank. Hence, if we

use TILT to each individual image Ii, the so recovered Îo might be scaled or
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translated version to one another. More precisely, if we solve the following robust

rank-minimization problems individually:

min ‖Li‖∗ + λ‖Ei‖1, subject to Ii ◦ (τ0 ◦ τi) = Li +Ei, (15.5.17)

with Li,Ei, τi and τ0 as unknowns. Then we can only expect L? to recovers the

low-rank pattern Io up to a translation and scaling in each axis, i.e.,

L? = Io ◦ τ, for some τ =



a 0 t1
0 b t2
0 0 1


 . (15.5.18)

Each of the N programs provide its own estimate of the interested τ0.

There are many possible ways we can use all the N images together and try to

estimate a common solution for τ0 and Io. The most straightforward way is to

lump all the objective functions together and enforce that the recovered Li are

all the same: Therefore, the natural optimization problem associated with this

problem becomes

min

N∑

i=1

‖Li‖∗ + ‖Ei‖1,

subject to Ii ◦ (τ0 ◦ τi) = Li +Ei, Li = Lj . (15.5.19)

One can use optimization techniques similar to that of TILT to solve the above

optimization problem, such as ALM and ADMM. However, having too many

constraining terms affects the convergence of such algorithms.

To relax the equality constraints Li = Lj , we may only need to require they

are correlated. So an alternative is to concatenate all the recovered low-rank

textures as submatrices of a joint low-rank matrix:

Lc
.
= [L1,L2, . . . ,LN ], Lr

.
= [L∗1,L

∗
2, . . . ,L

∗
N ], E

.
= [E1,E2, . . . ,EN ].

Then we try to simultaneously align the columns and rows of Li by minimizing

the ranks of Lc and Lr:

min ‖Lc‖∗ + ‖Lr‖∗ + λ‖E‖1,
subject to Ii ◦ (τ0 ◦ τi) = Li +Ei, (15.5.20)

with Li,Ei, τ0, τi as unknowns. Notice that, by comparing to equation (15.5.19),

the new optimization program has just half number of constraints and hence is

easier to solve. In addition, it is insensitive to illumination and contrast change

across different images as it does not require the recovered the images Li to be

equal in values.

Remark 15.3 (High-order Low-rank Tensors). In fact, one may view the stack

of images Lc = [L1,L2, . . . ,LN ] as a three-dimensional tensor. When calibrated

correctly, this tensor is supposed to be highly structured: not only is each slice Li a

low-rank matrix, but also all slides are highly correlated. As we have discussed in

Section 6.3 of Chapter 6, the above convex relaxation of Lc is only for one Tucker
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(a) Input image with an initial window (b) Lens distortion removed

Figure 15.12 Calibration from a single image in the Toolbox [Bou].

rank of this tensor. Based on our study there, from the compressive sensing

perspective this relaxation is not optimal. Nevertheless, here for higher calibration

accuracy, we actually desire higher resolution of the images. The computational

cost is usually not a main concern as the calibration process is typically done

offline.

It can be shown (see [ZMM11]) that under general conditions, when the num-

ber of images N ≥ 5, then the optimal solution to the above program will be

unique and

τ0? = τ0, K? = K, Ri? = Ri, i = 1, . . . , N.

In practice, the method actually works with as few as a single (N = 1) image (of

low-rank texture). To calibrate the camera from a single image, we have to work

with fairly strong assumptions, say that the principal point (ox, oy) is known

(and simply set as the center of the image) and the pixel is square fx = fy.

Then from the image, one can calibrate the focal length as well as eliminating

the lens distortion kc’s. Figure 15.12 shows an example with an image given

in the standard toolbox. As we see in Figure 15.12(b), the radial distortion is

completely removed by the TILT algorithm.

Notice that the low-rank texture based calibration method does not require

precise geometry about the calibration rig. Hence one does not have to use a

checkerboard pattern and in principle can utilize any low-rank structures (such

as a building facade) for calibration purposes. Figure 15.13 shows two examples

of using the TILT algorithm to estimate and correct the radial lens distortion of

a fisheye camera (from a single image).
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Figure 15.13 Rectify fisheye images with significant lens distortion. Left: input images
with selected initialization windows (green); Middle: lens distortion removed images
with final converged windows (red); Right: rectified low-rank textures.

15.6 Notes

The story presented in this chapter follows from the original work of [ZLGM10,

ZGLM12] on the TILT method and its extensions to curved surface [ZLM11],

camera calibration [ZMM11], and texture inpainting [LRZM12]. There are many

other extensions that we give a brief account below.

3D Vision in Structure Scenes.
Man-made environments are rich of objects with structured shapes and textures.

TILT provides a useful tool to harness one important type of holistic structure

in a scene for 3D reconstruction purposes. It enables us to process and extract

geometric information that is accurately encoded in large regions of the image,

instead of local primitives such as corner-like or edge-like features which are

used in conventional 3D reconstruction methods. Successfully harnessing holistic

structures seems to be the key to future more accurate and robust 3D reconstruc-

tion methods. One may refer to [MZYM11] for some early promising results.

Learning to Detect Structures.
Currently, the TILT method requires to know the general location of the struc-

tured region in the image. To automatically initialize TILT with a region of

interest is essentially a detection or recognition problem. To this end, one can de-

velop effective low-rank texture detectors with learning-based methods, similar to

learning to detect other holistic structures such as wireframes [ZQZ+19,ZQM19],

vanishing points [ZQHM19], 2D planes [LKG+19], and 3D symmetry [ZLM20].
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Alignment of Multiple Correlated Images.
In the same spirit of TILT, transformed sparse or low-rank models have also

been explored and utilized in the work for sparsity-based robust face alignment

and recognition [WWG+09,WWG+12] and for low-rank based robust multiple-

image alignment method RASL [PGW+12]. As we have discussed in Section 6.3

of Chapter 6, when a matrix is simultaneously low-rank and sparse or multiple

aligned images form a three-dimensional tensor, the convex relaxation approach

may not be the optimal choice. Hence it would be very interesting to investigate

whether certain nonconvex formulations can lead to even better solutions for

these tasks.

Extension to Multiple Nonlinear Low-dimensional Structures.
In this chapter, we see how to recover primarily one low-dimensional structure

under certain nonlinear transformation. We see the convex nuclear norm and `1

norm are rather effective in promoting the desired low-dimensional property in

the solution. In the next and final chapter of the book, we will see how to recover

a mixture of multiple low-dimensional structures under certain nonlinear trans-

formation. In that more challenging context, we will resort to a more accurate,

but nonconvex, measure for compactness: the lossy coding length in terms of the

“log det(·)” function (as we have seen in Exercise 7.4 of Chapter 7).

Low-dimensional Structures and Group Equivariance and Invariance.
From the work of transformed low-dimensional structures, one may observe a

common phenomenon: a class of deformations G can be correctly recovered

from a deformed low-dimensional structure as long as the deformations (or

their infinitesimal actions) are “incoherent” with the low-dimensional struc-

ture. That is, the Jacobian ∇τI with respect to a deformation τ ∈ G needs

to be “incoherent” to the low-dimensional structure of I. The precise conditions

that would guarantee (at least local) correctness and success of the recovered

deformation merit a more thorough examination in the future. Methods like

TILT [ZLGM10, ZGLM12], RASL [PGW+12], and face alignment [WWG+12]

provide compelling empirical evidences that low-dimensional structures in the

data are the key to ensure true “equivariance,” with respect to any group of

transformations of interest.

In the next Chapter, we will encounter yet again another interaction between

group invariance and low-dimensional structures. In particular, we will see why

sparsity is actually necessary in order to ensure that classification tasks (such

as face recognition) can be truly “invariant” to certain group transformations

such as translation. Both work in this chapter and that in the next suggest

it is extremely important to understand the relationship (or tradeoff) between

low-dimensional structures and group transformations. Our current understand-

ing (and results) remain rather limited and this is definitely a promising new

direction for future study.
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“What I cannot create, I do not understand.”
– Richard Feynman

16.1 Introduction

In the past decade or so, (deep) neural networks have captured people’s imagi-

nation through their empirical success in learning problems involving real-world

high-dimensional data such as images, speech, and text [LBH15]. Nevertheless,

there is quite a bit of mystery as to how deep networks achieve such striking

results. Modern deep networks are typically designed through trial and error.

Then they are typically trained and deployed as “black boxes” which implement

desired input-output relationships, but whose inner workings are unclear. As a

consequence, it is not easy to rigorously guarantee the performance of a trained

network, such as being truly invariant to transformation [AW18,ETT+17] or not

overfitting noisy or arbitrarily assigned class labels [ZBH+17].

In the final chapter of this book, we establish fundamental connections be-

tween the practice of deep neural networks and the theory for low-dimensional

structures developed in this book. Hence, mathematical concepts, principles, and

methods developed in this book can help us to understand, interpret, and even

improve the practice of deep learning, or learning from high-dimensional data in

general. As this is still an active research field, we will provide only an overview

of one promising framework, which approaches the data classification problem1

from the perspective of data compression and discriminative representation.

As we have seen in the previous chapter, low-dimensional structures of real-

world data often are not linear (low-rank) nor piecewise linear (sparse). The

structure can be deformed by certain nonlinear transform. For a classification

task then, the (mixed) data from all classes typically lie on multiple nonlinear

low-dimensional structures (or distributions), one per class. In this chapter, we

will see how a few key ingredients that we have introduced and studied in this

1 Image classification is where deep learning demonstrated the initial success that has
catalyzed the recent explosion of interest in these models and techniques [KSH12].
Although we will focus on classification only in this chapter, the basic ideas and same

principles can be naturally generalized to the case of regression.
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book, including measures that promote low dimensionality, gradient schemes for

optimization, sparsifying dictionaries, and convolutions for shift invariance, can

be naturally integrated to learn a discriminative linear representation for such

mixed low-dimensional data. Deep networks most naturally arise in this context

as an optimization scheme to achieve this objective. In particular, as we will see

they can be constructed as “white boxes” from first principles.

In the remainder of this section, we give a brief introduction to deep networks.

In Section 16.2, we introduce a measure of low-dimensionality, namely coding

rate reduction, as a principled objective for learning a discriminative and infor-

mative representations for classification. In Section 16.3, we show how a basic

iterative gradient scheme to optimize this objective naturally leads to a typical

deep network, entirely as a “white box.” All modern deep networks (for classi-

fication) share the same characteristics of its architecture. If we further enforce

the classification to be invariant to shift or translation, the network naturally

becomes a deep convolutional network. In Section 16.4, we use a basic problem of

classifying data lying on one-dimensional (nonlinear) submanifolds to illustrate

why a deep network, of tractable size, can provide rigorous guarantees for cor-

rect classification under proper conditions. The network’s width and depth can

be naturally interpreted as statistical and computational resources, respectively,

similar to those needed in a compressive sensing scheme for low-dimensional

models.

So at high levels, one may view that Section 16.3 justifies the necessity of deep

network architectures, from the perspective of optimizing a principled objective;

while Section 16.4 characterizes sufficient conditions on when such a deep net-

work provides tractable guarantees for the given classification task, if additional

fine-tuning by back propagation is conducted. Finally in Section 16.5, we lay out

some exciting open problems that emerge from interpreting deep networks from

the perspective of learning low-dimensional models via iterative optimization.

16.1.1 Deep Learning in a Nutshell

It is arguably easiest to illustrate deep learning through the task of classification.

The typical setting is: we are given labelled samples {(x1,y1), . . . , (xm,ym)},
where the xi are drawn from a mixture of k distributions D = {Dj}kj=1, and the

yi indicate which mixture component generated each observation xi. Here, we

assume that the class labels yi ∈ Rk are encoded in “one-hot” format:2:

yi = [0, . . . , 0, 1
j-th entry

, 0, . . . , 0]∗ ∈ Rk.

2 In a more general interpretation of the label information, one may use the k-dimensional

vector yi to indicate the probability of a sample xi belonging to each of the k classes.

Hence each entry of y can be a continuous number in [0, 1] and all entries sum to 1. In the
case of regression, when one tries to approximate a continuous function (defined on each of

the classes), we may also allow the value of the corresponding entry to be a continuous

number.
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Figure 16.1 Classification as Sparse Representation: High-dimensional data
x ∈ Rn which lie on a mixture of low-dimensional submanifolds Mj within a manifold
M. y is the class label of x represented as a one-hot vector in Rk. The goal is to learn
a nonlinear mapping f(·) : x 7→ y.

Notice that although the number of classes k may be large, the vector yi is

always one-sparse.3 For the task of classification, the goal of (deep) learning is

to solve the inverse problem of mapping the input x ∈ Rn to its (sparse) label

vector y ∈ Rk.4 We denote this mapping as f : Rn → Rk:

f(·) : x 7→ y.

As we will see, when the observations xi are high dimensional, this task is

greatly facilitated by leveraging low-dimensional structure in the class distri-

butions D1, . . .Dk. That is, the support of each of the distributions Dj is on

certain low-dimensional submanifolds, denoted as Mj , as illustrated in Figure

16.1.

Extensive empirical studies in recent years have shown that for many practical

datasets (images, audios, and natural languages, etc.), the possibly complicated

and nonlinear mapping y = f(x) can be effectively modeled by a deep net-

work [GBC16].5 A deep network is a composition of a series of simple maps,

called “layers.” Each layer, say denoted as f `(·), is composed of a linear trans-

form, represented by a matrix W `, followed by a simple (entry-wise) nonlinear

activation function φ(·).6 More precisely, a network of L layers can be defined

recursively as:

z`+1 = f `(z`)
.
= φ(W `z`), ` = 0, 1, . . . , L− 1, z0 = x, (16.1.1)

where {W `}L−1
`=0 are tunable parameters of the network7 and φ(·) is the nonlinear

3 We have seen a similar situation before in which we interpreted class labels as sparse

vectors: the robust face recognition problem studied in Chapter 13.
4 Be aware that in the literature of deep learning, it is customary to use x as the input and
y as the output. In compressive sensing, as in the face recognition application of Chapter

13, we instead use x as the sparse signal to be recovered from an input image y.
5 Notice that in the setting of face recognition, such an inverse problem is solved by an

iterative algorithm such as the ISTA or FISTA introduced in Chapter 8.
6 For simplicity, we here ignore for now, some other operations between layers such as batch

normalization and dropouts etc. but will discuss their roles later.
7 There might be additional structures such as convolution in the linear transform W `.
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activation function.8 For simplicity, we denote the overall map as: f(x,θ) : x 7→
y and use θ ∈ Θ to denote all the network parameters {W `}L−1

`=0 and possibly

some in the activation function φ too:

f(x,θ)
.
= φ(WL−1φ(· · ·φ(W 1φ(W 0x)) · · · )) (16.1.2)

= fL−1 ◦ · · · ◦ f1 ◦ f0(x). (16.1.3)

The goal of tuning the parameters θ of the network is for the output of this

map to best match the class label y for samples x from the distribution D. In

machine learning, this is often done by minimizing the cross-entropy loss:9

min
θ∈Θ

LCE(θ,x,y)
.
= −E

[
〈y, log[f(x,θ)]〉

]
. (16.1.4)

Hence, given a large (presumably correctly) labelled dataset {(xi,yi)}mi=1, one

solves the following (nonconvex) program:

min
θ∈Θ

LCE(θ,X,Y )
.
= − 1

m

m∑

i=1

〈yi, log[f(xi,θ)]〉, (16.1.5)

where log[·] is entry-wise for the vector-valued f(x,θ) ∈ Rk. Since this loss

function is in the form of a finite sum and the sample size m is very large (e.g.

millions), the function is typically optimized by using variants of the stochastic

gradient method (SGD) introduced in Section 8.6.4 of Chapter 8:

θk+1 = θk − γk ·
∂L(Xk,θ)

∂θ

∣∣∣
θk
, (16.1.6)

where the gradient ∂L
∂θ

∣∣
θk

is evaluated approximately using a random batchXk ⊂
X of samples at each iteration. Such optimization schemes have been efficiently

implemented on many software platforms, (e.g., Caffe, PyTorch and TensorFlow).

These numerical tools have significantly boosted the utility and popularity of

deep learning.

16.1.2 The Practice of Deep Learning

Above, we have briefly described basic deep network structures and training

methods. A vast array of modifications to the basic approach have been proposed,

with the goal of improving the ease of training or performance of the learned

network. An incomplete list of examples include:

• choices in loss functions or regularizations on parameters W ` [KH92,SZ14];

• different choices in the activation function φ (16.1.1) [XWCL15,NIGM18];

• width and depth of the networks [BC14,SLJ+15,LPW+17,DLL+19,AZLS19];

• skip connections across layers f `(·) [SGS15,RFB15,HZRS16];

8 Popular choices for φ(·) include the Sigmod, Arctan, and more recently the rectified linear

unit (ReLU) function. Sometimes φ(·) may also contain some tunable parameters.
9 The cross entropy loss is convenient for multi-class classification tasks. In practice, for tasks

such as functional regression, the typical `2 loss: ‖y − f(x,θ)‖22 is also commonly used.
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• normalization of feature z` in each layer [IS15,BKH16,UVL16,WH18,MKKY18];

• structures (convolutions) in the linear transformW ` [LBBH98,KSH12,Cho17];

• downsampling (pooling) and upsampling operations between layers [SMB10];

• initialization of the parameters θ [LBOM12,GB10,HZRS15,XBSD+18,HXP20];

• choices in the batch size |Xk| (16.1.6) [HHS17,ML18,LSPJ18];

• learning rates γk for the SGD algorithm (16.1.6) [LBOM12,LH16,GKXS18];

• random dropout of connections during training [SHK+14,CMH+18];

• early stopping of the training sometimes [GJP95,Pre98,YRC07];

• different optimization algorithms [LNC+11,KB14,Mar14,MG15,BCN18,BJT19].

It can be challenging for practitioners to navigate this somewhat dizzying array of

variations over the basic themes of deep learning. One recent trend in industrial

practice is to leverage random search to identify architectures or training strate-

gies that give better empirical performance, e.g., Neural Architecture Search

(NAS) [ZL17,BGNR17], AutoML [HKV19], and Learning to Learn [ADG+16].

In subsequent sections, we will describe how ideas from low-dimensional data

modeling can suggest principled architectures and clarify the roles of various

architectural and algorithmic choices. In fact, a number of themes from low-

dimensional data modeling recur throughout the deep learning practice:

• Network Architectures from Unrolled Optimization Algorithms. The widely

used ReLU nonlinearity closely resembles the proximal operator for the (non-

negative) `1 norm. In fact, the proximal gradient algorithms that we in-

troduced in Chapters 8–9 can be interpreted as particular neural networks,

since they interleave linear operations with nonlinearities [GL10, LCWY19,

SPRE18, PRSE18, MLE19]. This connection suggests new network designs

from unrolling sparse coding algorithms for solving inverse problems from

data with intrinsic low-dimensional structures [WLY+15, SLX+16, SLLB17,

BJPD17, JMFU17, MJU17, NWMS18, OJB+20]. Some even outperform pop-

ular generic networks (e.g. ResNet and U-Net) with much more compact or

simpler models [SNT20,LCBD20].

• Isometry as a Design Principle. Because network training algorithms propa-

gate information through a large number of layers, it is important that these

operations implement near-isometries. This can be achieved by properly initial-

izing the weights [GB10,HZRS15], normalizing the features [IS15], or regular-

izing the network structure [SGS15,HZRS16], and can suggest modifications to

network components such as nonlinearities [QYW+20]. This (empirical) prin-

ciple suggests analogies to the restricted isometry property arising in sparse

and low-rank recovery (see Chapters 3–4).

• Explicit or Implicit Regularization. Certain regularization strategies can be

interpreted as encouraging low-dimensional structure in the learned network.

A principal example is dropout [SHK+14], which has been shown to induce a

form of low-rank (nuclear norm) regularization [CMH+18, MAV18, PLVH20]

(see the exercises of Chapter 7). Sparse routing is also proven to be the key

to enhance training and performance of ultra-large scale models [FZS21].



538 Deep Networks for Classification

Many current mysteries around the generalization of learned networks can

be approached from the perspective of implicit regularization induced by

particular optimization methods or low-dimensional structures of the data

[GLSS18,SHN+18,LMZ18,YZQM20].

In the remainder of this chapter, we will sketch a new approach to deriving

neural networks from first principles and guaranteeing their performance on data

exhibiting low-dimensional structure. The approach will provide some plausible

explanations to the above connections. It leverages a connection to lossy data

compression, which effectively encourages the network to embed mixed nonlinear

data structures onto unions of incoherent linear subspaces.

16.1.3 Challenges with Nonlinearity and Discriminativeness

This chapter entails a significant expansion of scope compared to the first part

of this book, which studied the recovery of sparse, low-rank or atomic structures

from linear measurements. These models are, in a sense, piecewise linear. For

instance, k-sparse vectors in the space Rn model data that lie on a particular

union of k-dimensional linear subspaces, aligned with the standard basis. Our

discussion of dictionary learning in Chapters 6 and 7 shows how to extend these

models to unions of subspaces that are not aligned with the standard basis (and

not known ahead of time). Nevertheless, real-world high-dimensional data, such

as images, often exhibit nonlinear structure, due to nonlinear nuisance factors

such as deformation. We have seen many examples of this in the application to

structured texture recovery in Chapter 15.

In general, the distribution D = {Dj}kj=1 of a real (mixed) dataset, say in a

typical setting for classification or clustering, is more likely to have its support

on a mixture of low-dimensional nonlinear submanifolds {Mj}kj=1, as illustrated

in Figure 16.2 left. Hence, for the models and methods of this book to be appli-

cable to real-world classification tasks, we have to overcome at least two major

challenges:

• From Nonlinear to Linear: How to learn from the data a nonlinear (feature)

mapping, say f(·,θ) : x 7→ z, such that we can first transform x on nonlinear

submanifolds to z with linear structures, such as (a union of) low-dimensional

subspaces.10

• From Separable to Discriminative: How to transform the resulting (separable)

linear subspaces to be highly discriminative ones, i.e., in positions such that

the subspaces are highly incoherent (preferably orthogonal) to one another, as

illustrated in Figure 16.2 right.

10 Such a linear representation is highly desirable for many practical purposes. For instance,
a linear superposition of features in the same subspace could be interpreted as a new

instance in the same class. There is evidence that linear subspace is the kind of

representations preferred by nature too, say for object recognition [CT17].
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Figure 16.2 A mixed distribution D = {Dj} of high-dim data x ∈ Rn is supported on a
manifold M which can be a mixture of multiple low-dimensional submanifolds {Mj}.
We want to learn a map f(x,θ) such that zi = f(xi,θ) are on a union of
low-dimensional subspaces {Sj}.

Such a discriminative linear representation z can easily facilitate subsequent

tasks: its linear nature makes linear interpolation or extrapolation of the features

z (in each subspace) meaningful, and its discriminative nature makes prediction

of the class label y easy, say by training a (linear) classifier h(z):11

x
f(x,θ)−−−−−−→ z(θ)

h(z)−−−−−→ y. (16.1.7)

Notice that both challenges require us to perform nonlinear transformations of

the data or features. Acute readers may have guessed it: The role of a deep net-

work is precisely to model and perform such a nonlinear transformation! Now the

remaining difficult questions are why such a nonlinear map should be represented

by a composition of many simple layers, and what structures and properties the

layers and operators need to have in order to efficiently realize such a map?

Which parts of the network need to be learned and trained and which can be

determined in advance? In the end, how to evaluate the optimality of the re-

sulting network? To provide answers to these fundamental questions, we need a

principled approach.

16.2 Desiderata for Learning Discriminative Representation

Whether the given data X of a mixed distribution D can be effectively classified

depends on how separable (or discriminative) the component distributions Dj are

(or can be made). One good working assumption is that the distribution of each

class has relatively low-dimensional intrinsic structures.12 Hence we may assume

the distribution Dj of each class has a support on a low-dimensional submanifold,

11 Intuitively speaking, the more incoherent the subspaces are, the larger the margin hence

more generalizable the classifier would be.
12 There are many reasons why this assumption is plausible: 1. high dimensional data are

highly redundant; 2. data that belong to the same class should be similar and correlated to
each other; 3. typically we only care about equivalent structures of x that are invariant to

certain classes of transformations, as we will see in the next section.
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sayMj with dimension dj � n, and the distribution D of x is supported on the

mixture of those submanifolds, M = ∪kj=1Mj , in the high-dimensional ambient

space Rn, as illustrated in Figure 16.2 left.

With the manifold assumption in mind, we want to learn a smooth mapping

z = f(x,θ) that maps each of the submanifolds Mj ⊂ Rn to a linear subspace

Sj ⊂ Rd (see Figure 16.2 right). For the resulting features to be easy to classify

or cluster, we require the learned representation to have the following properties:

1 Between-Class Discriminative: Features of samples from different classes or

clusters should belong to different linear subspaces that are highly incoherent

or uncorrelated.

2 Within-Class Compressible: Features of samples from the same class/cluster

should be compressible in a sense that they belong to a relatively low-dimensional

linear subspace.

3 Maximally Informative Representation: Dimension (or variance) of features for

each class/cluster should be as large as possible as long as they stay incoherent

from those of the other classes.

Notice that, although the intrinsic structures of each class/cluster may be low-

dimensional, they are by no means simply linear in their original form (as we

will elaborate on more in Section 16.4). The more ideal case when the data X

lie on multiple linear subspaces has been systematically studied as generalized

principal component analysis (GPCA) [VMS16]. Here the subspaces {Sj} ob-

tained after the nonlinear mapping f(·) can be viewed as nonlinear generalized

principal components for the original (mixed) data X. If the resulting optimal

subspaces are orthogonal (or statistically independent), they can also be viewed

as nonlinear independent components of the data.

16.2.1 Measure of Compactness for a Representation

Although the above properties are all highly desirable for the learned representa-

tion z, they are by no means easy to achieve. Recent work [PHD20] shows that

the representations learned via the popular cross-entropy loss (16.1.5) expose

a neural collapsing phenomenon, where within-class variability and structural

information are completely suppressed and ignored, as we will also see in the

experiments. So are the above list of properties compatible so that we can ex-

pect to achieve them all at once? More specifically, is it possible to find a simple

but principled objective that can promote all these desired properties for the

resulting representations?13

The key to these questions is to find a principled “measure of compactness”

for the distribution of a random variable z or from its finite samples Z. Such a

measure should directly and accurately characterize intrinsic geometric or statis-

tical properties of the distribution, in terms of its intrinsic dimension or volume.

13 In a similar spirit of the `1 norm promoting sparsity and the nuclear norm ‖ · ‖∗ promoting

low-rankness.
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Unlike cross-entropy (16.1.4), such a measure should not depend explicitly on

class labels so that it can work uniformly in all supervised, semi-supervised,

self-supervised, and unsupervised settings.

Low-dimensional Degenerate Distributions.
In information theory [CT91], the notion of entropy H(z) is designed to be such a

measure.14 However, entropy is not well-defined for continuous random variables

with degenerate distributions.15 This is unfortunately the case here. To alleviate

this difficulty, another related concept in information theory, more specifically

in lossy data compression, that measures the “compactness” of a random dis-

tribution is the so-called rate distortion [CT91]: Given a random variable z and

a prescribed precision ε > 0, the rate distortion R(z, ε) is the minimal number

of binary bits needed to encode z such that the expected decoding error is less

than ε. That is, say in terms of the `2-norm, we have

E[‖z − ẑ‖2] ≤ ε
for the decoded ẑ.

Nonasymptotic Rate Distortion for Finite Samples.
When evaluating the lossy coding rate R, one practical difficulty is that we

normally do not know the distribution of z. Instead, we have a finite number

of samples as learned representations where zi = f(xi,θ) ∈ Rd, i = 1, . . . ,m,

for the given data samples X = [x1, . . . ,xm]. Fortunately, from the perspective

of lossy data compression, [MDHW07,VMS16] have provided a precise estimate

on the number of binary bits needed to encoded finite samples from a subspace-

like distribution. In order to encode the learned representation Z = [z1, . . . ,zm]

up to a precision ε, the total number of bits needed is given by the following

expression16:

L(Z, ε)
.
=

(
m+ d

2

)
log det

(
I +

d

mε2
ZZ∗

)
. (16.2.1)

See Figure 16.3 for an illustration. Therefore, the compactness of learned features

as a whole can be measured in terms of the average coding length per sample

(as the sample size m is large), a.k.a. the coding rate subject to the distortion ε:

R(Z, ε)
.
=

1

2
log det

(
I +

d

mε2
ZZ∗

)
. (16.2.2)

As we have seen in Exercise 7.4 of Chapter 7, the log det(·) function is a smooth

but nonconvex surrogate for promoting low-dimensionality of the representation

14 given the probability density p(z) of a random variable, H(z)
.
= −

∫
p(z) log p(z) dz.

15 The same difficulty resides with evaluating mutual information I(x,z) for degenerate
distributions.

16 This formula can be derived either by packing ε-balls into the space spanned by Z or by

computing the number of bits needed to quantize the SVD of Z subject to the precision,

see [MDHW07] for proofs.
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Figure 16.3 Lossy coding scheme: Given a precision ε, we pack the space/volume
spanned by the data Z with small balls of diameter 2ε. The number of balls needed
to pack the space gives the number of bits needed to record the location of each data
point zi, up to the given precision.

Z. We will soon discuss why here we need the a more accurate nonconvex sur-

rogate for low-dimensionality rather than the convex nuclear norm ‖ · ‖∗. In

addition, the particular choice of log det(·) seems to be rather fundamental and

we will reveal many of its magical properties soon.

Rate Distortion of Data with a Mixed Distribution.
In general, the features Z of multi-class data may belong to multiple low-

dimensional subspaces. To evaluate the rate distortion of such mixed data more

accurately, we may partition the data Z into multiple subsets: Z = Z1∪· · ·∪Zk,

with each in one low-dim subspace. So the above coding rate (16.2.2) is accurate

for each subset. For convenience, let Π = {Πj ∈ Rm×m}kj=1 be a set of diagonal

matrices whose diagonal entries encode the membership of the m samples in the

k classes.17 Then, according to [MDHW07], with respect to this partition, the

average number of bits per sample (the coding rate) is

Rc(Z, ε | Π)
.
=

k∑

j=1

trace
(
Πj
)

2m
log det

(
I +

d

trace
(
Πj
)
ε2
ZΠjZ∗

)
. (16.2.3)

Notice that when Z is given, Rc(Z, ε | Π) is a concave function of Π. The

function log det(·) in the above expressions has been long known as an effective

heuristic for rank minimization problems [FHB03], as we have explored in the

exercises of Chapter 7. As it tightly characterizes the rate distortion of Gaussian

or subspace-like distributions, finding the clustering Π that minimizes

min
Π

Rc(Z, ε | Π) (16.2.4)

has been shown to be very effective in clustering or classification of data with

mixed low-dimensional (linear) structures [MDHW07, WTL+08, KPCC15]. We

17 More precisely, the diagonal entry Πj(i, i) of Πj indicates the probability of sample i

belonging to class j. So Π lies in a simplex: Ω
.
= {Π | Πj ≥ 0, Π1 + · · ·+ Πk = Im×m}.
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will soon reveal a few surprisingly good properties of this function in the new

context.

16.2.2 Principle of Maximal Coding Rate Reduction

On one hand, in the supervised learning setting, Π is given in advance, and we

like to learn a good representation Z. For learned features to be discriminative,

features of different classes/clusters are preferred to be maximally incoherent to

each other, similar to the notion of “incoherence” that we have studied in Chapter

3. Hence they together should span a space of the largest possible volume (or

dimension) and the coding rate of the whole set Z should be as large as possible.

On the other hand, learned features of the same class/cluster should be highly

correlated and coherent. Hence, each class/cluster should only span a space (or

subspace) of a very small volume and the coding rate should be as small as

possible. Therefore, a good representation Z of X is one such that, given a

partition Π of Z, achieves a large difference between the coding rate for the

whole and the average rate for all the subsets:

∆R(Z,Π, ε)
.
= R(Z, ε)−Rc(Z, ε | Π). (16.2.5)

If we choose the feature mapping z = f(x,θ) to be a deep neural network,

the overall process of the feature representation and the resulting rate reduction

w.r.t. certain partition Π can be illustrated by the following diagram:

X
f(x,θ)−−−−−−→ Z(θ)

Π,ε−−−−→ ∆R(Z(θ),Π, ε). (16.2.6)

Note that ∆R is monotonic in the scale of the features Z. So to make the

amount of reduction comparable between different representations,18 we need to

normalize the scale of the learned features, either by constraining the Frobenius

norm of each class Zj to scale with the number of features in Zj ∈ Rd×mj :
‖Zj‖2F = mj or by normalizing each feature to be on the unit sphere: zi ∈ Sd−1.

This formulation offers a natural justification for the need of “batch normal-

ization” in the practice of training deep neural networks [IS15]. An alternative,

arguably simpler, way to normalize the scale of learned representations is to

ensure that the mapping of each layer of the network is approximately isomet-

ric [QYW+20], as we have discussed in the previous subsection.

Once the representations are comparable, our goal becomes to learn a set of

features Z(θ) = f(X,θ) and their partition Π (if not given in advance) such

that they maximize the reduction between the coding rate of all features and

that of the sum of features w.r.t. their classes:

max
θ,Π

∆R
(
Z(θ),Π, ε

) .
= R(Z(θ), ε)−Rc(Z(θ), ε | Π), s.t. Z ⊂ Sd−1, Π ∈ Ω.

(16.2.7)

18 Here different representations can be either representations associated with different
network parameters or representations learned after different layers of the same deep

network.
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We refer to this as the principle of maximal coding rate reduction (MCR2), an

embodiment of a famous saying:

“The whole is greater than the sum of the parts.” – Aristotle.

Note that for the clustering purpose alone, one may only care about the sign

of ∆R for deciding whether to partition the data or not, which leads to the

greedy clustering algorithm in [MDHW07].19 Here to seek or learn the most

discriminative representation, we further desire:

The whole is maximally greater than the sum of the parts!

Remark 16.1 (Relationship to Information Gain). The maximal coding rate

reduction can be viewed as a generalization to Information Gain (IG), which

aims to maximize the reduction of entropy of a random variable, say z, with

respect to an observed attribute, say π: maxπ IG(z,π)
.
= H(z)−H(z | π), i.e.,

the mutual information between z and π [CT91]. Maximal information gain has

been widely used in areas such as decision trees [Qui86]. However, MCR2 is

used differently in several ways: 1) One typical setting of MCR2 is when the data

class labels are given, i.e. Π is known, MCR2 focuses on learning representations

z(θ) rather than fitting labels. 2) In traditional settings of IG, the number of

attributes in z cannot be so large and their values are discrete (typically binary).

Here the “attributes” Π represent the probability of a multi-class partition for

all samples and their values can even be continuous. 3) As mentioned before,

entropy H(z) or mutual information I(z,π) [HFLM+18] is not well-defined for

degenerate continuous distributions whereas the rate distortion R(z, ε) is and can

be accurately and efficiently computed for (mixed) subspaces, at least.

16.2.3 Properties of the Rate Reduction Function

In theory, the MCR2 principle (16.2.7) benefits from great generalizability and

can be applied to representations Z of any distributions with any attributes Π as

long as the rates R and Rc for the distributions can be accurately and efficiently

evaluated. The optimal representation Z? and partition Π? should have some

interesting geometric and statistical properties. We here reveal nice properties of

the optimal representation with the special case of subspaces, which have many

important use cases in machine learning. When the desired representation for

Z is multiple subspaces, the rates R and Rc in (16.2.7) are given by (16.2.2)

and (16.2.3), respectively. Let us assume the maximal rate reduction is achieved

at the optimal representation, denoted as Z? = Z1
? ∪ · · · ∪ Zk? ⊂ Rd, with the

dimension of each subspace rank
(
Zj?
)
≤ dj . Then, one can show that Z? has the

19 Strictly speaking, in the context of clustering finite samples, one needs to use the more

precise measure of the coding length mentioned earlier, see [MDHW07] for more details.
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Figure 16.4 Comparison of two learned representations Z and Z′ via reduced rates: R
is the number of ε-balls packed in the joint distribution and Rc is the sum of the
numbers for all the subspaces (the green balls). ∆R is their difference (the number of
blue balls). The MCR2 principle prefers Z (the left one).

following desired properties (see [YCY+20] for a formal statement and detailed

proofs).

Theorem 16.2 (Optimal Representation (informal statement)). Suppose Z? =

Z1
? ∪ · · · ∪Zk? is the optimal solution that maximizes the rate reduction (16.2.7).

We have:

• Between-class Discriminative: As long as the ambient space is adequately large

(d ≥∑k
j=1 dj), the subspaces are all orthogonal to each other, i.e. (Zi?)

∗Zj? = 0

for i 6= j.

• Maximally Diverse Representation: As long as the coding precision is ade-

quately high, i.e., ε4 < minj

{
mj
m

d2

d2j

}
, each subspace achieves its maximal

dimension, i.e. rank
(
Zj?
)

= dj. In addition, the largest dj − 1 singular values

of Zj? are equal.

In other words, in the case of subspaces, the MCR2 principle promotes em-

bedding of data into multiple independent subspaces, with features distributed

nearly isotropically in each subspace (except for possibly one dimension). In ad-

dition, among all such discriminative representations, it prefers the one with the

highest dimensions in the ambient space.

Remark 16.3 (Rate Distortion log det(·) versus the Nuclear Norm). To encour-

age the learned features to be incoherent between classes, the work of [LQMS18]

has proposed to maximize the difference between the nuclear norm of the whole

Z and its subsets Zj, called the orthogonal low-rank embedding (OLE) loss:

max
θ

OLE(Z(θ),Π)
.
= ‖Z(θ)‖∗ −

k∑

j=1

‖Zj(θ)‖∗, (16.2.8)

added as a regularizer to the cross-entropy loss (16.1.4). As we have learned

from Chapter 4, the nuclear norm ‖ · ‖∗ is a nonsmooth convex surrogate for
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low-rankness, whereas log det(·) is smooth concave instead. One can show that

unlike the rate reduction ∆R, OLE is always negative and achieves the maximal

value 0 when the subspaces are orthogonal, regardless of their dimensions. So

in contrast to ∆R, this loss serves as a geometric heuristic for discriminative-

ness but does not promote diversity of the representation. In fact, OLE typically

promotes learning one-dimensional representations per class [LQMS18], whereas

MCR2 encourages learning subspaces with maximal dimensions.

Remark 16.4 (Relation to Contrastive Learning.). If samples are evenly drawn

from k classes, a randomly chosen pair (xi,xj) is of high probability belonging

to difference classes if k is large.20 We may view the learned features of two

samples together with their augmentations Zi and Zj as two classes. Then the

rate reduction

∆Rij = R
(
Zi ∪Zj , ε

)
− 1

2

(
R(Zi, ε) +R(Zj , ε)

)
(16.2.9)

gives a “distance” measure for how far the two sample sets are. We may try to

further “expand” pairs that likely belong to different classes. From Theorem 16.2,

the (averaged) rate reduction ∆Rij is maximized when features from different

samples are uncorrelated (Zi)∗Zj = 0 (see Figure 16.4) and features Zi from the

same sample are highly correlated. Hence, when applied to sample pairs, MCR2

naturally conducts the so-called contrastive learning [HCL06,OLV18,HFW+19].

But MCR2 is not limited to expand (or compress) pairs of samples and can

uniformly conduct “contrastive learning” for a subset with any number of samples

as long as we know they likely belong to different (or the same) classes, say

by randomly sampling subsets from a large number of classes or with a good

clustering method.

16.2.4 Experiments on Real Data

When class labels are provided during training, we assign the membership (di-

agonal) matrix Π = {Πj}kj=1 as follows: for each sample xi with label j, set

Πj(i, i) = 1 and Πl(i, i) = 0,∀l 6= j. Then the mapping f(·,θ) can be learned

by optimizing (16.2.7), where Π remains constant. We apply stochastic gradi-

ent descent to optimize MCR2, and for each iteration we use mini-batch data

{(xi,yi)}mi=1 to approximate the MCR2 loss.

As we will see, in the supervised setting, the learned representation has very

clear subspace structures. So to evaluate the learned representations, we consider

a natural nearest subspace classifier. For each class of learned features Zj , let

µj ∈ Rd be its mean and U j ∈ Rd×rj be the first rj principal components for

Zj , where rj is the estimated dimension of class j. The predicted label of a test

data x′ is given by21 j′ = argminj∈{1,...,k} ‖(I −U jU
∗
j )(f(x′,θ)− µj)‖22.

20 For example, when k ≥ 100, a random pair is of probability 99% belonging to different

classes.
21 This is definitely not the best one can do to use the learned subspaces for classification.

This particular classifier is chosen only for its simplicity.
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Figure 16.5 Left: Principal component analysis (PCA) of features learned with the
MCR2 objective or the cross-entropy. Middel: Principal components of features in
individual classes. Right: Cosine similarity between learned features of all samples.

We consider CIFAR10 dataset [Kri09] and ResNet-18 [HZRS16] for f(·,θ). We

replace the last linear layer of ResNet-18 by a two-layer fully connected network

with ReLU activation function such that the output dimension is 128. We set

the mini-batch size as m = 1, 000 and the precision parameter ε2 = 0.5.

Discriminative and Diverse Linear Features.
We calculate the principal components of representations learned by MCR2 train-

ing and cross-entropy training (16.1.5). For cross-entropy training, we take the

output of the second last layer as the learned representation. The results are

summarized in Figure 16.5. As shown in Figure 16.5 left, we observe that rep-

resentations learned by MCR2 are much more diverse, the dimension of learned

features (each class) is around a dozen, and the dimension of the overall features

is nearly 120, and the output dimension is 128. In contrast, the dimension of

the overall features learned using entropy is slightly greater than 10,22 which is

much smaller than that learned by MCR2. For visualization purposes, we also

compare the cosine similarity between learned representations for both MCR2

22 This observation is consistent with the neural collapsing phenomenon associated with

conventional loss function like cross entropy reported in the recent work [PHD20].
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(c) Rc(Z(θ), ε | Π).

Figure 16.6 Evolution of rates R,Rc,∆R of MCR2 during training with corrupted
labels.

Table 16.1 Classification results with features learned with labels corrupted at different
levels.

Corrupt Ratio 10% 20% 30% 40% 50%
CE Training 90.91% 86.12% 79.15% 72.45% 60.37%
MCR2 Training 91.16% 89.70% 88.18% 86.66% 84.30%

training and cross-entropy training, and the results are presented in Figure 16.5

right. From the figure, for MCR2, we find that the features of different class

are almost orthogonal and yet features of the same class are distributed rather

evenly inside its subspace.

Robustness to Corrupted Labels.
Because MCR2 by design encourages richer representations that preserves intrin-

sic structures from the dataX, training relies less on class labels than traditional

loss such as cross-entropy (CE). To verify this, we train the same network23 using

both CE and MCR2 with certain ratios of randomly corrupted training labels.

Figure 16.6 illustrates the learning process: for different levels of corruption,

while the rate for the whole set always converges to the same value, the rates

for the classes are inversely proportional to the ratio of corruption, indicating

the method only compresses samples with valid labels. The classification results

are summarized in Table 16.1. By applying exact the same training parameters,

MCR2 is significantly more robust than CE, especially with higher ratio of cor-

rupted labels. This can be an advantage in the settings of self-supervised learning

or constrastive learning when the grouping information can be very noisy.

16.3 Deep Networks from First Principles

In the previous section, we have shown the optimal representation Z? that max-

imizes the rate reduction would indeed be both maximally discriminative and

23 Both CE and MCR2 can have better performance by choosing larger models for the

mapping.
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informative. Nevertheless, we do not know what the optimal feature mapping

z = f(x,θ) is and how to obtain it. In the above experiments, we have adopted

a conventional deep network (e.g. the ResNet) as a black box to model the map-

ping and learned its parameters via back propagation. It has empirically shown

that with such a choice, one can effectively optimize the MCR2 objective and

obtain discriminative and diverse representations for classifying real image data

sets.

However, there are several unanswered questions. Although the objective is

more intrinsic and the learned feature representation is arguably more inter-

pretable, the network itself is still not interpretable. It is not clear why any

chosen network is able to optimize the desired MCR2 objective: would there

be any potential limitations? The good empirical results (say with a ResNet)

do not necessarily justify the particular choice in architectures and operators of

the network: why is a layered deep model necessary in the first place; how wide

and deep is adequate; and is there any rigorous justification for the particular

convolutional and nonlinear operators used?

16.3.1 Deep Networks from Optimizing Rate Reduction

To simplify the presentation, we assume for now that the feature z and the input

x have the same dimension d = n. But in general they can be different as we

will soon see, say in the case z are multi-channel features extracted from x.

Let us consider maximizing the rate reduction objective defined in (16.2.5):

max
Z

∆R(Z,Π, ε)
.
=

1

2
log det

(
I + αZZ∗

)

︸ ︷︷ ︸
R(Z,ε)

−
k∑

j=1

γj
2

log det
(
I + αjZΠjZ∗

)

︸ ︷︷ ︸
Rc(Z,ε|Π)

,

(16.3.1)

where to simplify the notation we define α = n/(mε2), αj = n/(tr(Πj)ε2),

γj = tr(Πj)/m for j = 1, . . . , k.

Gradient Ascent for Rate Reduction on the Training Samples.
First let us directly try to optimize the objective ∆R(Z) as a function in the

training samples Z ⊂ Sn−1. To this end, we may adopt the simplest (projected)

gradient ascent scheme (introduced in Chapter 2), for some step size η > 0:

Z`+1 ∝ Z` + η · ∂∆R

∂Z

∣∣∣∣
Z`

subject to Z`+1 ⊂ Sn−1. (16.3.2)

This scheme can be interpreted as how one should incrementally adjust locations

of the current features Z` in order for the resulting Z`+1 to improve the rate

reduction ∆R(Z), as illustrated in Figure 16.7.

Simple calculation shows that the gradient ∂∆R
∂Z entails evaluating the following
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Figure 16.7 Incremental deformation of the training data, marked as “◦”, via gradient
flow. Notice that for points whose memberships are unknown, those marked as “�”,
their gradient cannot be directly calculated yet.

derivatives of the terms in (16.3.1) (we leave the derivation as an exercise to the

reader):

1

2

∂ log det(I + αZZ∗)
∂Z

∣∣∣∣
Z`

= α(I + αZ`Z
∗
` )
−1

︸ ︷︷ ︸
E` ∈Rn×n

Z`, (16.3.3)

1

2

∂
(
γj log det(I + αjZΠjZ∗)

)

∂Z

∣∣∣∣
Z`

= γj αj(I + αjZ`Π
jZ∗` )

−1

︸ ︷︷ ︸
Cj` ∈Rn×n

Z`Π
j . (16.3.4)

Then the complete gradient ∂∆R
∂Z

∣∣
Z`

is of the following form:

∂∆R

∂Z

∣∣∣∣
Z`

= E`︸︷︷︸
Expansion

Z` −
k∑

j=1

γj Cj
`︸︷︷︸

Compression

Z`Π
j ∈ Rn×m. (16.3.5)

Notice that in the above, the matrixE` only depends on Z` and it aims to expand

all the features to increase the overall coding rate; the matrix Cj
` depends on

features from each class and aims to compress them to reduce the coding rate of

each class.

Interpretation of the Two Linear Operators.
For any z` we have

(I + αZ`Z
∗
` )
−1z` = z` −Z`q̂`, (16.3.6)

where

q̂`
.
= argmin

q`

α‖z` −Z`q`‖22 + ‖q`‖22. (16.3.7)

Notice that q̂` is exactly the solution to the ridge regression of z` with all the

data points Z` as regressors. Therefore, E` is approximately (i.e. when m is large

enough) the projection onto the orthogonal complement of the subspace spanned

by columns of Z`. Another way to interpret the matrix E` is through eigenvalue
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Figure 16.8 A little exaggerated interpretation of E` and Cj
` : E` expands all features

by contrasting and repelling features across different classes; Cj
` compresses each class

by contracting the features to a low-dimensional subspace.

decomposition of the covariance matrix Z`Z
∗
` . Assuming that Z`Z

∗
`
.
= U `Λ`U

∗
`

where Λ`
.
= diag{σ1, . . . , σd}, we have

E` = αU ` diag

{
1

1 + ασ1
, . . . ,

1

1 + ασd

}
U∗` . (16.3.8)

Therefore, the matrix E` operates on a vector z` by stretching in a way that

directions of large variance are shrunk while directions of vanishing variance are

kept. These are exactly the directions (16.3.3) in which we move the features

so that the overall volume expands and the coding rate will increase, hence the

positive sign in (16.3.5).Cj
` has a similar interpretation as E. But to the opposite

effect, the directions associated with (16.3.4) are exactly “residuals” of features

of each class deviate from the subspace to which they are supposed to belong.

These are exactly the directions in which the features need to be compressed

back onto their respective subspace, hence the negative sign in (16.3.5). This is

illustrated in Figure 16.8.

Essentially, the two linear operations are determined by data conducting “auto-

regressions” among themselves. The reader may recall that in the Introduction

Chapter 1, we have mentioned the importance of regressions, especially the ridge

regression. As we now see, regression is very much likely one of the ruling op-

erations inside deep (neural) networks too. The recent renewed understanding

about ridge regression in an over-parameterized setting [YYY+20, WX20] indi-

cates that using seemingly redundantly sampled data (from each subspaces) as

regressors do not lead to overfitting.

Gradient Flow Guided Feature Map Increment.
Notice that in the above, the gradient ascent considers all the features Z` =

[z1
` , . . . ,z

m
` ] as free variables. The increment Z`+1 − Z` = η ∂∆R

∂Z

∣∣
Z`

does not

yet give a transform on the entire feature domain z` ∈ Rn. This is because

gradients at points not in the training cannot be computed from (16.3.5), as

illustrated by points marked as “�” in Figure 16.7. Hence, in order to find the
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Figure 16.9 Comparison of Network Architectures. Left: Layer structure of the
ReduNet derived from one iteration of gradient ascent for optimizing rate reduction.
Middle: A layer of ResNet [HZRS16]; and Right: A layer of ResNeXt [XGD+17]. As

we will see in the next section, the linear operators E` and Cj
` of the ReduNet

naturally become (multi-channel) convolutions when shift-invariance is imposed.

optimal feature mapping f(x,θ) explicitly, we may consider constructing a small

increment transform g(·,θ`) on the `-th layer feature z` to emulate the above

(projected) gradient scheme:

z`+1 ∝ z` + η · g(z`,θ`) subject to z`+1 ∈ Sn−1 (16.3.9)

such that:
[
g(z1

` ,θ`), . . . , g(zm` ,θ`)
]
≈ ∂∆R

∂Z

∣∣
Z`
. That is, we need to approximate

the gradient flow ∂∆R
∂Z that locally deforms each (training) feature {zi`}mi=1 with

a continuous mapping g(z) defined on the entire feature space z` ∈ Sn−1.

By inspecting the structure of the gradient (16.3.5), it suggests that a natural

candidate for the increment transform g(z`,θ`) is of the form:

g(z`,θ`)
.
= E`z` −

k∑

j=1

γjC
j
`z`π

j(z`) ∈ Rn, (16.3.10)

where πj(z`) ∈ [0, 1] indicates the probability of z` belonging to the j-th class.24

Notice that the increment depends on 1). A set of linear maps represented by

E` and {Cj
`}kj=1 that depend only on statistics of all features Z` of the training;

2). membership {πj(z`)}kj=1 of any feature z`.

Since we only have the membership πj for the training samples, the func-

tion g(·) defined in (16.3.10) can only be evaluated on the training samples. To

extrapolate the function g(·) to the entire feature space, we need to estimate

πj(z`) in its second term. In the conventional deep learning, this map is typi-

cally modeled as a deep network and learned from the training data, say via back

propagation. Nevertheless, our goal here is not to learn a precise classifier πj(z`)

already. Instead, we only need a good enough estimate of the class information

in order for g(·) to approximate the gradient ∂∆R
∂Z well.

From the previous geometric interpretation of the linear operators E` and

Cj
` , the term pj`

.
= Cj

`z` can be viewed as projection of z` onto the orthogonal

24 Notice that on the training samples Z`, for which the memberships Πj are known, the so

defined g(z`,θ) gives exactly the values for the gradient ∂∆R
∂Z

∣∣
Z`

.
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complement of each class j. Therefore, ‖pj`‖2 is small if z` is in class j and large

otherwise. This motivates us to estimate its membership based on the following

“softmax” function:

π̂j(z`)
.
=

exp (−λ‖Cj
`z`‖)∑k

j=1 exp (−λ‖Cj
`z`‖)

∈ [0, 1]. (16.3.11)

Hence the second term of (16.3.10) can be approximated by this estimated mem-

bership:25

k∑

j=1

γjC
j
`z`π

j(z`) ≈
k∑

j=1

γjC
j
`z` · π̂

j(z`)
.
= σ

(
[C1

`z`, . . . ,C
k
`z`]

)
, (16.3.12)

which is denoted as a nonlinear operator σ(·) on outputs of the feature z` through

k banks of filters: [C1
` , . . . ,C

k
` ]. Notice that the nonlinearity arises due to a “soft”

assignment of class membership based on the feature responses from those fil-

ters. Overall, combining (16.3.9), (16.3.10), and (16.3.12), the increment feature

transform from z` to z`+1 now becomes:

z`+1 ∝ z` + η ·E`z`− η ·σ
(

[C1
`z`, . . . ,C

k
`z`]

)
s.t. z`+1 ∈ Sn−1, (16.3.13)

with the nonlinear function σ(·) defined above and θ` collecting all the layer-

wise parameters including E`,C
j
` , γj and λ. Note that features at each layer

are always “normalized” onto a sphere Sn−1, denoted as PSn−1 . The form of

increment in (16.3.13) can be illustrated by a diagram in Figure 16.9 left.

Deep Network from Rate Reduction.
Notice that the increment is constructed to emulate the gradient ascent for the

rate reduction ∆R. Hence by transforming the features iteratively via the above

process, we expect the rate reduction to increase, as we will see in the experimen-

tal section. This iterative process, once converged say after L iterations, gives

the desired feature map f(x,θ) on the input z0 = x, precisely in the form of a

deep network, in which each layer has the structure shown in Figure 16.9 left:

f(x,θ) = φL ◦ φL−1 ◦ · · · ◦ φ0(x), with (16.3.14)

φ`(z`,θ`)
.
= PSn−1 [z` + η · g(z`,θ`)]. (16.3.15)

As this deep network is derived from maximizing the rate reduced, we call it the

ReduNet. Notice that all parameters of the network are explicitly constructed

layer by layer in a forward propagation fashion. Once constructed, there is no need

of any additional supervised learning, say via back propagation. As we will see

in the experiments, the so learned features can be directly used for classification,

say via a nearest subspace classifier.

25 The choice of the softmax is mostly for its simplicity as it is widely used in other (forward
components of) deep networks for selection purposes, such as gating [SMM+17,FZS21]
and routing [SFH17]. In principle, this term can be approximated by other operators, say
using ReLU that is more amenable to training with back propagation, see Exercise 16.3.
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Comparison with Other Approaches and Architectures.
As we have mentioned earlier, structural similarities between deep networks and

iterative optimization schemes, especially those for solving sparse coding, have

long been observed. For example in the work of Learned ISTA [GL10], one may

view a fixed number of iterations of the ISTA Algorithm 8.1 as layers of a net-

work. One can then use the back propagation to refine the parameters (say A

in each layer) to improve convergence or accuracy of the resulting sparse codes.

Later [GEBS18, MLE19, SNT20] have proposed similar interpretation of deep

networks as unrolling algorithms for sparse coding.

Like all networks that are inspired by unfolding certain iterative optimiza-

tion schemes, the structure of the ReduNet naturally contains a skip connection

between adjacent layers as in the ResNet [HZRS16] (see Figure 16.9 middle).

Nevertheless, the remaining K + 1 parallel channels E, {Cj}Kj=1 of the ReduNet

actually draw resemblance to the parallel structures that people later found em-

pirically beneficial for deep networks, e.g. ResNeXt [XGD+17] (see Figure 16.9

right) or the mixture of experts (MoE) module adopted in the latest large-scale

language models [SMM+17, FZS21], in which the number of parallel banks (or

experts) K can be in the thousands and the number of parameters can be in the

billions and even trillions.

A major difference here is that these conventional networks are all found em-

pirically or designed heuristically whereas all components (layers, operators, and

parameters) of the ReduNet architecture are by explicit construction from the

objective of maximizing the rate reduction ∆R. All operators have precise opti-

mization, statistical and geometric interpretation consistent with the objective.

Notice that even values of the parameters in the ReduNet can be constructed

in a forward-propagation manner, although in principle one could still fine-tune

the ReduNet with back-propagation if needed (as we will discuss more in the

epilogue, Section 16.5 of the chapter). Furthermore, as the ReduNet architec-

ture is based on choosing arguably the simplest gradient ascent scheme (16.3.2),

we can expect more advanced optimization schemes introduced in Chapters 8–9

can lead to new architectures with improved efficiency (see Exercise 16.6 for a

possible extension).

16.3.2 Convolutional Networks from Invariant Rate Reduction

So far, we have considered the data and features to be classified as vectors. In

many applications, such as serial data or imagery data, the semantic meaning

(labels) of the data and their features are invariant to certain transformations

g ∈ G (for some group G). For example, the meaning of an audio signal is

invariant to shift in time; and the identity of an object in an image is invariant

to translation in the image plane.26 Hence, we prefer the feature mapping f(x,θ)

26 The transform invariant textures (TILT) studied in the previous Chapter 15 are examples

with more general groups of transformations, such as 2D affine transform or homography.
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Figure 16.10 Illustration of the sought representation that is equivariant/invariant to
image rotation (left) or translation (right): all transformed images of each class are
mapped into the same subspace that are incoherent to other subspaces. The features
embedded in each subspace are equivariant to transformation group whereas each
subspace is invariant to such transformations.

is invariant to such transformations:

Group Invariance: f(x ◦ g,θ) ∼ f(x,θ), ∀g ∈ G, (16.3.16)

where “∼” indicates two features belonging to the same equivalent class. The

submanifolds associated with such equivalent classes are known to have so-

phisticated geometric and topological structures [WDCB05]. This may explain

why it has been very challenging for empirically designed deep networks to en-

sure invariance to even simple transformations such as translation and rota-

tion [AW18,ETT+17].27

In this section, we show that the MCR2 principle is compatible with invari-

ance in a very natural and rigorous way: we only need to assign all transformed

versions {x ◦ g | g ∈ G} into the same class as x and map them all to the same

subspace S.28 See Figure 16.10 for an illustration of the examples of 1D rotation

and 2D translation. Then one can show that, when the group G is (discrete)

circular 1D shifting or 2D translation, the resulting deep network, the ReduNet,

naturally becomes a multi-channel convolutional network!

1D Serial Data and Shift Invariance.
For one-dimensional data x ∈ Rn under shift symmetry, we take G to be the

group of circular shifts. Each observation xi generates a family {xi ◦ g | g ∈ G}
27 Recent study starts to reveal necessary conditions for a deep network to be invariant or

equivariant to certain group transforms [CW16,CGW19].
28 Hence, any subsequent classifiers defined on the resulting set of subspaces will be

automatically invariant to such transformations.
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of shifted copies, which are the columns of the circulant matrix circ(xi) ∈ Rn×n

(see Appendix A.7 or [KS12] for properties of circulant matrices).

What happens if we construct the ReduNet from these families

Z1 =
[
circ(x1), . . . , circ(xm)

]
?

The data covariance matrix:

Z1Z
∗
1 =

[
circ(x1), . . . , circ(xm)

] [
circ(x1), . . . , circ(xm)

]∗

=

m∑

i=1

circ(xi)circ(xi)∗ ∈ Rn×n

associated with this family of samples is automatically a (symmetric) circulant

matrix. Moreover, because the circulant property is preserved under sums, in-

verses, and products (see Appendix A.7), the matrices E1 and Cj
1 are also au-

tomatically circulant matrices, whose application to a feature vector z can be

implemented using cyclic convolution “~.” Specifically, we have the following

proposition.

Proposition 16.5 (Convolution Structures of E1 and Cj
1). The matrix E1 =

α
(
I + αZ1Z

∗
1

)−1
is a circulant matrix and represents a circular convolution:

E1z = e1 ~ z,

where e1 ∈ Rn is the first column vector of E1 and “~” is cyclic convolution

defined as

(e1 ~ z)i
.
=

n−1∑

j=0

e1(j)x(i+ n− jmodn). (16.3.17)

Similarly, the matrices Cj
1 associated with any subsets of Z1 are also circular

convolutions.

From Proposition 16.5, we have

z2 ∝ z1 + η · g(z1,θ1)

= z1 + η · e1 ~ z1 − η · σ
(

[c1
1 ~ z1, . . . , c

k
1 ~ z1]

)
. (16.3.18)

Because g(·,θ1) consists only of operations that co-vary with cyclic shifts, the

features Z2 at the next level again consist of families of shifts:

Z2 =
[
circ(x1 + ηg(x1,θ1)), . . . , circ(xm + ηg(xm,θ1))

]
. (16.3.19)

Continuing inductively, we see that all matrices E` and Cj
` based on such Z`

are circulant. By virtue of the equivariant properties of the data, the ReduNet

has taken the form of a convolutional network, with no need to explicitly choose

this structure!
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The Role of Multiple Channels.
There is one problem though: in general, the set of all circular permutations of a

vector x give a full-rank matrix. That is, the n “augmented” features associated

with each sample (hence each class) typically already span the entire space Rn.

The MCR2 objective (16.3.1) will not be able to distinguish classes as different

subspaces.

One natural remedy is to improve the separability of the data by “lifting”

the signals x to a higher dimensional space,29 e.g., by taking their responses to

multiple, filters k1, . . . ,kC ∈ Rn:

z[c] = kc ~ x = circ(kc)x ∈ Rn, c = 1, . . . , C. (16.3.20)

The filers can be pre-designed invariance-promoting filters,30 or adaptively learned

from the data,31 or randomly selected as we do in the experiments. This oper-

ation lifts each original signal (vector) z ∈ Rn to a C-channel feature vector,

denoted z̄
.
= [z[1], . . . ,z[C]]∗ ∈ RC×n. If we stack the multiple channels of a

feature z̄ as a column vector vec(z̄) ∈ RnC , the associated circulant version

circ(z̄) ∈ RnC×n and its data covariance matrix, denoted as Σ̄ ∈ RnC×nC , for all

its shifted versions are given as:

circ(z̄)
.
=




circ(z[1])
...

circ(z[C])


 , Σ̄

.
=




circ(z[1])
...

circ(z[C])



[
circ(z[1])∗, . . . , circ(z[C])∗

]
,

(16.3.21)

where circ(z[c]) ∈ Rn×n with c ∈ [C] is the circulant version of the c-th channel

of the feature z̄. Then the columns of circ(z̄) will only span at most an n-

dimensional proper subspace in RnC .

Tradeoff between Invariance and Sparsity.
However, this simple (linear) lifting operation is not sufficient to render the

classes separable still – features associated with other classes will likely span

the same n-dimensional subspace in the lifted space. This reflects a fundamental

conflict between linear (subspace) modeling and invariance: on one hand, we

desire the resulting representation to be linear hence superposition of features

of signals (including their shifted versions) in the same class remain in the same

subspace (in the lifted feature space); on the other hand, we want features of

signals in different classes can be separated and belong to different (incoherent)

subspaces.

One way, and probably the only way, to resolve this conflict is to impose

29 There are evidences in neuroscience that suggest such an expansion of dimension brings

benefits to cognition [FMR16].
30 For 1D signals like audio, one may consider the conventional short time Fourier transform

(STFT); for 2D images, one may consider 2D wavelets as in the ScatteringNet [BM13].
31 For learned filters, one can learn filters from the given data as the principal components of

samples as in the PCANet [CJG+15] or from convolution dictionary
learning [LB19,QLZ19].
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Figure 16.11 Each input signal x (an image here) can be represented as a
superposition of sparse convolutions with multiple kernels dc in a dictionary D.

additional structures on signals in each class, in the form of sparsity: we may

assume all signals x (including their shifted versions) within each class j are

generated by only sparse combinations of shifted atoms (or motifs) in a dictionary

Dj :

x = circ(Dj)zj (16.3.22)

for some sparse zj , as shown in Figure 16.11.32 Furthermore, we assume the

dictionaries D = {Dj}kj=1 between the k classes are mutually incoherent. Hence

signals in one class are unlikely to be sparsely represented by atoms in any other

class. Then, all signals in the k classes can be sparsely represented by the all the

dictionaries together:

x =
[
circ(D1), circ(D2), . . . , circ(Dk)

]
z̄ (16.3.23)

for some sparse z̄ which encodes the membership of the signal x with respect

to the k classes. The reader may have recognized that this model is very similar

to the face recognition setting that we have seen in Chapter 13. There is a vast

literature on how to learn the most compact and optimal sparsifying dictionaries

from sample data, as we have touched upon before in Chapters 7, 9, and 12. One

may also refer to [LB19,QLZ19] for more references on this subject.

Nevertheless, here we are not interested in the precise optimal sparse code for

every individual signal. We are only interested whether the set of sparse codes

32 In practice, one can further assume the atoms are “short” (or have small supports) so that

the generative model is similar to the “short and sparse” model that we have studied in
Chapter 12.
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Figure 16.12 Estimate the sparse code z̄ of an input signal x (an image here) by
taking convolutions with multiple kernels kc and then sparsifying.

for each class are collectively separable from those of other classes.33 Under the

assumption of the sparse generative model, if the convolution kernels {kc} match

well with the “transpose” or “inverse” of the above sparsifying dictionaries, also

known as the analysis filters [NDEG13,RE14], signals in one class will only have

high responses to a small subset of those filters and low responses to others

(due to the incoherence assumption). Figure 16.12 illustrates the basic ideas.

Nevertheless, in practice, often a sufficient number of random filters suffice the

purpose of ensuring features of different classes have different response patterns

to different filters hence make different classes separable [CJG+15]. We will use

the simple random filter design in the experiments to verify the concept.34

Hence the multi-channel responses z̄ should be sparse. So to approximate the

sparse code z̄, we may take an entry-wise sparsity-promoting nonlinear thresh-

olding, say τ (·), on the filter outputs by setting low (say absolute value below ε)

or negative responses to be zero:35

z̄ = τ
[
circ(k1)x, . . . , circ(kC)x

]
∈ Rn×C . (16.3.24)

One may refer to [RE14] for a more systematical study on the design of the

sparsifying thresholding operator. Nevertheless, here we are not so interested

in obtaining the best sparse codes as long as the codes for different classes are

33 Note that this is rather different from our goal of computing sparse codes in earlier
chapters of this book.

34 Better sparse coding schemes may surely lead to better classification performance, though

at a higher computational cost for learning or designing the filters and computing the
sparse codes more precisely.

35 The reader should be aware that, besides the feature scale normalization and membership
assignment operation, this is the third, and final, type of nonlinear operation that we have

encountered.
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sufficiently separable. Hence the nonlinear operator τ (·) can be simply chosen to

be a soft thresholding or a ReLU. These presumably highly sparse features z̄ can

be assumed to lie on a lower-dimensional submanifold in Rn×C , which can be

linearized and separated from the other classes by subsequent ReduNet layers.

The ReduNet constructed from the circulant version of these multi-channel

features z̄ retains the good invariance properties described above: the linear

operators, now denoted as Ē and C̄
j ∈ RnC×nC as they are computed from the

lifted and sparsified features z̄, remain block circulant. Hence, they represent

multi-channel 1D circular convolutions (see [CYY+20] for a rigorous statement

and proof):

Ē(z̄) = ē~ z̄, C̄
j
(z̄) = c̄j ~ z̄ ∈ Rn×C , j = 1, . . . , k, (16.3.25)

where ē, c̄j ∈ RC×C×n are the associated multi-channel convolution kernels.

Hence by virtue of the equivariant data structures, the resulting ReduNet is

naturally a deep convolutional network for multi-channel 1D signals. Notice that

the number of channels remain constant through the layers (or iterations).

Fast Computation in the Spectral Domain.
Since all circulant matrices can be simultaneously diagonalized by the discrete

Fourier transform (DFT) matrix36 F : circ(z) = F ∗DF (see Theorem A.32 in

Appendix A.7), all Σ̄ of the form (16.3.21) can be converted to a standard “blocks

of diagonals” form:

Σ̄ =



F ∗ 0 0

0
. . . 0

0 0 F ∗






D11 · · · D1C

...
. . .

...

DC1 · · · DCC






F 0 0

0
. . . 0

0 0 F


 ∈ RnC×nC , (16.3.26)

where each blockDkl is an n×n diagonal matrix. The middle of RHS of (16.3.26)

is a block diagonal matrix after a permutation of rows and columns. There are

n blocks of size C × C. Hence, to compute Ē and C̄
j ∈ RnC×nC , we only have

to compute in the frequency domain the inverse of C × C blocks for n times

and the overall complexity would be O(nC3) instead of O((nC)3) for inverting

a generic nC × nC matrix. Notice that the advantage of the spectral domain

would have not been as significant had the computation of the operators Ē and

C̄
j

did not involve matrix inverse. We leave this as an exercise for the reader

(Exercise 16.5).

2D Images and Translation Invariance.
In the case of classifying images invariant to arbitrary 2D translation, we may

view the image (feature) z̄ ∈ R(W×H)×C as a function defined on a torus T 2

(discretized as a W ×H grid) and consider G to be the (Abelian) group of all 2D

(circular) translations on the torus. See Figure 16.18 for an illustration and ex-

ample. Analogous to the 1D case, the associated linear operators Ē and C̄
j
’s act

36 Here we scaled the matrix F to be unitary, hence it differs from the conventional DFT

matrix by a 1/
√
n.
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on the image feature z̄ as multi-channel 2D circular convolutions. The resulting

network will be a deep convolutional network that shares the same multi-channel

convolution structures as conventional CNNs for 2D images [LJB+95, KSH12].

The difference is that, again, the architecture of the network and parameters of

the convolutions are all derived from the rate reduction objective, including the

(layer) normalization and the nonlinear activations π̂j and τ . Again, one can

show that this multi-channel 2D convolutional network can be constructed more

efficiently in the spectral domain (see [CYY+20] for a rigorous statement and

proof). One may see [CYY+20] for implementation details of such a ReduNet

in the spectral domain, for translation invariance of both 1D serial data and 2D

imagery data.

Connections to Convolutional and Recurrent Sparse Coding.
We see from above that in order to find a discriminative linear representation for

multiple classes of signals/images that is invariant to translation, sparse coding

via lifting, a multi-layer architecture with multi-channel convolutions, and spec-

trum computing all become necessary components for achieving the objective

effectively and efficiently. Figure 16.13 illustrates the whole process of learning

such a representation via invariant rate reduction on the input sparse codes.

Conceptual and algorithmic similarities between sparse coding and deep net-

works have long been observed, especially in the work of Learned ISTA [GL10].

It was later extended to be convolutional for imagery data or recurrent net-

works for serial data, e.g. [WPPA16, PRE16, SPRE18, MLE19]. Although both

sparsity and convolution have been widely advocated as desired characteristics

for deep networks, their precise roles for the classification task have never been

clearly revealed nor justified. For instance, using convolutional operators to en-

sure equivarience has been common practice in deep networks [LB95a, CW16],

but the number of convolutions needed is not clear and their parameters need to

be learned via back propagation from randomly initialized ones. Of course, one

may also predesign convolution filters of each layer to ensure translational invari-

ance for a wide range of signals, say using wavelets as in ScatteringNet [BM13]

and many followup works [WB18]. However, the number of convolutions needed

usually grow exponentially with the number of layers. That is the reason why

ScatteringNet type networks cannot be so deep, usually only 2-3 layers. It has

never been clear in these framework how to design multi-channel convolutions.

In contrast, in the rate reduction framework, we see that the roles of the multi-

channel convolutions (Ē, C̄
j
) are explicitly derived and justified, the number of

filters (channels) remains constant through all layers, and their parameters are

determined by the data of interest.37 As we see from the above derivation, both

the convolution filters and sparsity requirements are necessary for success in the

objective: incrementally learning a discriminative linear representation that is

invariant to translation.

37 Of course, the values of the parameters can be further fine-tuned if needed.
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Figure 3: Overview of the process for classifying multi-class signals with shift invariance: Multi-
channel lifting and sparse coding followed by a (convolutional) ReduNet. These operations are
necessary to map shift-invariant multi-class signals to incoherent (linear) subspaces. Most modern
deep neural networks resemble this process.

The ReduNet constructed from circulant version of these multi-channel features z̄, i.e., circ(Z̄)
.
=

[circ(z̄1), . . . , circ(z̄m)], retains the good invariance properties described above: the linear opera-
tors, now denoted as Ē and C̄j , remain block circulant, and represent multi-channel 1D circular
convolutions. Specifically, we have the following result (see Appendix B.2 for a proof).

Proposition 2.2 (Multi-channel convolution structures of Ē and C̄j) The matrix

Ē
.
= ↵

�
I + ↵circ(Z̄)circ(Z̄)⇤��1

(24)
is block circulant, i.e.,

Ē =

2
4

Ē1,1 ··· Ē1,C

...
. . .

...
ĒC,1 ··· ĒC,C

3
5 2 RnC⇥nC , (25)

where each Ēc,c0 2 Rn⇥n is a circulant matrix. Moreover, Ē represents a multi-channel circular
convolution, i.e., for any multi-channel signal z̄ 2 RC⇥n we have

Ē · vec(z̄) = vec(ē ~ z̄).

In above, ē 2 RC⇥C⇥n is a multi-channel convolutional kernel with ē[c, c0] 2 Rn being the first
column vector of Ēc,c0 , and ē ~ z̄ 2 RC⇥n is the multi-channel circular convolution defined as

(ē ~ z̄)[c]
.
=

CX

c0=1

ē[c, c0] ~ z̄[c0], 8c = 1, . . . , C. (26)

Similarly, the matrices C̄j associated with any subsets of Z̄ are also multi-channel circular convo-
lutions.

From Proposition 2.2, ReduNet is a deep convolutional network for multi-channel 1D signals by
construction.10 Figure 3 illustrates the whole process of rate reduction with such sparse and invariant
features.

Fast Computation in the Spectral Domain. The calculation of Ē in (24) requires inverting a ma-
trix of size nC ⇥ nC, which has complexity O(n3C3). By using the relationship between circulant
matrix and Discrete Fourier Transform (DFT) of a 1D signal, this complexity can be significantly
reduced. Specifically, let F 2 Cn⇥n be the DFT matrix, and DFT(z)

.
= Fz 2 Cn⇥n be the DFT

of z 2 Rn, where C denotes the set of complex numbers. We have
circ(z) = F ⇤diag(DFT(z))F . (27)

We refer the reader to Appendix B.3 for properties of circulant matrices and DFT. By using the
relation in (27), Ē can be computed as

Ē =

"
F ⇤ 0 0

0
. . . 0

0 0 F ⇤

#
· ↵

 
I + ↵

"
D11 ··· D1C

...
. . .

...
DC1 ··· DCC

#!�1

·
"

F 0 0

0
. . . 0

0 0 F

#
, (28)

10Unlike Xception nets Chollet (2017), these multi-channel convolutions in general are not depthwise sepa-
rable. It remains open what additional structures on the data would lead to depthwise separable convolutions.
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channel lifting and sparse coding followed by a (convolutional) ReduNet. These operations are
necessary to map shift-invariant multi-class signals to incoherent (linear) subspaces. Most modern
deep neural networks resemble this process.

The ReduNet constructed from circulant version of these multi-channel features z̄, i.e., circ(Z̄)
.
=

[circ(z̄1), . . . , circ(z̄m)], retains the good invariance properties described above: the linear opera-
tors, now denoted as Ē and C̄j , remain block circulant, and represent multi-channel 1D circular
convolutions. Specifically, we have the following result (see Appendix B.2 for a proof).

Proposition 2.2 (Multi-channel convolution structures of Ē and C̄j) The matrix
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Ē =
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where each Ēc,c0 2 Rn⇥n is a circulant matrix. Moreover, Ē represents a multi-channel circular
convolution, i.e., for any multi-channel signal z̄ 2 RC⇥n we have

Ē · vec(z̄) = vec(ē ~ z̄).

In above, ē 2 RC⇥C⇥n is a multi-channel convolutional kernel with ē[c, c0] 2 Rn being the first
column vector of Ēc,c0 , and ē ~ z̄ 2 RC⇥n is the multi-channel circular convolution defined as

(ē ~ z̄)[c]
.
=

CX

c0=1

ē[c, c0] ~ z̄[c0], 8c = 1, . . . , C. (26)

Similarly, the matrices C̄j associated with any subsets of Z̄ are also multi-channel circular convo-
lutions.

From Proposition 2.2, ReduNet is a deep convolutional network for multi-channel 1D signals by
construction.10 Figure 3 illustrates the whole process of rate reduction with such sparse and invariant
features.

Fast Computation in the Spectral Domain. The calculation of Ē in (24) requires inverting a ma-
trix of size nC ⇥ nC, which has complexity O(n3C3). By using the relationship between circulant
matrix and Discrete Fourier Transform (DFT) of a 1D signal, this complexity can be significantly
reduced. Specifically, let F 2 Cn⇥n be the DFT matrix, and DFT(z)

.
= Fz 2 Cn⇥n be the DFT

of z 2 Rn, where C denotes the set of complex numbers. We have
circ(z) = F ⇤diag(DFT(z))F . (27)

We refer the reader to Appendix B.3 for properties of circulant matrices and DFT. By using the
relation in (27), Ē can be computed as

Ē =
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10Unlike Xception nets Chollet (2017), these multi-channel convolutions in general are not depthwise sepa-
rable. It remains open what additional structures on the data would lead to depthwise separable convolutions.
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The ReduNet constructed from circulant version of these multi-channel features z̄, i.e., circ(Z̄)
.
=

[circ(z̄1), . . . , circ(z̄m)], retains the good invariance properties described above: the linear opera-
tors, now denoted as Ē and C̄j , remain block circulant, and represent multi-channel 1D circular
convolutions. Specifically, we have the following result (see Appendix B.2 for a proof).

Proposition 2.2 (Multi-channel convolution structures of Ē and C̄j) The matrix
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where each Ēc,c0 2 Rn⇥n is a circulant matrix. Moreover, Ē represents a multi-channel circular
convolution, i.e., for any multi-channel signal z̄ 2 RC⇥n we have

Ē · vec(z̄) = vec(ē ~ z̄).

In above, ē 2 RC⇥C⇥n is a multi-channel convolutional kernel with ē[c, c0] 2 Rn being the first
column vector of Ēc,c0 , and ē ~ z̄ 2 RC⇥n is the multi-channel circular convolution defined as

(ē ~ z̄)[c]
.
=

CX

c0=1

ē[c, c0] ~ z̄[c0], 8c = 1, . . . , C. (26)

Similarly, the matrices C̄j associated with any subsets of Z̄ are also multi-channel circular convo-
lutions.

From Proposition 2.2, ReduNet is a deep convolutional network for multi-channel 1D signals by
construction.10 Figure 3 illustrates the whole process of rate reduction with such sparse and invariant
features.

Fast Computation in the Spectral Domain. The calculation of Ē in (24) requires inverting a ma-
trix of size nC ⇥ nC, which has complexity O(n3C3). By using the relationship between circulant
matrix and Discrete Fourier Transform (DFT) of a 1D signal, this complexity can be significantly
reduced. Specifically, let F 2 Cn⇥n be the DFT matrix, and DFT(z)

.
= Fz 2 Cn⇥n be the DFT

of z 2 Rn, where C denotes the set of complex numbers. We have
circ(z) = F ⇤diag(DFT(z))F . (27)

We refer the reader to Appendix B.3 for properties of circulant matrices and DFT. By using the
relation in (27), Ē can be computed as

Ē =

"
F ⇤ 0 0

0
. . . 0

0 0 F ⇤

#
· ↵

 
I + ↵

"
D11 ··· D1C

...
. . .

...
DC1 ··· DCC

#!�1

·
"

F 0 0

0
. . . 0

0 0 F

#
, (28)

10Unlike Xception nets Chollet (2017), these multi-channel convolutions in general are not depthwise sepa-
rable. It remains open what additional structures on the data would lead to depthwise separable convolutions.
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Figure 3: Overview of the process for classifying multi-class signals with shift invariance: Multi-
channel lifting and sparse coding followed by a (convolutional) ReduNet. These operations are
necessary to map shift-invariant multi-class signals to incoherent (linear) subspaces. Most modern
deep neural networks resemble this process.

The ReduNet constructed from circulant version of these multi-channel features z̄, i.e., circ(Z̄)
.
=

[circ(z̄1), . . . , circ(z̄m)], retains the good invariance properties described above: the linear opera-
tors, now denoted as Ē and C̄j , remain block circulant, and represent multi-channel 1D circular
convolutions. Specifically, we have the following result (see Appendix B.2 for a proof).

Proposition 2.2 (Multi-channel convolution structures of Ē and C̄j) The matrix

Ē
.
= ↵

�
I + ↵circ(Z̄)circ(Z̄)⇤��1

(24)
is block circulant, i.e.,

Ē =

2
4
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...
. . .

...
ĒC,1 ··· ĒC,C

3
5 2 RnC⇥nC , (25)

where each Ēc,c0 2 Rn⇥n is a circulant matrix. Moreover, Ē represents a multi-channel circular
convolution, i.e., for any multi-channel signal z̄ 2 RC⇥n we have

Ē · vec(z̄) = vec(ē ~ z̄).

In above, ē 2 RC⇥C⇥n is a multi-channel convolutional kernel with ē[c, c0] 2 Rn being the first
column vector of Ēc,c0 , and ē ~ z̄ 2 RC⇥n is the multi-channel circular convolution defined as

(ē ~ z̄)[c]
.
=

CX

c0=1

ē[c, c0] ~ z̄[c0], 8c = 1, . . . , C. (26)

Similarly, the matrices C̄j associated with any subsets of Z̄ are also multi-channel circular convo-
lutions.

From Proposition 2.2, ReduNet is a deep convolutional network for multi-channel 1D signals by
construction.10 Figure 3 illustrates the whole process of rate reduction with such sparse and invariant
features.

Fast Computation in the Spectral Domain. The calculation of Ē in (24) requires inverting a ma-
trix of size nC ⇥ nC, which has complexity O(n3C3). By using the relationship between circulant
matrix and Discrete Fourier Transform (DFT) of a 1D signal, this complexity can be significantly
reduced. Specifically, let F 2 Cn⇥n be the DFT matrix, and DFT(z)

.
= Fz 2 Cn⇥n be the DFT

of z 2 Rn, where C denotes the set of complex numbers. We have
circ(z) = F ⇤diag(DFT(z))F . (27)

We refer the reader to Appendix B.3 for properties of circulant matrices and DFT. By using the
relation in (27), Ē can be computed as

Ē =

"
F ⇤ 0 0

0
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10Unlike Xception nets Chollet (2017), these multi-channel convolutions in general are not depthwise sepa-
rable. It remains open what additional structures on the data would lead to depthwise separable convolutions.

9

Preprint

Multi-Class
Signals

Lifting &
Sparse Coding

Invariant
Rate Reduction

Incoherent
Subspaces

Figure 3: Overview of the process for classifying multi-class signals with shift invariance: Multi-
channel lifting and sparse coding followed by a (convolutional) ReduNet. These operations are
necessary to map shift-invariant multi-class signals to incoherent (linear) subspaces. Most modern
deep neural networks resemble this process.

The ReduNet constructed from circulant version of these multi-channel features z̄, i.e., circ(Z̄)
.
=

[circ(z̄1), . . . , circ(z̄m)], retains the good invariance properties described above: the linear opera-
tors, now denoted as Ē and C̄j , remain block circulant, and represent multi-channel 1D circular
convolutions. Specifically, we have the following result (see Appendix B.2 for a proof).

Proposition 2.2 (Multi-channel convolution structures of Ē and C̄j) The matrix

Ē
.
= ↵

�
I + ↵circ(Z̄)circ(Z̄)⇤��1

(24)
is block circulant, i.e.,

Ē =

2
4

Ē1,1 ··· Ē1,C

...
. . .

...
ĒC,1 ··· ĒC,C

3
5 2 RnC⇥nC , (25)

where each Ēc,c0 2 Rn⇥n is a circulant matrix. Moreover, Ē represents a multi-channel circular
convolution, i.e., for any multi-channel signal z̄ 2 RC⇥n we have

Ē · vec(z̄) = vec(ē ~ z̄).

In above, ē 2 RC⇥C⇥n is a multi-channel convolutional kernel with ē[c, c0] 2 Rn being the first
column vector of Ēc,c0 , and ē ~ z̄ 2 RC⇥n is the multi-channel circular convolution defined as

(ē ~ z̄)[c]
.
=

CX

c0=1

ē[c, c0] ~ z̄[c0], 8c = 1, . . . , C. (26)

Similarly, the matrices C̄j associated with any subsets of Z̄ are also multi-channel circular convo-
lutions.

From Proposition 2.2, ReduNet is a deep convolutional network for multi-channel 1D signals by
construction.10 Figure 3 illustrates the whole process of rate reduction with such sparse and invariant
features.

Fast Computation in the Spectral Domain. The calculation of Ē in (24) requires inverting a ma-
trix of size nC ⇥ nC, which has complexity O(n3C3). By using the relationship between circulant
matrix and Discrete Fourier Transform (DFT) of a 1D signal, this complexity can be significantly
reduced. Specifically, let F 2 Cn⇥n be the DFT matrix, and DFT(z)

.
= Fz 2 Cn⇥n be the DFT

of z 2 Rn, where C denotes the set of complex numbers. We have
circ(z) = F ⇤diag(DFT(z))F . (27)

We refer the reader to Appendix B.3 for properties of circulant matrices and DFT. By using the
relation in (27), Ē can be computed as

Ē =

"
F ⇤ 0 0

0
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10Unlike Xception nets Chollet (2017), these multi-channel convolutions in general are not depthwise sepa-
rable. It remains open what additional structures on the data would lead to depthwise separable convolutions.
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Figure 3: Overview of the process for classifying multi-class signals with shift invariance: Multi-
channel lifting and sparse coding followed by a (convolutional) ReduNet. These operations are
necessary to map shift-invariant multi-class signals to incoherent (linear) subspaces. Most modern
deep neural networks resemble this process.

The ReduNet constructed from circulant version of these multi-channel features z̄, i.e., circ(Z̄)
.
=

[circ(z̄1), . . . , circ(z̄m)], retains the good invariance properties described above: the linear opera-
tors, now denoted as Ē and C̄j , remain block circulant, and represent multi-channel 1D circular
convolutions. Specifically, we have the following result (see Appendix B.2 for a proof).

Proposition 2.2 (Multi-channel convolution structures of Ē and C̄j) The matrix

Ē
.
= ↵

�
I + ↵circ(Z̄)circ(Z̄)⇤��1

(24)
is block circulant, i.e.,

Ē =

2
4

Ē1,1 ··· Ē1,C

...
. . .

...
ĒC,1 ··· ĒC,C

3
5 2 RnC⇥nC , (25)

where each Ēc,c0 2 Rn⇥n is a circulant matrix. Moreover, Ē represents a multi-channel circular
convolution, i.e., for any multi-channel signal z̄ 2 RC⇥n we have

Ē · vec(z̄) = vec(ē ~ z̄).

In above, ē 2 RC⇥C⇥n is a multi-channel convolutional kernel with ē[c, c0] 2 Rn being the first
column vector of Ēc,c0 , and ē ~ z̄ 2 RC⇥n is the multi-channel circular convolution defined as

(ē ~ z̄)[c]
.
=

CX

c0=1

ē[c, c0] ~ z̄[c0], 8c = 1, . . . , C. (26)

Similarly, the matrices C̄j associated with any subsets of Z̄ are also multi-channel circular convo-
lutions.

From Proposition 2.2, ReduNet is a deep convolutional network for multi-channel 1D signals by
construction.10 Figure 3 illustrates the whole process of rate reduction with such sparse and invariant
features.

Fast Computation in the Spectral Domain. The calculation of Ē in (24) requires inverting a ma-
trix of size nC ⇥ nC, which has complexity O(n3C3). By using the relationship between circulant
matrix and Discrete Fourier Transform (DFT) of a 1D signal, this complexity can be significantly
reduced. Specifically, let F 2 Cn⇥n be the DFT matrix, and DFT(z)

.
= Fz 2 Cn⇥n be the DFT

of z 2 Rn, where C denotes the set of complex numbers. We have
circ(z) = F ⇤diag(DFT(z))F . (27)

We refer the reader to Appendix B.3 for properties of circulant matrices and DFT. By using the
relation in (27), Ē can be computed as

Ē =

"
F ⇤ 0 0

0
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10Unlike Xception nets Chollet (2017), these multi-channel convolutions in general are not depthwise sepa-
rable. It remains open what additional structures on the data would lead to depthwise separable convolutions.
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Figure 3: Overview of the process for classifying multi-class signals with shift invariance: Multi-
channel lifting and sparse coding followed by a (convolutional) ReduNet. These operations are
necessary to map shift-invariant multi-class signals to incoherent (linear) subspaces. Most modern
deep neural networks resemble this process.

The ReduNet constructed from circulant version of these multi-channel features z̄, i.e., circ(Z̄)
.
=

[circ(z̄1), . . . , circ(z̄m)], retains the good invariance properties described above: the linear opera-
tors, now denoted as Ē and C̄j , remain block circulant, and represent multi-channel 1D circular
convolutions. Specifically, we have the following result (see Appendix B.2 for a proof).

Proposition 2.2 (Multi-channel convolution structures of Ē and C̄j) The matrix

Ē
.
= ↵

�
I + ↵circ(Z̄)circ(Z̄)⇤��1

(24)
is block circulant, i.e.,

Ē =

2
4

Ē1,1 ··· Ē1,C

...
. . .

...
ĒC,1 ··· ĒC,C

3
5 2 RnC⇥nC , (25)

where each Ēc,c0 2 Rn⇥n is a circulant matrix. Moreover, Ē represents a multi-channel circular
convolution, i.e., for any multi-channel signal z̄ 2 RC⇥n we have

Ē · vec(z̄) = vec(ē ~ z̄).

In above, ē 2 RC⇥C⇥n is a multi-channel convolutional kernel with ē[c, c0] 2 Rn being the first
column vector of Ēc,c0 , and ē ~ z̄ 2 RC⇥n is the multi-channel circular convolution defined as

(ē ~ z̄)[c]
.
=

CX

c0=1

ē[c, c0] ~ z̄[c0], 8c = 1, . . . , C. (26)

Similarly, the matrices C̄j associated with any subsets of Z̄ are also multi-channel circular convo-
lutions.

From Proposition 2.2, ReduNet is a deep convolutional network for multi-channel 1D signals by
construction.10 Figure 3 illustrates the whole process of rate reduction with such sparse and invariant
features.

Fast Computation in the Spectral Domain. The calculation of Ē in (24) requires inverting a ma-
trix of size nC ⇥ nC, which has complexity O(n3C3). By using the relationship between circulant
matrix and Discrete Fourier Transform (DFT) of a 1D signal, this complexity can be significantly
reduced. Specifically, let F 2 Cn⇥n be the DFT matrix, and DFT(z)

.
= Fz 2 Cn⇥n be the DFT

of z 2 Rn, where C denotes the set of complex numbers. We have
circ(z) = F ⇤diag(DFT(z))F . (27)

We refer the reader to Appendix B.3 for properties of circulant matrices and DFT. By using the
relation in (27), Ē can be computed as

Ē =

"
F ⇤ 0 0

0
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10Unlike Xception nets Chollet (2017), these multi-channel convolutions in general are not depthwise sepa-
rable. It remains open what additional structures on the data would lead to depthwise separable convolutions.

9

Preprint

Multi-Class
Signals

Lifting &
Sparse Coding

Invariant
Rate Reduction

Incoherent
Subspaces

Figure 3: Overview of the process for classifying multi-class signals with shift invariance: Multi-
channel lifting and sparse coding followed by a (convolutional) ReduNet. These operations are
necessary to map shift-invariant multi-class signals to incoherent (linear) subspaces. Most modern
deep neural networks resemble this process.

The ReduNet constructed from circulant version of these multi-channel features z̄, i.e., circ(Z̄)
.
=

[circ(z̄1), . . . , circ(z̄m)], retains the good invariance properties described above: the linear opera-
tors, now denoted as Ē and C̄j , remain block circulant, and represent multi-channel 1D circular
convolutions. Specifically, we have the following result (see Appendix B.2 for a proof).

Proposition 2.2 (Multi-channel convolution structures of Ē and C̄j) The matrix

Ē
.
= ↵

�
I + ↵circ(Z̄)circ(Z̄)⇤��1

(24)
is block circulant, i.e.,

Ē =

2
4

Ē1,1 ··· Ē1,C

...
. . .

...
ĒC,1 ··· ĒC,C

3
5 2 RnC⇥nC , (25)

where each Ēc,c0 2 Rn⇥n is a circulant matrix. Moreover, Ē represents a multi-channel circular
convolution, i.e., for any multi-channel signal z̄ 2 RC⇥n we have

Ē · vec(z̄) = vec(ē ~ z̄).

In above, ē 2 RC⇥C⇥n is a multi-channel convolutional kernel with ē[c, c0] 2 Rn being the first
column vector of Ēc,c0 , and ē ~ z̄ 2 RC⇥n is the multi-channel circular convolution defined as

(ē ~ z̄)[c]
.
=

CX

c0=1

ē[c, c0] ~ z̄[c0], 8c = 1, . . . , C. (26)

Similarly, the matrices C̄j associated with any subsets of Z̄ are also multi-channel circular convo-
lutions.

From Proposition 2.2, ReduNet is a deep convolutional network for multi-channel 1D signals by
construction.10 Figure 3 illustrates the whole process of rate reduction with such sparse and invariant
features.

Fast Computation in the Spectral Domain. The calculation of Ē in (24) requires inverting a ma-
trix of size nC ⇥ nC, which has complexity O(n3C3). By using the relationship between circulant
matrix and Discrete Fourier Transform (DFT) of a 1D signal, this complexity can be significantly
reduced. Specifically, let F 2 Cn⇥n be the DFT matrix, and DFT(z)

.
= Fz 2 Cn⇥n be the DFT

of z 2 Rn, where C denotes the set of complex numbers. We have
circ(z) = F ⇤diag(DFT(z))F . (27)

We refer the reader to Appendix B.3 for properties of circulant matrices and DFT. By using the
relation in (27), Ē can be computed as

Ē =

"
F ⇤ 0 0

0
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10Unlike Xception nets Chollet (2017), these multi-channel convolutions in general are not depthwise sepa-
rable. It remains open what additional structures on the data would lead to depthwise separable convolutions.
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Figure 3: Overview of the process for classifying multi-class signals with shift invariance: Multi-
channel lifting and sparse coding followed by a (convolutional) ReduNet. These operations are
necessary to map shift-invariant multi-class signals to incoherent (linear) subspaces. Most modern
deep neural networks resemble this process.

The ReduNet constructed from circulant version of these multi-channel features z̄, i.e., circ(Z̄)
.
=

[circ(z̄1), . . . , circ(z̄m)], retains the good invariance properties described above: the linear opera-
tors, now denoted as Ē and C̄j , remain block circulant, and represent multi-channel 1D circular
convolutions. Specifically, we have the following result (see Appendix B.2 for a proof).

Proposition 2.2 (Multi-channel convolution structures of Ē and C̄j) The matrix

Ē
.
= ↵

�
I + ↵circ(Z̄)circ(Z̄)⇤��1

(24)
is block circulant, i.e.,

Ē =

2
4

Ē1,1 ··· Ē1,C

...
. . .

...
ĒC,1 ··· ĒC,C

3
5 2 RnC⇥nC , (25)

where each Ēc,c0 2 Rn⇥n is a circulant matrix. Moreover, Ē represents a multi-channel circular
convolution, i.e., for any multi-channel signal z̄ 2 RC⇥n we have

Ē · vec(z̄) = vec(ē ~ z̄).

In above, ē 2 RC⇥C⇥n is a multi-channel convolutional kernel with ē[c, c0] 2 Rn being the first
column vector of Ēc,c0 , and ē ~ z̄ 2 RC⇥n is the multi-channel circular convolution defined as

(ē ~ z̄)[c]
.
=

CX

c0=1

ē[c, c0] ~ z̄[c0], 8c = 1, . . . , C. (26)

Similarly, the matrices C̄j associated with any subsets of Z̄ are also multi-channel circular convo-
lutions.

From Proposition 2.2, ReduNet is a deep convolutional network for multi-channel 1D signals by
construction.10 Figure 3 illustrates the whole process of rate reduction with such sparse and invariant
features.

Fast Computation in the Spectral Domain. The calculation of Ē in (24) requires inverting a ma-
trix of size nC ⇥ nC, which has complexity O(n3C3). By using the relationship between circulant
matrix and Discrete Fourier Transform (DFT) of a 1D signal, this complexity can be significantly
reduced. Specifically, let F 2 Cn⇥n be the DFT matrix, and DFT(z)

.
= Fz 2 Cn⇥n be the DFT

of z 2 Rn, where C denotes the set of complex numbers. We have
circ(z) = F ⇤diag(DFT(z))F . (27)

We refer the reader to Appendix B.3 for properties of circulant matrices and DFT. By using the
relation in (27), Ē can be computed as

Ē =

"
F ⇤ 0 0

0
. . . 0

0 0 F ⇤

#
· ↵

 
I + ↵

"
D11 ··· D1C

...
. . .

...
DC1 ··· DCC

#!�1

·
"

F 0 0

0
. . . 0

0 0 F

#
, (28)

10Unlike Xception nets Chollet (2017), these multi-channel convolutions in general are not depthwise sepa-
rable. It remains open what additional structures on the data would lead to depthwise separable convolutions.
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Figure 16.13 Overview of the process for classifying multi-class signals with shift
invariance: Multi-channel lifting and sparse coding followed by a (convolutional)
ReduNet for invariant rate reduction. These operations are necessary to map
shift-invariant multi-class signals to incoherent (linear) subspaces. Note that the
architectures of most modern deep neural networks resemble this process.

16.3.3 Simulations and Experiments

We now verify whether the so constructed ReduNet achieves its design objectives

through some basic experiments on synthetic data and real images. The datasets

and experiments are chosen to clearly demonstrate the behaviors of the networks

obtained this way, in terms of learning the correct discriminative representation

and achieving invariance. Although these basic and early experiments are very

promising, it remains active and exciting research to further improve the per-

formance and scalability of such networks in practice. We will leave some of the

discussions to the epilogue of the chapter.

Simulation: Learning Mixture of Gaussians in S2.
We consider mixture of three Gaussian distributions in R3 with means µ1,µ2,µ3

uniformly in S2, and variance σ1 = σ2 = σ3 = 0.1. We sample m = 500 points

from the distribution and all data points are projected onto S2 (see Figure 16.14 ).

To construct the network (computing E,Cj for each layer), we set the # of

iterations/layers L = 2, 000,38 step size η = 0.5, and precision ε = 0.1. As shown

by the two plots on the left of Figure 16.14, we can observe that after the mapping

f(·,θ), samples from the same class converge to a single cluster and the angle

between different clusters is nearly orthogonal, which agrees with properties of

the optimal solution Z? of the MCR2 objective, characterized by Theorem 16.2.

The values associated with the MCR2 objective for features on different layers

can be found in Figure 16.14 right. Empirically, we find that the constructed

ReduNet is able to maximize MCR2 loss and converges stably. Moreover, we

sample new data points from the same distributions and find that new samples

38 It is remarkable to see how easily this framework leads to working deep networks with

thousands of layers! But this also indicates the efficiency of the layers is not so high. Given
the optimization nature of the deep network, it would then be natural to expect that the
acceleration techniques introduced in the earlier optimization chapters can be used to

improve the efficiency of the layers (iterations). We leave this as an exercise to the reader.
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Figure 16.14 Original samples and learned representations for a mixture of three
Gaussians in R3. We visualize data points X (before mapping) and features Z (after
mapping) by scatter plots on the left and in the middle, respectively. In each scatter
plot, each color represents one class of samples. We also show the plots for the
progression of values of the objective function, for both training and testing data.

Figure 16.15 Examples of rotated images of MNIST digits for testing rotation
invariance, each rotated by 18◦. Left: diagram for polar coordinate representation;
Right: rotated digit ‘0’ and digit ‘1’.

form the same class consistently converge to the same cluster as the training

samples.

Experiment I: 1D Rotational Invariance on MNIST Digits.
We study the ReduNet on learning rotation invariant features on the MNIST

dataset [LeC98]. Examples of rotated images are shown in Figure 16.15. We

impose a polar grid on the image x ∈ RH×W , with its geometric center being

the center of the 2D polar grid. For each radius ri, i ∈ [C], we can sample Γ

pixels with respect to each angle γl = l · (2π/Γ) with l ∈ [Γ]. Then given an

image sample x from the dataset, we represent the image in a polar coordinate

representation x(p) = (γl,i, rl,i) ∈ RΓ×C .

Our goal is to learn rotation invariant features, i.e., we expect to learn f(·,θ)

such that {f(x(p) ◦ g,θ)}g∈G lie in the same subspace, where g is the shift

transformation in polar angle. By performing polar coordinate transformation

for images from digit ‘0’ and digit ‘1’ in the training dataset, we can obtain the

data matrix X(p) ∈ R(Γ·C)×m. We use m = 2, 000 training samples, set Γ = 200

and C = 5 for polar transformation, and set the number of iterations (or layers)
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Figure 16.16 Cosine similarity (absolute value) of training/test data as well as
traning/test representations for learning rotational invariant representations on
MNIST. From left to right: Xtrain, Ztrain, Xtest, and Ztest.
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Figure 16.17 Heatmaps of cosine similarity between data Xshift/learned features
Z̄shift and histogram of cosine distance between shifted samples between the two
classes.

L = 3, 500, precision ε = 0.1, step-size η = 0.5. We randomly generate test

samples with random rotations followed by the same procedure.

To visualize the effect of the feature mapping, we show cosine similarity (ab-

solute value) of training/test data in Figure 16.16. We can see that the ReduNet

is able to map nearly all random samples from different classes to orthogonal

subspaces. To verify that the resulting representation is truly invariant for all

rotations, we pick one sample from each class and augment the sample with

every possible shifted ones, then calculate the cosine similarity between these

augmented samples, shown on the left of Figure 16.17. Furthermore, we aug-

ment each samples in the dataset with its every possible shifted ones, then we

evaluate the cosine similarity (in absolute value) between pairs across classes: for

each pair, one sample is from training and one sample is from test which belong

to different classes. The histogram of the cosine similarity is plotted on the right

of Figure 16.17. We can clearly see that the learnt features are invariant to all

shift transformation in polar angle (i.e., arbitrary rotation in x).

We compare the accuracy (both on the original test data and the shifted test

data) of the ReduNet (without considering invariance) and the shift invariant

ReduNet. For the ReduNet (without considering invariance), we use the same

training dataset as the shift invariant ReduNet, we set iteration L = 3, 500, step

size η = 0.5, and precision ε = 0.1. The results are summarized in Table 16.2.
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Figure 16.18 Examples of (cyclically) translated images of MNIST digits (with
stride=7) for testing cyclic translation invariance of the ReduNet. Left: for cyclic 2D
translation, we view a rectangular image as on a torus by identifying their opposite
sides; Right: cyclic translated digit ‘0’ and digit ‘1’.

With the invariant design, we can see from Table 16.2 that the shift invariant Re-

duNet achieves better performance in terms of invariance on the MNIST binary

classification task.

Table 16.2 Comparing network performance on learning rotational-invariant
representations on MNIST.

ReduNet ReduNet (invariant)
Acc (Original Test Data) 0.983 0.996
Acc (Test Data with All Possible Shifts) 0.707 0.993

Experiment II: 2D Cyclic Translation Invariance on MNIST Digits.
In this part, we provide experimental results for verifying the invariance prop-

erty of the ReduNet under 2D translations. We construct 1). a ReduNet (without

considering invariance) and 2). a 2D translation-invariant ReduNet for classify-

ing digit ‘0’ and digit ‘1’ on MNIST dataset. We use m = 1, 000 samples (500

samples from each class) for training the models, and use another 500 samples

(250 samples from each class) for evaluation. To evaluate the 2D translational

invariance, for each test image xtest ∈ RH×W , we consider all translation aug-

mentations of the test image with a stride=7. More specifically, for the MNIST

dataset, we have H = W = 28. So for each image, the total number of all cyclic

translation augmentations (with stride=7) is 4× 4 = 16. Examples of translated

images are shown in Figure 16.18. Notice that such translations are considerably

larger than normally considered in the literature since we consider invariance to

the entire group of cyclic translations on the H ×W grid as a torus. See Figure

16.18 for some representative test samples.

For the ReduNet (without considering translation invariance), we set iteration

L = 2, 000, step size η = 0.1, and precision ε = 0.1. For the translation-invariant

ReduNet, we set L = 2, 000, step size η = 0.5, precision ε = 0.1, number of

channels C = 5, and kernel size for the random lifting kernels in (16.3.24) is set
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as 3× 3.39 We summarize the results in Table 16.3. Similar to the 1D rotational

results on the MNIST dataset, the translation-invariant ReduNet achieves better

performance under translations compared with the RedeNet without considering

invariance. The accuracy drop of the translation-invariant ReduNet is much less

than the one of the ReduNet without invariance design.

Table 16.3 Comparing network performance on learning 2D translation-invariant
representations on MNIST.

ReduNet ReduNet (invariant)
Acc (Original Test Data) 0.980 0.975
Acc (Test Data with All Possible Shifts) 0.540 0.909

16.4 Guaranteed Manifold Classification by Deep Networks

The previous sections have shown how to construct (nonlinear) deep networks

that embed labelled data into a union of incoherent subspaces, one per class. In

contrast to our previous studies of linear and piecewise linear structure, these

models can accommodate data that reside on nonlinear manifolds, by iteratively

linearizing them. To a large extent, the constructive approach in the previous

section reveals why a deep network architecture and many commonly adopted

processes and operators are necessary for the classification task. However, due to

the nonconvex nature of the objective and the greedy nature of the construction,

there is yet no guarantee for the so obtained network to succeed in finding the

optimal representation. This naturally raises the questions: When can data resid-

ing on nonlinear submanifolds be accurately classified by a deep network? What

resources (data, network depth and width, training time) would be sufficient to

correctly label the data? These questions are motivated both by the observed

successes of deep networks in coping with nonlinear data, and the prevalence of

nonlinear, low-dimensional structure in real data.

16.4.1 Minimal Case: Two 1D Submanifolds

In this section, we study this problem in what is arguably the simplest possible

case: two one-dimensional submanifolds on a high-dimensional sphere. The ex-

periment of classifying two digits, “0” and “1”, with arbitrary rotation that we

saw in Figure 16.15, can be viewed as an example of this problem. This is anal-

ogous to our discussion of dictionary learning in Chapter 7, where we illustrated

39 Using more channels or better designed filters may certainly improve the performance.

Here we choose the very basic ones just to verify the concept.
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the basic ideas in the simplistic setting of one-sparse vectors, and extracted in-

tuitions that carry over to more general situations.40

The precise setup is illustrated in Figure 16.19: we observe a finite set of

labelled samples {(xi, yi)}Ni=1 residing on two one-dimensional submanifoldsM+

and M− on a high-dimensional sphere, and wish to understand what resources

are needed to correctly label every point onM+ andM−. This is a strong form

of generalization since it guarantees that the learned (or constructed) classifier

f(x,θ) outputs the correct label on every possible input.

Clearly, the resources required depend on the geometry of the manifolds, which

here we capture through their curvature κ and separation ∆. We will describe

how this question can be studied through the lens of supervised learning, where

one fits a network to data by minimizing the loss on the training data:

min
θ
L(θ,X,Y ) =

1

N

N∑

i=1

`
(
f(xi,θ), yi

)
, (16.4.1)

starting from a random initialization θ0. This approach is, in a loose sense, dual

to the approach taken in the previous sections: instead of constructing networks

in the forward direction in order to minimize a loss, we start with a random

network and train it by gradient descent, which propagates information about

desired outputs backward through the network to determine how the parame-

ters should be adjusted. Back propagation has been the dominant method for

training deep networks [RHW86]. Nevertheless, we believe ultimately, these two

approaches can (and should) be combined, e.g., the analytically constructed nom-

inal weights of the network in the previous section can be further adjusted by

gradient descent, potentially reducing the number of layers needed to embed the

data on orthogonal subspaces.

One major challenge in analyzing neural network training arises from the non-

convexity of the objective L(θ,X,Y ). In the language of Chapter 7, deep net-

works exhibit complicated, compound symmetries (e.g., permutation or shift

symmetries at each layer). We currently lack a comprehensive understanding

of the optimization landscapes of deep networks. This has two implications for

analysis: first, it is easier to analyze the training procedure in terms of the input-

output relationship x 7→ f(x,θ), rather than the weights themselves, which ex-

hibit complicated symmetries. Second, rather than exhaustively characterizing

local/global minimizers over the entire space, it is easier to analyze the dynamics

of training starting from a random initial network f(·,θ0). This enables us to

bring tools from high-dimensional probability to bear on the problem: as the

number of network parameters increases, the behavior of training becomes in-

creasingly regular. Moreover, the initial distribution of the parameters can be

chosen such that the layers of the network implement near isometries.

40 Any fundamental ideas that work for general cases must be explained, arguably more

clearly, for the most basic case first. Typically, going from 0 to 1 is the key step in
advancing our knowledge, and after that, from 1 to n is merely natural extension.
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Figure 16.19 Left: data in image classification with standard augmentations, as well
as other domains in which neural networks are commonly used, lies on low
dimensional manifolds—in this case those generated by the action of continuous
transformations, say rotation, on images in the training set. The dimension of the
manifold is determined by the dimension of the symmetry group, and is typically
small. Right: the multiple manifold problem. Our model problem, capturing this low
dimensional structure, is the classification of low-dimensional submanifolds of a
sphere Sn0−1. The difficulty of the problem is set by the inter-manifold separation ∆
and the curvature κ. The depth and width of the network required to provably reduce
the generalization error efficiently are set by these parameters.

16.4.2 Problem Formulation and Analysis

To make the above discussion more concrete, we consider a model network train-

ing problem, in which our labels take values in {±1}, corresponding to the two

componentsM±. Our goal is to fit a fully connected neural network to input data

xi of dimension n0, with layers of width n, so that W 0 ∈ Rn×n0 , W ` ∈ Rn×n

for ` = 1, . . . , L − 2 and WL−1 ∈ R1×n. We attempt to find these weights by

minimizing the square loss over the training data:41

min
θ

1

2N

N∑

i=1

(
f(xi,θ)− yi

)2
=

∫

x

1
2 (f(x,θ)− y(x))2dµN (x), (16.4.2)

where in the final expression, we have let µN (x) = 1
N

∑
i δ(x − xi) denote the

measure (distribution) associated with the training data. Let ζ(x) denote the

signed error at point x:

ζ(x) = f(x,θ)− y(x). (16.4.3)

41 In the two-class case, it is convenient to represent the two classes as ±1, and the choice of
squired loss, instead of cross entropy, is mainly for simplicity.
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To understand how this error evolves during training, we can study a continuous

time variant of gradient descent42 in which the parameters evolve as

d

dt
θt = −∇θL(θt,X,Y ) = −

∫

x

(f(x,θt)− y(x))
∂f(x,θ)

∂θ

∣∣∣
t
dµN (x)

= −
∫

x

ζt(x)
∂f(x,θ)

∂θ

∣∣∣
θt
dµN (x). (16.4.4)

As mentioned above, characterizing the evolution of the network parameters θ

themselves is challenging; often it is easier to think in terms of the error ζt, which

evolves as

d

dt
ζt(x) =

∂f(x,θ)

∂θ

∣∣∣
θt

d

dt
θt = −

∫

x′

〈
∂f(x,θ)

∂θ
,
∂f(x′,θ)

∂θ

〉∣∣∣
θt
ζt(x

′)dµN (x′)

.
= −Θtζt, (16.4.5)

where Θt is a (linear) integral operator that maps a function h(x) to
∫

x′

〈
∂f(x,θ)

∂θ
,
∂f(x′,θ)

∂θ

〉
h(x′)dµN (x′). (16.4.6)

This operator is positive definite: for every h, we have 〈h,Θth〉µN ≥ 0 where

〈f, g〉µN =
∫
x
f(x)g(x)dµN (x). This means that the error is nonincreasing:

d

dt
‖ζt‖2L2(µN ) ≤ 0,

with ‖f‖2L2(µN ) = 〈f, f〉µN .

How rapidly does the error reduce? This depends on the properties of the

operator Θt and the error ζt. Θt is a positive definite linear operator, sometimes

referred to as the neural tangent kernel [JGH18].43 The entries Θt(x,x
′) measure

our ability to independently modify the outputs f(x,θ) and f(x′,θ) at points

x and x′. If

|Θt(x,x
′)| � min{Θt(x,x),Θt(x

′,x′)},
the operator Θt is close to diagonal, and it is possible to independently modify

the two outputs with only small changes to the parameters θ.

The operator Θt can also be studied both through its eigenvalue/eigenvector

decomposition:

Θt =
∑

i

λiviv
∗
i (16.4.7)

Because d
dtζt = −Θtζt, the error will decrease rapidly as long as it is aligned

with eigenvectors vi that correspond to large eigenvalues λi. Conversely, if the

error is aligned with eigenvectors that correspond to small eigenvalues, it will

decrease slowly.

42 ... with the understanding that in this setting, conclusions transfer rigorously to discrete

time (finite stepping) gradient methods.
43 For the sake of developing intuition, it can be thought of as an infinitely large symmetric

matrix.
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Figure 16.20 Role of Network Depth. As depth L increases, the kernel Θ0(x,x′)
becomes sharper, reflecting a greater capacity to fit functions that vary spatially. In
our setup, the required depth is set by the separation ∆ and the curvature κ of the
manifolds M±.

We can develop insights into both values and eigenvalues by making the fol-

lowing idealizations: first, we consider the behavior of Θ at initialization (time

t = 0). At initialization, the network parameters are independent random vari-

ables, and Θ0 is a random operator.44 We can study its behavior using tools

from high dimensional probability.45 Second, we imagine that the network is wide

(here, n� n0). This means that Θ0 is a function of many independent random

variables. It should be no surprise that as the network width increases, this oper-

ator concentrates about its expectation. Moreover, this expectation depends on

the points x and x′ in a very simple way: because of the rotational invariance of

the Gaussian distribution, it is not difficult to show that E[Θ0(x,x′)] depends

on the points x and x′ only through their angle:

E[Θ0(x,x′)] = ξL

(
∠(x,x′)

)
, (16.4.8)

where L is the depth of the network. Figure 16.20 plots the function ξL as a

function of the angle ∠(x,x′) for various network depths L. Notice that ξL is

always maximized at ∠(x,x′) = 0; as L increases, Θ becomes sharper, suggesting

that the network will be able to fit more complicated functions. Here, depth L

serves as an approximation resource: deeper networks can fit more complicated

functions. In the model problem of manifold classification, this suggests that

greater curvature κ and the smaller the separation ∆, the deeper the network

needs to be.

Second, the limiting expression E[Θ] provides insights into the eigenvectors

and eigenvalues of Θ. Because E[Θ] is a function of angle only, in the spe-

44 For concreteness, here we take the initial weights to be independent N (0, 2/n) random

variables, and the nonlinearity φ to be the ReLU. These particular choices ensure that
each layer implements a near isometry.

45 In particular, because the network operations are applied sequentially, tools from

Martingale theory are especially appropriate here.
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cial case when the data are uniformly distributed on the unit sphere, E[Θ] is

a (rotationally) invariant operator, which acts by spherical convolution. It can

be diagonalized in the frequency domain46, with large eigenvalues correspond-

ing to low frequencies, and small eigenvalues corresponding to high frequencies.

Of course, we are interested in data that are not uniformly distributed on the

sphere – rather, natural data tend to have lower-dimensional structure. How-

ever these basic intuitions carry over to more structured situations: eigenvectors

corresponding to large eigenvalues tend to be smoother or “lower frequency”,

while eigenvectors corresponding to small eigenvalues tend to be oscillatory, or

“higher frequency”. Assuming the error ζ is aligned with these “lower frequency”

eigenvectors, gradient descent will rapidly drive the error toward zero.

The extent to which the error is aligned with “low-frequency” eigenvectors can

be captured implicitly through a notion of “certificates”: if we can exhibit ζ in

the form ζ ≈ Θg, where g is some function of small L2 norm, then ζ must not

be too concentrated on directions that correspond to small eigenvectors of Θ.

This construction is loosely analogous to our constructions of dual certificates

in Chapters 3-5. In those chapters, we proved recovery by convex optimiza-

tion, by exhibiting a subgradient in the range of a certain random operator (the

row-space of the measurement operators), using (random) measurements as an

approximation resource. In a similar sense, here, we prove that gradient descent

makes significant progress, by illustrating that the error ζ is near the range of a

certain random operator Θ, using network depth and (random) parameters as

approximation resources.

16.4.3 Main Conclusion

Summing up, in this setting we have the following resources:

• Network depth is a computation resource (via incremental approximation);

deeper networks have sharper kernels Θ, which can fit more complicated func-

tions, or adapt to more complicated geometries (larger κ, smaller ∆).

• Network width is a statistical resource; as width increases, the early behavior

of training becomes increasingly regular, due to two effects: (i) concentration

of Θ0 about E[Θ0], and (ii) the ability to make large progress in the objective

before Θt deviates from Θ0. The later can be viewed as a consequence of

overparameterization, analogous to our discussions of overparameterized low

rank recovery in Chapters 4–7.

• Data samples are a statistical resource; as the number of samples increases,

the learned network f(·,θ) is more likely to uniformly label the manifoldsM±.

The number of samples N is set by the width of the kernel ξL: intuitively

speaking, to generalize, we need the manifold to be covered more finely than

the “aperture” of the kernel.

46 More precisely, in terms of spherical harmonics.
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Combining all of these considerations, it is possible identify (tractable) conditions

under which gradient descent correctly labels the manifolds. For concision, we

only sketch these conditions here:

Theorem 16.6 (Sufficient Conditions for Manifold Classification (informal state-

ment) [BGW20]). Suppose that the network width n > poly(L log(n0)), the net-

work depth L > max{κ2,polylog(n0)}, and the number of samples N ≥ poly(L).

If there exists g satisfying ‖g‖L2 ≤ c/n and ‖Θ0g− ζ0‖L2 < c/L, then with high

probability randomly initialized gradient descent correctly labels every point on

the manifolds M±.

The work [BGW20] demonstrates how to construct such certificates g for sim-

ple geometries on the sphere, giving end-to-end guarantees for these simple clas-

sification problems. Although the results described in this section are limited in

generality (pertaining to one-dimensional manifolds, with wide networks), they

illustrate basic sufficient conditions for learning with structured data, and basic

tensions between data properties, network architecture and sample complexity.

Both at the level of proofs and at the level of phenomena, our intuitions from

the first part of this book continue to serve us well in this new setting.

16.5 Epilogue: Open Problems and Future Directions

This chapter has sketched some fundamental and substantial connections be-

tween low-dimensional models and deep neural networks. This is an active area

of research, with many open problems. As an epilogue of the chapter (and of the

book), we lay out a number of promising directions for future work.

Simpler and Better Networks.
In practice, it is typically efficient (and even desirable from an accuracy per-

spective) to implement convolutional networks with very short or small (and

separable) kernels [Cho17]. Identifying conditions on the data that lead natu-

rally to short (and separable) convolutions is an interesting problem for future

work. One possible conjecture is that when the data exhibit “short-and-sparse”

structure, as in Chapter 12, the neural network naturally takes on a “short-and-

sparse” structure. More generally, the problem of identifying simple networks is

important both for efficiency of implementation and for robustness. As in the

first part of this book, various notions of simplicity could be relevant, depending

on the structure of the data and the processing task.

In the current straightforward implementation, the width of the ReduNet

seems to grow linearly in the number of classes (i.e., the number of operators

Cj). Nevertheless, notice that Cj are not independent from E. In fact, one can

show that, near the optimal representation, the range of each Cj becomes an

eigen-subspace of E [CYY+20]. This is consistent with the learning objective
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discussed in Section 16.2 – seeking a nonlinear mapping for independent com-

ponent analysis of the given data. Hence in practice, to save both space and

computation, one could approximate Cj with a subset of operations from E.

At a more theoretical level, the guarantees for classification described in Sec-

tion 16.4 currently demand that the network be quite wide: n should be larger

than a large degree polynomial in L. While we have motivated the need for

wide networks in terms of concentration of measure, in fact it is possible to per-

form sharp analyses that show that the kernel Θ concentrates uniformly over

the (low-dimensional) data manifolds when the width is roughly dpolylogn0,

which is optimal. Rather, the culprit in these analyses is the requirement that

Θt ≈ Θ0. Relaxing this requirement seems to demand a better understanding of

the (nonconvex) geometry of neural network training, in the spirit of Chapter 7.

Guaranteed Invariance.
Our discussion of networks-by-design in Section 16.3 revealed a tension between

sparsity (low-dimensionality) and invariance (to certain transformation group).

Understanding the interplay or tradeoff between these two different, ubiquitous

forms of low-dimensional structure is an important direction both for neural

networks and for low-dimensional data modeling in general. An important po-

tential impact is to help in guaranteeing uniform performance across a large

family of structured transformations, such as affine transforms, homographies,

general smooth deformations, or dynamics from certain differential equations.

Current standard approaches to this problem combine architectural features such

as convolution and pooling with learning with augmented datasets (the parame-

ters from random initialization). However, the literature is rich with alternative

“networks-by-design” proposals (the ScatteringNet [BM13], spatial transformer

networks [JSZK15], capsule networks [HKW11], convolutions with respect to

larger groups [CW16], etc.). A major theoretical question underlying all of these

approaches is what resources (data, network, test-time computation) are required

to achieve equivarient detection or invariant classification.

Some of the most elegant proposed approaches incur either data or compu-

tational costs that are exponential in the number of parameters of the trans-

formation or in the number of layers/iterations. Nevertheless, there are some

evidences that the problem may not be so difficult: in some settings such as

low-rank textures in Chapter 15, the TILT algorithm (via local optimization by

repeatedly linearizing the transformation) achieves a surprisingly large region of

convergence; the derivation of the ReduNet suggests that if we only learn an

invariant/equivalent representation for dataset from a specific low-dimensional

structure, the resources needed may scale gracefully to that of the task (say in

terms of number of classes or data size). Hence, as the empirical success of TILT

and ReduNet has suggested, it might be more practical to provide invariance

guarantee for any given instance (rather than an entire family) of low-dimensional

structures, in similar vein to Theorem 4.26 for low-rank matrix completion in

Chapter 4.
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Understanding Generalizability.
Modern deep neural networks are often highly over-parameterized models with

more parameters than necessary to perfectly fit any training data [ZBH+17].

While the classical bias-variance tradeoff principle in statistics predicts that a

large model leads to high variance error and overfitting [HTW15], modern prac-

tice with deep learning almost always favors models that are deeper, wider, and

larger. Increasing studies have revealed that a fundamental reason for this is

due to implicit regularization induced by the optimization algorithms [SHN+18,

GLSS18, GBLJ19], the low-dimensional structures of the data [MWCC18], or

both [YZQM20]. We believe a clear understanding of the generalizability of deep

networks relies on a full understanding of over-parameterized models for nonlin-

ear low-dimensional data structures such as submanifolds, in a similar spirit of

understanding over-complete dictionaries for sparsity studied in this book,. This

would require us to go well beyond the (bilinear) sparse dictionary learning or

low-rank models discussed in Chapter 7.

Ensuring Robustness.
Despite extensive engineering, modern deep networks remain rather vulnerable

to input perturbations, label noises, or adversarial attacks [CAD+18]. Empirical

designs based on trial and error cannot provide any rigorous guarantee of ro-

bustness. Nevertheless, as we have seen throughout this book, from Boscovich’s

original proposal of `1 minimization, to Logan’s phenomenon, to sparse error cor-

rection [CT05], and to dense error correction [WM10], surprisingly good tradeoffs

between accuracy and robustness can be achieved if the corrupting errors are in-

coherent to low-dimensional structures of the data. The robust face recognition

of Chapter 13 and structured texture recovery of Chapter 15 are two striking

examples. It would be interesting to see whether one can generalize the notion of

incoherent errors to low-dimensional submanifolds. If so, leveraging discrimina-

tive low-dimensional structures learned by the deep networks (e.g. the ReduNet)

to provide strong guarantees of classification robustness (to mislabeled training

data or/and to random corruptions on the input) could become a promising

direction for future development.

A Unified Objective and Framework for Unsupervised Learning.
This chapter sketches an approach to deriving neural networks for classification

with labeled training data, based on principles from data compression and com-

pressive sensing. Note that the lossy coding and compression approach was origi-

nally developed for (unsupervised) clustering problems [MDHW07,VMS16] (also

see equation (16.2.4)) and later extended to classification [WTL+08, KPCC15]:

both mathematically are equivalent to maximizing the rate reduction against the

membership Π:

max
Π

∆R(Z,Π, ε) (16.5.1)
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with the representation Z given and fixed. So the rate reduction framework

can be naturally extended to unsupervised learning of both representation and

class membership, or a variety of intermediate settings such as semi-supervised

learning, self-supervised learning, and incremental/online learning. The main

technical challenge in these settings is that the class labels are partially or en-

tirely unknown. So the membership Π need to be identified while learning the

representation Z:

max
Z,Π

∆R(Z,Π, ε), (16.5.2)

with Z ⊂ Sn−1 and Π ∈ Ω (or a constraint set based on partially known mem-

bership).

Recently, there have been promising attempts to simultaneously learn the rep-

resentation Z and the class membership Π in the unsupervised setting with

conventional deep networks [ARV20] and with contrastive learning objectives

[CMM+20]. The rate reduction objective (16.5.2) might be able to unify both

the learning objective and network architecture in this setting: following the

same idea of the ReduNet, one may construct networks that emulate the joint

(gradient flow) dynamics and optimize the representation Z and the membership

Π simultaneously or alternatively:

Ż = η · ∂∆R

∂Z
, Π̇ = γ · ∂∆R

∂Π
. (16.5.3)

Of course, the basic gradient flow can be regularized with other additional in-

formation. For instance, the class membership Π can also be updated according

to another (probably learned) similarity measure among the samples.47 Success

of such a scheme (or its variants) would entail understanding a nonconvex land-

scape with both continuous and discrete symmetries, which could potentially be

studied through the lens of Chapter 7.

Forward Deep Networks as Optimization.
We want to point out that it is rather insightful and beneficial to view deep

(forward) networks as unfolded or unrolled optimization schemes for optimizing

rate reduction or other intrinsic measures of compactness, as depicted in Section

16.3. This allows us to utilize the rich arsenal of techniques from optimization to

design and justify a variety of deep networks. Powerful ideas that we introduced

in Chapters 8–9 (e.g. acceleration, alternating minimization, or augmented La-

grangian etc.) can be readily deployed to design effective optimization schemes

that can in turn be emulated by deep networks. See Exercise 16.6 for a possible

improvement of the ReduNet.

Similar to the above discussion on “Understanding Generalizability,” one could

47 For example, the “self-attention” or “transformer” type component [VSP+17] recently

incorporated into deep networks can be viewed as actively learning similarity among the

samples (or their features).
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also study what implicit regularization

R(·) : f 7→ R+

has been imposed upon the family of mappings F = {f} as they are constructed

through the incremental gradient-based schemes as in the ReduNet. Or what ad-

ditional regularization R(f) could have been imposed explicitly on the mapping

f to make the representation learning problem better-defined – in the sense that

the optimal representation f? would have other desired properties (e.g. smooth-

ness) as well as unique (or belong to a class of equivalent solutions)?

Backward Propagation as Variational Fine-Tuning.
The forward unrolling process depicted in Section 16.3 allows us to construct

the deep network f(x,θ0) – its architectures, operators, and parameters – as

the nominal optimization path for the rate reduction ∆R. The popular back

propagation for training deep networks [RHW86], analyzed in Section 16.4,

can be viewed as variational methods for fine-tuning the network parameters

f(x,θ0 + dθ) = f(x,θ0) + δf , around the nominal path f(x,θ0). The fine-

tuning may achieve a better tradeoff between accuracy and efficiency of the

nominal network (say when only a limited number of iterations, or layers, are al-

lowed) [GEBS18] or to better customize the network to certain subsequent tasks

or new data.

Nevertheless, for networks like the ReduNet whose operators and parameters

have clear geometric and statistical interpretation, it remains open how to de-

velop new back-propagation methods that respect structures and functionalities

of these components (say compression or expansion) during fine-tuning. This can

also be viewed as imposing certain additional regularization R (or constraints)

onto the rate reduction objective:

min
f∈F

∆R(f) + λ · R(f).

At least conceptually, by not allowing all the parameters to be set completely

free for update, such regularization would help avoid over-fitting or help avoid

the so-called “catastrophic forgetting” in the sequential or incremental learning

setting [MC89,WBYM21].

Another potential advantage of this variational perspective for network fine-

tuning is that it opens the door to employ rigorous and powerful tools from

calculus of variations (e.g. [Lib12]) to study properties of the optimal mapping

f? (represented by a deep network):

δ∆R(f) + λ · δR(f)
∣∣
f?

= 0. (16.5.4)

This may potentially leads to new ideas and variational algorithms for fine-

tuning the network besides the conventional back propagation. There are already

evidences that the forward-constructed ReduNet can be fine-tuned in a forward

propagation fashion.
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Sparse Coding, Spectral Computing, and Subspace Embedding in Nature.
In this chapter, we have seen both sparse coding and spectral computing (or

multi-channel convolution) arise naturally as necessary processes for effective

and efficient classification of (visual) data invariant to translation. Recall that

“sparse coding,” as mentioned in Chapter 1, has been hypothesized as a guiding

principle for the visual cortex of primates [OF96b]. Interestingly, there have also

been strong scientific evidences that neurons in the visual cortex compute in

the spectral domain: they encode and transmit information through the rate of

spiking, hence called “spiking neurons” [SK93, EA03, BGM+08]. Recent studies

in neuroscience have started to reveal how these mechanisms might be integrated

in the inferotemporal (IT) cortex, where neurons encode and process informa-

tion about high-level object identity (e.g. face recognition), invariant to various

transformations [MHSD15, CT17]. The recent studies in [CT17] went even fur-

ther to hypothesize that high-level neurons encode the face space as a “linear

subspace” with each cell likely encoding one axis of the subspace (rather than

previously thought “an exemplar”). The framework laid out in this chapter sug-

gests that such a “high-level” compact (linear) representation can be efficiently

and effectively learned via an arguably much simpler and more natural “forward

propagation” mechanism.

So remarkably, nature might have already “learned” through millions years

of evolution to exploit benefits of the mathematical principles depicted in this

chapter, in particular the computational efficiency and simplicity in sparse cod-

ing, spectral computing, and subspace embedding for achieving invariant (visual)

recognition! It remains a largely open, highly intriguing, question whether there

will be concrete scientific evidences that suggest truly deep and broad connec-

tions between the guiding principles for Perception/Cognition and the computa-

tional principles for Data Compression/Representation developed in this chapter

and this book. Regardless, we, the authors, strongly believe that the law of par-

simony, a.k.a. Occam’s Razor, has always been and will always be the central

governing principle for all sciences and intelligences, artificial or natural. Hence,

we leave the readers with a slogan:

We learn to compress, and compress to learn!

16.6 Exercises

16.1 (Properties of OLE). Show that the OLE objective (16.2.8) is always neg-

ative and achieves the maximal value 0 when the subspaces are orthogonal, re-

gardless of their dimensions.

16.2 (Gradient of Rate Reduction). Derive equation (16.3.3) and equation (16.3.4)

from the definition of the rate reduction function (16.3.1).
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16.3 (Approximation of Regression Residual with ReLU). Notice that the geo-

metric meaning of σ in (16.3.12) is to compute the regression “residual” of each

feature against the subspace to which it belongs. So when we restrict all features

to be in the first (positive) quadrant of the feature space,48 argue that one can

approximate this residual using the rectified linear units operation, ReLU(x) =

max(0, x), on pj = Cj
`z` or its orthogonal complement:

σ(z`) ∝ z` −
k∑

j=1

ReLU
(
P j
`z`
)
, (16.6.1)

where P j
` = (Cj

`)
⊥ is the projection onto the j-th class49. Discuss under what

conditions or assumptions, the above approximate is good.

16.4 (E and Cj as Convolutions). Prove Proposition 16.5.

16.5 (Benefits in the Spectral Domain). Show that any circulant matrix can be

diagonalized by the discrete Fourier transform F :

circ(z) = F ∗diag (DFT(z))F . (16.6.2)

Using this relationship, show that Ē in (16.3.25) can be computed as

Ē =

[
F ∗ 0 0

0
. . . 0

0 0 F ∗

]
· α
(
I + α

[
D11 ··· D1C

...
. . .

...
DC1 ··· DCC

])−1

·
[
F 0 0

0
. . . 0

0 0 F

]
, (16.6.3)

where Dcc′ are all diagonal matrices. Discuss how to exploit this structure to

compute the inverse more efficiently.

16.6 (Network Architecture from Accelerated Gradient Methods). Empirically,

people have found that additional skip connections across multiple layers may im-

prove the network performance, e.g. highway network [SGS15] or the DenseNet

[HLVDMW17]. In the ReduNet, the role of each layer is precisely interpreted as

one iterative gradient ascent step for the objective function ∆R. In the exper-

iments, we have observed that the basic gradient scheme sometimes converges

slowly, resulting in deep networks with thousands of layers (iterations)! To im-

prove the efficiency of the basic ReduNet, one may consider in the accelerated

gradient methods introduced in Chapters 8 and 9. Say to minimize or maximize

a function h(z), such accelerated methods usually take the form:
{
p`+1 = z` + β` · (z` − z`−1),

z`+1 = p`+1 + η · ∇h(p`+1).
(16.6.4)

Sketch the resulting network architecture based on the accelerated gradient scheme,

and verify empirically (say on the mixture of Gaussian or the handwritten dig-

its) if the new architecture based on accelerated gradient would lead to faster

convergence hence networks with fewer layers (or iterations).

48 Most current neural networks seem to adopt this regime.
49 P j` can be viewed as the orthogonal complement to Cj` .
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16.7 (Programming with Deep Invariant ReduNet). In Section 16.3.3, we have

seen a basic example of constructing a ReduNet that is invariant to rotation (or

translation) for two classes of digits, “0” and “1”. Now knowing from “0” to

“1,” you are asked to take it from 1 to n in this exercise. This would allow you

to gain some real experience with constructing ReduNets under more practical

settings. Take 100 random samples from all 10 classes, 10 per class, from the

MNIST dataset of 10 hand-written digits [LeC98].

• First, you get a chance to construct a ReduNet that can map these 100 samples

to 10 orthogonal subspaces that are invariant to all rotation.

1 First, convert each image to a multi-channel cyclic signal by following the

same polar transform illustrated in Figure 16.15. Here choose Γ = 200 and

C = 15.

2 Second, try to lift these signals with a number of random Gaussian filters.

Try a different number of filters in the range 10 to 30; or filter kernel size

from 3 to 9 etc.

3 Construct the rest of the ReduNet. Again, try your construction with differ-

ent choices of key parameters: say quantization error ε ∈ [0.01, 0.5], opti-

mization step size η ∈ [0.1, 1], and a number of layers L ∈ [20, 100].

• Second, finalize and evaluate your resulting ReduNet:

1 Monitor how the different rates R, Rc and ∆R evolve with the number of

layers.

2 Compute the cosine similarity for the training set, before and after the Re-

duNet mapping.

3 Randomly select an independent set of 100 samples, 10 per class, and eval-

uate the effect of ReduNet on these new samples.

• Finally, some bonus tasks:

1 Repeat for the task of constructing a ReduNet invariant to 2D translation

for these digits. (Maybe you want to try a different range for the number of

channels or layers.)

2 Can you try to refine the so-obtained ReduNet network via back propagation

by training it on the entire standard training set of MNIST? How would you

evaluate what has gained (or lost) through such refinement?
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Appendix A Facts from Linear Algebra
and Matrix Analysis

“Everything is linear algebra.”
– attributed to Gene H. Golub

Linear algebra studies linear systems of equations and their solutions. This

topic is extremely important for engineering applications. Linear models repre-

sent a simple, tractable first choice for modeling complicated systems. Moreover,

many devices for measuring the physical world are designed to produce mea-

surements that are as close as possible to linear functions of the signal to be

measured, such as the MR imaging studied in Chapter 10. Even if the mea-

surements are nonlinear or the signals of interests have nonlinear structures, a

common and effective practice in engineering is to approximate any nonlinearal-

ity with a sequence of (local) linearization, as we see in Chapter 15 for recovering

deformed low-rank textures and in Chapter 16 for learning submanifolds with a

deep network.

In early parts of this appendix, we review several fundamental definitions,

constructions, and facts from linear algebra and matrix analysis. For readers

with a background in engineering, statistics or applied mathematics, much of

this material is likely to be familiar. They may use this appendix and the next

few to refresh their memory and get familiar with the notation used in this book.

Section A.9 contains a brief review of norms on matrices and spectral functions

of matrices, two more advanced topics which we use extensively throughout

the book. We have attempted to make this introduction as simple and self-

contained as possible; readers looking for a more thorough introduction to this

area could consult the excellent books of Horn and Johnson [HJ85], Golub and

Van Loan [GV96], or Bhatia [Bha96].1

1 Or Boyd and Vandenberghe [BV18] for a more elementary introduction.
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A.1 Vector Spaces, Linear Independence, Bases and Dimension

We use the notation R for the real numbers, and Rn for the n-dimensional real

vectors of the form:

x ≡



x1

...

xn


 ∈ Rn, x∗ = [x1, . . . , xn] ∈ Rn, (A.1.1)

where in this book, we use x∗ to denote the transpose of a column vector x.

In case the vector is complex, it represents the conjugate transpose. The space

Rn is an example of a vector space – a space in which we can perform addition

and scalar multiplication in a way that conforms to our intuition from R3. More

formally:

Definition A.1 (Vector Space). A vector space V over a field of scalars F is

a set V (with a special distinguished zero element 0 ∈ V) endowed with two

operations:

• vector addition +, which takes two vectors v,w ∈ V and produces another

vector v +w ∈ V,

• scalar multiplication, which takes a vector v ∈ V and a scalar α ∈ F, and

produces a vector αv ∈ V,

such that (1) addition is associative: v+ (w+x) = (v+w) +x, (2) addition is

commutative: v+w = w+v, (3) zero is the additive identity: v+0 = v, (3) every

element has an additive inverse: for each v ∈ V, there exists an element “−v”

∈ V such that v + (−v) = 0, (5) α(βv) = (αβ)v, (6) multiplicative identity:

1v = v, where 1 ∈ F is the multiplicative identity in F, (7) α(v+w) = αv+αw,

(8) (α+ β)v = αv + βv.

Example A.2. The following are examples of vector spaces (check this!)

• The n-dimensional real vectors Rn, over the scalar field F = R.

• The m× n real matrices

Rm×n
.
=




X =




X11 . . . X1n

...
. . .

...

Xm1 . . . Xmn




∣∣∣∣∣∣∣
Xij ∈ R




, (A.1.2)

over the scalar field F = R.

• The complex vectors Cn or complex matrices Cm×n, over the scalar field F = C.

• Function spaces, e.g.,

C0[0, 1]
.
= {f : [0, 1]→ R | f continuous} , (A.1.3)

over R. Vector spaces of functions defined on the continuum arise naturally in

the study sampling problems, in which we wish to derive information about the

physical world from digital measurements.
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By itself, the notion of a vector space is not particularly rich: it is simply a

space in which linear operations make sense. A vector space can be viewed as the

“playing field” on which much more interesting models can be built, and much

richer questions can be asked. As a step in this direction, we can note that it

makes sense to take linear combinations of elements of a vector space. A linear

combination is an expression of the form

α1v1 + α2v2 + · · ·+ αkvk,

where α1, . . . , αk ∈ F and v1, . . . ,vk ∈ V.

Definition A.3 (Linear Independence). A set of vectors v1, . . . ,vk are linearly

independent if

k∑

i=1

αivi = 0 =⇒ α1 = 0, . . . , αk = 0.

If a collection of vectors are not linearly independent, then there exists some

choice of (αi) not all zero, for which
∑
i αivi = 0. In this case, we say that the

set {v1, . . . ,vk} is linearly dependent.

Definition A.4 (Basis for a Vector Space). A basis B for the vector space V is

defined as a maximal, linearly independent set.

Here, maximal means that B is not contained in any larger linearly independent

set. Any basis B for V spans V, in the sense that every element of V can be written

as a linear combination of elements of B:

∀v ∈ V, ∃ b1, . . . , bk ∈ B, α1, . . . , αk ∈ F, such that v =
k∑

i=1

αibi. (A.1.4)

Moreover, if B is a basis, the coefficients α1, . . . , αk in the above expression are

unique.

Example A.5. In Rn, we often use the standard basis B = {e1, . . . , en} of

coordinate vectors

e1 =




1

0

0
...

0



, e2 =




0

1

0
...

0



, . . . , en =




0

0

0
...

1



. (A.1.5)

In Rm×n we may work with the standard basis of coordinate matrices Eij that

are one in entry (i, j) and zero elsewhere.
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S

R3

S

R2

Figure A.1 Linear subspaces of R2 and R3.

Every vector space V has a basis.2 One very fundamental result in linear algebra

states that every basis has the same size:

Theorem A.6 (Invariance of Dimension). For any vector space V, every basis B

has the same cardinality, which we denote dim(V), and call the dimension of V.

The notion of dimension is especially useful for talking about subspaces of the

vector space V.

Definition A.7 (Linear Subspace). A linear subspace of a vector space V is a

set S ⊆ V that is also a vector space.

For S ⊆ V to be a linear subspace, it is necessary and sufficient that S be

stable under linear combinations: for all α, β ∈ F and v1,v2 ∈ S, αv1 +βv2 ∈ S.

Linear subspaces play a very important dual role, both as cleanly characterizing

the solvability of linear equations, and as geometric data models. Geometrically,

we can visualize a subspace as a generalization of a line, or plane, which must

pass the origin: 0 ∈ S (see Figure A.1).

A.2 Inner Products

The most important geometric relationship between subspaces is that of orthog-

onality. To describe it clearly, we need the notion of an inner product. Below,

we will assume that we are working with a vector space over either the real or

complex numbers, and so the complex conjugate ᾱ of α ∈ F is well-defined.

Definition A.8 (Inner Product). A function 〈·, ·〉 : V × V → F is an inner

product if it satisfies:

2 This statement may seem obvious, but is tricky: it turns out to be equivalent to the axiom
of choice in set theory, and hence is best viewed as an assumption. For the vector spaces

we consider in this course (Rn, Cn, ect.), it will be very easy to construct a basis, and so
for our purposes, the question is essentially moot.
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• linearity: 〈αv + βw,x〉 = α 〈v,x〉+ β 〈w,x〉;
• conjugate symmetry 〈v,w〉 = 〈w,v〉;
• positive definiteness 〈v,v〉 ≥ 0, with equality iff v = 0.

We then say that v and w are orthogonal (with respect to inner product 〈·, ·〉)
if 〈v,w〉 = 0. In this case, we write v ⊥ w. For a given set S ⊆ V, we define

its orthogonal complement as the set of all vectors that are orthogonal to every

element of S:

Definition A.9 (Orthogonal Complement). For S ⊆ V,

S⊥ = {v ∈ V | 〈v, s〉 = 0 ∀ s ∈ S} .

It is worth noting that for any set S, S⊥ ⊆ V is a linear subspace. This holds

even if S is not a subspace itself.

We will use (and return to) two main examples of inner products. The first is

the canonical inner product on Rn, which simply sets

〈x, z〉 =

n∑

i=1

xizi. (A.2.1)

This extends to a canonical inner product on Rm×n, which is sometimes called

the Frobenius inner product:

〈X,Z〉 .=
m∑

i=1

n∑

j=1

XijZij . (A.2.2)

Recall that the trace of a square matrix is simply the sum of its diagonal elements:

Definition A.10. For M ∈ Rn×n, trace (M) =
∑n
i=1Mii.

Using the trace, we can give an expression for the Frobenius inner product

which appears more complicated, but actually turns out to be tremendously

useful:

〈X,Z〉 = trace (X∗Z) = trace (XZ∗) . (A.2.3)

For manipulating this expression, it is worth noting that the trace is invariant

under a cyclic permutation of its argument:

Theorem A.11. For any matrices A, B of compatible size, trace (AB) =

trace (BA). More generally, if A1, . . . ,An are matrices of compatible size, and

π is a cyclic permutation on {1, . . . , n},

trace (A1A2 · · ·An) = trace
(
Aπ(1)Aπ(2) · · ·Aπ(n)

)
. (A.2.4)

A.3 Linear Transformations and Matrices

A mapping L between vector spaces V and V′ over a common field F is a linear

transformation (or linear map) if it respects the vector space operations:
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Definition A.12 (Linear Map). A linear map is a function L : V→ V′ such for

all α, β ∈ F and v,w ∈ V, L[αv + βw] = αL[v] + βL[w].

If V′ = V then we call L a linear operator.

Example A.13. Let V = Rm×n, and Ω ⊆ {1, . . . ,m} × {1, . . . , n}. Let PΩ :

Rm×n → Rm×n via

(PΩ[X])ij =

{
Xij (i, j) ∈ Ω,

0 else,
(A.3.1)

i.e., the restriction of X to Ω. Then PΩ is a linear operator.

The special case of V = Rn, V′ = Rm is of special importance. It turns out

that there is a bijective correspondence between linear operators L : Rn → Rm

and m× n matrices:

Theorem A.14. For x ∈ Rn and A ∈ Rm×n, let

(Ax)i =
∑

j

Aijxj . (A.3.2)

Then for every A ∈ Rm×n, the mapping x 7→ Ax is a linear map from Rn to Rm.

Conversely for every linear map L : Rn → Rm there exists a unique A ∈ Rm×n

such that for every x, L[x] = Ax.

This fact justifies the seemingly awkward standard definition of matrix mul-

tiplication – it is simply the correct way of representing the composition of two

linear maps:

Theorem A.15. If L : Rn → Rp and L′ : Rp → Rm are linear maps, with

corresponding matrix representations A ∈ Rp×n and A′ ∈ Rm×p, and L′ ◦ L
denotes the composition L′ ◦ L(x) = L′[L[x]], then L′ ◦ L is a linear map, and

its matrix representation is given by the matrix product A′A whose (i, j) entry

is

(
A′A

)
ij

=

p∑

k=1

a′ikakj . (A.3.3)

The (conjugate) transpose of a matrix A ∈ Cm×n is the n ×m matrix A∗ ∈
Cn×m given by:

A =




A11 . . . A1n

...
. . .

...

Am1 . . . Amn


 ⇒ A∗ =



A11 . . . Am1

...
. . .

...

A1n . . . Amn


 . (A.3.4)

When A is real, this is just the transpose. Transposition is a very simple opera-

tion on the entries of a matrix, but it has a basic reason for existing:
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Theorem A.16. Let L : Rn → Rm, with corresponding matrix A. Its adjoint

map is the unique linear map L∗ : Rm → Rn satisfying

∀x, y, 〈y,L[x]〉 = 〈L∗[y],x〉 . (A.3.5)

The matrix A∗ is the matrix representation of the adjoint map L∗.
A linear map L : V→ V′ is invertible if for every y ∈ V′, there is a unique x ∈ V

such that L[x] = y. In particular, if V = V′ = Rn, we call A ∈ Rn×n invertible

if it corresponds to an invertible linear map. This means that the system of

equations

Ax = y (A.3.6)

always has a unique solution

x = A−1y. (A.3.7)

It is not too difficult to show that if L is a linear map, its inverse L−1 is also linear.

So, the notation A−1 above can be taken to mean “the matrix representation of

the inverse mapping L−1”. Fortunately, there are much more concrete criteria

for determining if a given matrix A is invertible, and if so, for calculating A−1.

Definition A.17 (Determinant). The determinant of A ∈ Rn×n is the signed

volume of the parallelepiped defined by the columns of A:

det(A) =
∑

π a permutation on {1, . . . , n}
sgn(π)×

n∏

i=1

Ai,π(i), (A.3.8)

The explicit expression (A.3.8) is not usually of direct use. More important is

the geometric intuition: if det(A) is zero, the columns of A span a parallelpiped

of zero volume, and so they lie on some lower dimensional subspace of Rn. Vectors

y that do not reside in this subspace cannot be generated as linear combinations

of the columns of A, and A is not invertible. Conversely, if detA 6= 0, the

columns of A span all of Rn, and A is invertible. Making this reasoning formal,

one obtains

Theorem A.18 (Matrix Inverse). A matrix A ∈ Rn×n is invertible if and only
if detA 6= 0. If A is invertible, we can express its inverse as A−1 = 1

det(A)C,

where C ∈ Rn×n is the companion matrix:

C
.
=


(−1)1+1 det(A\1,\1) (−1)1+2 det(A\2,\1) . . . (−1)1+n det(A\n,\1)
(−1)2+1 det(A\1,\2) (−1)2+2 det(A\2,\2) . . . (−1)2+n det(A\n,\2)

...
...

. . .
...

(−1)n+1 det(A\1,\n) (−1)n+2 det(A\2,\n) . . . (−1)n+n det(A\n,\n)

 ,
where the matrix A\i,\j is constructed from A by removing the i-th row and j-th

column.

Again, the above expression for A−1 is of little use computationally, but is con-

ceptually helpful, since it shows that the entries of the inverse are rational func-

tions of the entries of A.
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It is worth noting that for any matrices A and B,

det(AB) = det(A) det(B). (A.3.9)

This corroborates the fact that a product of invertible linear maps is invertible,

and a product of invertible matrices is invertible. In particular,

(AB)−1 = B−1A−1. (A.3.10)

It is also useful to note that for every matrix A,

det(A) = det(A∗). (A.3.11)

A.4 Matrix Groups

Because the product of two n×n matrices is again an n×n matrix, this operation

can produce objects with interesting algebraic structure. We will not emphasize

the algebra of matrix groups – or even formally define a group. Rather, we just

recall the names of several groups that will recur throughout the course:

• The general linear group GL(n,R) consists of the invertible matrices:

GL(n,R) =
{
A ∈ Rn×n | det(A) 6= 0

}
. (A.4.1)

Similarly, GL(n,C) denotes the n×n invertible matrices with complex entries.

• The orthogonal group O(n) consists of the real n×n matrices that satisfy

A∗A = AA∗ = I:

O(n) =
{
A ∈ Rn×n | A∗A = I

}
. (A.4.2)

The expression A∗A = I implies that A is invertible, and that A−1 = A∗.
Hence, O(n) ⊂ GL(n,R). Two notes are in order: first, since I = I∗ =

(A∗A)∗ = AA∗, it is enough to keep only the expression A∗A in the def-

inition. Second, because det(A) = det(A∗), we have det(A)2 = 1, and so

every A ∈ O(n) has determinant ±1.

• The special orthogonal group SO(n) consists of the n × n matrices that

satisfy A∗A = AA∗ = I, and det(A) = +1:

SO(n) =
{
A ∈ Rn×n | A∗A = I, det(A) = +1

}
. (A.4.3)

Clearly, SO(n) ⊂ O(n) ⊂ GL(n,R). In R3, the group SO(3) corresponds to the

rotation matrices; O(3) contains rotations and reflections.

• The unitary and special unitary groups are subgroups of GL(n,C). The

unitary group U(n) contains those matrix A ∈ Cn×n satisfying A∗A = I. The

special unitary group SU(n) contains those A ∈ Cn×n satisfying A∗A = I

and det(A) = 1. So, SU(n) ⊂ U(n) ⊂ GL(n,C).
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A.5 Subspaces Associated with a Matrix

To each linear operator L : V → V′, we associate two important subspaces, the

range and the null space:

Definition A.19 (Range, null space). For L : V→ V′,

range(L) = {L[x] | x ∈ V} ⊆ V′, (A.5.1)

null(L) = {x ∈ V | L[x] = 0} ⊆ V. (A.5.2)

The range is a linear subspace of V′, while the null space is a linear subspace of

V.

Specializing these definitions to L : Rn → Rm, represented by a matrix A, we

obtain

null(A) = {x | Ax = 0} , (A.5.3)

range(A) = {Ax | x ∈ Rn} = col(A), (A.5.4)

row(A) = {w∗A | w ∈ Rm} . (A.5.5)

The sets null(A), range(A) and row(A) are all linear subspaces. They satisfy

several very important relationships:

Theorem A.20. For A ∈ Rm×n, the following relationships hold:

• null(A)⊥ = range(A∗).

• range(A)⊥ = null(A∗).

• null(A∗) = null(AA∗).

• range(A) = range(AA∗).

From this, we obtain that dim(row(A)) + dim(null(A)) = n.

Theorem A.21 (Matrix Rank). For any A ∈ Rm×n, dim(row(A)) = dim(range(A)).

We call the common value the rank of A. It is equal to the maximum size of a

set of linearly independent rows, which is in turn equal to the maximum size of

a set of linearly independent columns.

The rank satisfies many useful properties:

Theorem A.22 (Facts about Rank). The rank satisfies:

• rank (AB) ≤ min {rank (A) , rank (B)}.
• Sylvester’s inequalty For A ∈ Rm×p, B ∈ Rp×n,

rank (AB) ≥ rank (A) + rank (B)− p.

• Subadditivity ∀ A,B ∈ Rm×n, rank (A+B) ≤ rank (A) + rank (B).

• rank (A) = rank (AA∗) = rank (A∗A).
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R3

xo
xo + null(A)

Figure A.2 Geometry of solution sets for linear equations.

A.6 Linear Systems of Equations

Using the range and null space, we can decide if the system y = Ax has a

solution, and how many solutions it has:

Theorem A.23. Consider a linear system of equations y = Ax.

• Existence: The system y = Ax has a solution x if and only if y ∈ range(A).

• Uniqueness: Suppose that xo satisfies y = Axo. Every solution to the equa-

tion y = Ax can be generated as xo + v, where v ∈ null(A). The solution xo
is unique if and only if the null space is trivial (null(A) = {0}).

The last point means that whenever y = Ax has a solution xo, the solution set

has the form

xo + null(A). (A.6.1)

The “+” here is “in the sense of Minkowski”, which just means that x + S =

{x+ s | s ∈ S}. Since null(A) is a linear subspace, the resulting set is a trans-

late of a linear subspace. We call such a set an affine subspace. Unlike a linear

subspace, an affine subspace need not contain 0.

Definition A.24 (Affine Combination and Affine Subspace). Let v1, . . . ,vk ∈ V.

An affine combination is an expression of the form
∑
i αivi, with

∑
i αi = 1. An

affine subspace is a set A ⊂ V which is stable under affine combinations.

It is easy to check that A is an affine subspace if and only if A = x + S for

some linear subspace S. So, geometrically, we can visualize the solution set of

y = Ax as living on a plane which does not contain 0 – see Figure A.2.

Invertible Systems and Conjugate Gradient
If A ∈ Rm×m is square, and has full rank m, then for every y ∈ Rm, the system

y = Ax has exactly one solution x̂ = A−1y, where A−1 can be computed

according to Theorem A.18. However, when the matrixA is large, computing the

inverse is very expensive. A much more efficient numerical method to compute

the solution to above linear system is the so-called conjugate gradient method.
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For completeness, we here only describe the method but refer the readers to

detailed derivation and analysis to [She94,NW06].

The conjugate gradient is essentially an accelerated optimization method that

solves the quadratic minimization problem

min
x
‖y −Ax‖22 (A.6.2)

with an iterative procedure. Let ri ∈ Rm to denote the residual and di ∈ Rm be

the direction of incremental descent. The iterative process starts from any given

initial state x0 ∈ Rm, and the residual and descent direction are initialized as

d0 = r0 = y −Ax0.

The conjugate gradient descent process is given by the following iteration: For

i = 0, 1, 2, . . .,

Conjugate Gradient:





αi =
r∗i ri
d∗iAdi

,

xi+1 = xi + αidi,

ri+1 = ri − αiAdi,
βi+1 =

r∗i+1ri+1

r∗i ri
,

di+1 = ri+1 + βi+1di.

(A.6.3)

The process terminates when the error reach a prescribed accuracy: ‖y−Axi‖2 ≤
ε. The precise complexity of the conjugate gradient descent is characterized in

Theorem 9.11, which plays a crucial role in achieving the optimal rate for the

Newton descent scheme studied there.

In practice, we very frequently encounter linear systems of equations y = Ax

for which A is not invertible. We describe two important cases below.

Overdetermined Systems.
Suppose that A ∈ Rm×n and m > n. Since rank(A) ≤ min {m,n} < m, the

range of A is a lower-dimensional subspace of Rm. Hence, in general, the system

of equations y = Ax will not have a solution. Hence, we resort to seeking an

approximate solution. Classically, this was often done via the method of least

squares. Define the Euclidean length ‖z‖2 =
√∑

i z
2
i of a vector z ∈ Rn. A

least-squares solution solves

min
x
‖y −Ax‖22 . (A.6.4)

If A has full column rank n, the solution x̂LS to this problem is unique, and is

given by

x̂LS = (A∗A)−1A∗y. (A.6.5)

We sometimes write A† = (A∗A)−1A∗, and call this matrix the pseudo-inverse

of A. Notice that

Ax̂LS = A(A∗A)−1A∗y (A.6.6)

= P range(A)y (A.6.7)



594 Facts from Linear Algebra and Matrix Analysis

is the orthogonal projection of y onto range(A); the matrix

P range(A) = A(A∗A)−1A∗

is the projection matrix onto this space. The optimal value of the least squares

problem is

‖y −Ax̂LS‖22 =
∥∥(I − P range(A))y

∥∥2

2
(A.6.8)

=
∥∥P range(A)⊥y

∥∥2

2
. (A.6.9)

This is just the squared (Euclidean) distance from the observation y to range(A).

Underdetermined Systems.
If on the other hand m < n, as discussed above, the solution is not unique –

if any solution xo exists, then there is an entire affine space xo + null(A) of

solutions. A classical approach to handling such underdetermined systems is to

look for the x of smallest length that is consistent with the system. Formally,

min ‖x‖22 subject to y = Ax. (A.6.10)

If A has full row rank (i.e., rank(A) = m), this problem has a unique solution:

Theorem A.25. Let A ∈ Rm×n have full row rank (i.e., rank (A) = m). Then

for any y ∈ Rm, the optimization problem

min ‖x‖22 subject to y = Ax (A.6.11)

has a unique optimal solution,

x̂`2 = A∗(AA∗)−1y. (A.6.12)

Proof The following inequality can be checked by directly expanding the right

hand side:

∀x, x′ ∈ Rn, ‖x′‖22 = ‖x+ (x′ − x)‖22
= ‖x‖22 + 〈2x,x′ − x〉+ ‖x′ − x‖22 . (A.6.13)

If x and x′ are feasible for our problem, then Ax = Ax′ = y, and so x′ − x ∈
null(A). For any feasible x′ 6= x̂`2 , we have

‖x′‖22 ≥ ‖x̂`2‖
2
2 + 2 〈x̂`2 ,x′ − x̂`2〉+ ‖x′ − x̂`2‖22

= ‖x̂`2‖22 + 2
〈
A∗(AA∗)−1y,x′ − x̂`2

〉
+ ‖x′ − x̂`2‖22

= ‖x̂`2‖22 + 2
〈
(AA∗)−1y,A(x′ − x̂`2)

〉
︸ ︷︷ ︸

=0

+ ‖x′ − x̂`2‖22

> ‖x̂`2‖22 . (A.6.14)
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The matrix A∗(AA∗)−1 is also called a pseudo-inverse of A, and also denoted

by A†.3

In the above, we have assumed that the matrixA is of full column or row rank.

In practice, the system of equation y = Ax can be ill-posed or the equations are

corrupted by some random (Gaussian) noise y = Ax + ε. In this case, we may

consider solving a regularized version, say the popular ridge regression:

min
x
‖y −Ax‖22 + λ‖x‖22, (A.6.15)

We leave as an exercise for the reader to find the optimal solution to the above

problem (see Exercise 1.8).

A.7 Eigenvectors and Eigenvalues

Definition A.26 (Eigenvalue and Eigenvector). Let A ∈ Cn×n. We say that

λ ∈ C is an eigenvalue of A if there exists some nonzero vector v ∈ Cn \ {0}
such that

Av = λv. (A.7.1)

If we view A as corresponding to a linear map L : Cn → Cn, the definition says

that L preserves the direction of the vector v. If λ is an eigenvalue of A, with

corresponding eigenvector v, then v ∈ null(A−λI), and hence rank (A− λI) <

n. Using the determinant criterion for singularity, we obtain

Theorem A.27. λ ∈ C is an eigenvalue of A ∈ Cn×n if and only if it is a root

of the characteristic polynomial

χ(λ) = det(A− λI), (A.7.2)

i.e., χ(λ) = 0.

This implies that every matrix A ∈ Cn×n has n complex eigenvalues, counted

with multiplicity. Often we are interested in real matrices A ∈ Rn×n.

Real Symmetric Matrices
It is important to note that the eigenvalues of a real matrix are not necessarily

real. There is one important special case in which the eigenvalues are guaranteed

to be real: symmetric matrices. A matrix A ∈ Rn×n is symmetric if

A = A∗. (A.7.3)

The eigenvalues of a symmetric matrix are necessarily real, with corresponding

real eigenvectors. Moreover, it is not difficult to prove that if v and v′ are eigen-

vectors of a symmetric matrix corresponding to distinct eigenvalues λ 6= λ′, then

3 The fact that we have apparently used the notation A† for two different things is resolved
if we consider the general form of the pseudo-inverse, which is written in terms of the

singular value decomposition (SVD). We will do this after reviewing the SVD in Section

A.8.
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they are orthogonal: v ⊥ v′. From this, we obtain the eigenvector decomposition

of a symmetric matrix:

Theorem A.28 (Eigenvector Decomposition). Let A ∈ Rn×n be symmetric.

Then there exist orthonormal vectors v1, . . . ,vn ∈ Rn and real scalars λ1 ≥
· · · ≥ λn, such that if we write

V = [v1 | · · · | vn] ∈ O(n), Λ =




λ1

λ2

. . .

λn


 ∈ Rn×n, (A.7.4)

we have

A = V ΛV ∗, (A.7.5)

The expression A = V ΛV ∗ is sometimes written as A =
∑n
i=1 λiviv

∗
i . The-

orem A.28 leads to the following variational characterization of the eigenvalues,

which is useful both for analytical purposes and for identifying optimization

problems that can be solved directly via eigenvector decomposition:

Theorem A.29 (Variational Characterization of Eigenvalues). The first eigen-

value λ1 of a symmetric matrix A is the optimal value of the problem

max x∗Ax
subject to ‖x‖22 = 1.

(A.7.6)

Moreover, every optimizer v1 is an eigenvector corresponding to λ1. Similarly,

the optimal value of

min x∗Ax
subject to ‖x‖22 = 1

(A.7.7)

is λn. For the intermediate eigenvalues, if v1, . . . ,vk−1 are any mutually orthog-

onal eigenvectors corresponding to λ1, . . . , λk−1, we have that λk is the optimal

value for

max x∗Ax
subject to ‖x‖22 = 1, x ⊥ v1, . . . ,vk−1.

(A.7.8)

From the previous result, it seems the eigenvector decomposition is a very

useful tool for studying quadratic forms q(x) = x∗Ax. Matrices A for which

q(x) is always positive are especially important:

Definition A.30 (Positive Definiteness). A symmetric matrix A ∈ Rn×n is

positive definite if for all nonzero x ∈ Rn, x∗Ax > 0. It is positive semidefinite

if for all x ∈ Rn, x∗Ax ≥ 0.

If A is positive definite, we write

A � 0. (A.7.9)
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If A is positive semidefiniite, we write

A � 0. (A.7.10)

More generally, for symmetric matrices A and B, we write A � B if A − B
is semidefinite, i.e., A −B � 0. This defines a partial order on the symmetric

matrices, which we call the semidefinite order.

Theorem A.31. A symmetric matrix A is positive definite (resp. semidefinite)

if and only if all of its eigenvalues are positive (resp. nonnegative).

Circulant Matrix and Convolution.
Given a vector a = [a0, a1, . . . , an−1]∗ ∈ Rn, we may arrange all its circularly

shifted versions in a circulant matrix form as

A
.
= circ(a) =




a0 an−1 . . . a2 a1

a1 a0 an−1 · · · a2

... a1 a0
. . .

...

an−2

...
. . .

. . . an−1

an−1 an−2 . . . a1 a0



∈ Rn×n. (A.7.11)

It is easy to see that the multiplication of such a circulant matrixA with a vector

x gives a (circular) convolution Ax = a~ x with:

(a~ x)i =

n−1∑

j=0

xjai+n−jmodn. (A.7.12)

One remarkable property of circulant matrices is that they all share the same

set of eigenvectors that form a unitary matrix. Let i =
√
−1 and ωn := exp(− 2πi

n )

be the roots of unit (as ωn = 1) and we define the matrix:

F n
.
=

1√
n




ω0
n ω0

n · · · ω0
n ω0

n

ω0
n ω1

n · · · ωn−2
n ωn−1

n
...

...
. . .

...
...

ω0
n ωn−2

n · · · ω
(n−2)2

n ω
(n−2)(n−1)
n

ω0
n ωn−1

n · · · ω
(n−2)(n−1)
n ω

(n−1)2

n



∈ Cn×n. (A.7.13)

The matrix F n is a unitary matrix: F nF
∗
n = I and is the well known Vander-

monde matrix. Multiplying a vector with F n is known as the discrete Fourier

transform (DFT). More precisely, we have the following well-known fact [KS12]:

Theorem A.32 (Eigenvectors of Circulant Matrix). An n×n matrix A ∈ Cn×n

is a circulant matrix if and only if it is diagonalizable by the unitary matrix:

F ∗nAF n = Da or A = F nDaF
∗
n, (A.7.14)

where Da is a diagonal matrix of eigenvalues.4

4 The eigenvalues can be complex even for real circulant matrices.
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From the above fact, we can easily derive the following properties of circulant

matrices:

• Transpose of a circulant matrix is circulant;

• Multiplication of two circulant matrices is circulant;

• For a non-singular circulant matrix, its inverse is also circulant (hence repre-

senting a circular convolution).

• Since all circulant matrices can be simultaneously diagonalized by the same

unitary matrix F n, their summation and inversion can be reduced to the same

operations on their diagonal forms, hence much faster and scalable.

Location of Eigenvalues.
It is often useful to be able to characterize, in terms of the properties of A, where

the eigenvalues λ ∈ C are located. For example, we saw that if A is a symmetric

matrix, the eigenvalues lie on the real axis. For general A, the situation is more

complicated. However, we do have the following result of Gershgorin, which states

that the eigenvalues must live in a union of discs, centered about the diagonal

elements Aii of A:

Theorem A.33 (Gershgorin Disc Theorem). Let A ∈ Cn×n, and let λ ∈ C and

v ∈ Cn be an eigenvalue-eigenvector pair. Then there exists some i ∈ {1, . . . , n}
such that

|λ−Aii| ≤
∑

j 6=i
|Aij |. (A.7.15)

This result is called the Gershgorin disc theorem, because it implies that in the

complex plane C, each eigenvalue λ lies in a union of discs Di with centers Aii
and radii ri =

∑
j 6=i |Aij |. It is most powerful when the off-diagonal elements of

A are small. Numerous variants and refinements are known.

A.8 The Singular Value Decomposition (SVD)

Definitions.
The eigenvector decomposition S = V ΛV ∗ defined in Theorem A.28 provides

an essential tool for studying symmetric matrices S. In particular, it shows that

with an appropriate rotation of the space, a symmetric matrix acts like a diag-

onal matrix. It would be very useful to have a similar representation for general

matrices, including non-symmetric square matrices, and rectangular matrices.

The singular value decomposition goes much of the way, allowing us to find bases

for the domain and range of a linear map with respect to which it becomes quite

simple:

Theorem A.34 (Compact SVD, Existence). Let A ∈ Rm×n, with rank(A) = r.
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There exist scalars σ1 ≥ σ2 ≥ · · · ≥ σr > 0 and matrices U ∈ Rm×r and

V ∈ Rn×r with orthonormal columns (U∗U = I, V ∗V = I) such that if we set

Σ =




σ1

σ2

. . .

σr


 ∈ Rr×r, (A.8.1)

we have

A = UΣV ∗. (A.8.2)

The σi are called singular values of A, while the columns of U and V are called

the (left and right, respectively) singular vectors.

The expression in Theorem A.34 can be used to express A as a sum of r orthog-

onal rank-one matrices:

A =

r∑

i=1

σiuiv
∗
i . (A.8.3)

The compact SVD immediately reveals several important properties of A:

Theorem A.35 (Properties of Compact SVD). Let A ∈ Rm×n, with compact

SVD A = UΣV ∗. Then

• range(A) = range(U). The columns of U are an orthonormal basis for the

range of A.

• range(A∗) = range(V ). The columns of V are an orthonormal basis for the

row space of A.

Occasionally it is useful to extend U and V to orthogonal matrices, giving the

full singular value decomposition:

Theorem A.36 (Full SVD). Let A ∈ Rm×n. Then there exist U ∈ O(m), V ∈
O(n), and Σ ∈ Rm×n such that

A = UΣV ∗, (A.8.4)

Σ is diagonal (i.e., Σij = 0 for i 6= j), and

Σ11 ≥ Σ22 ≥ · · · ≥ Σmin{m,n},min{m,n} ≥ 0.

With a full SVD, we may write the pseudo-inverse of a matrix, introduced in

Section A.6, in a unified form:

A† = V Σ†U∗, (A.8.5)

where Σ† ∈ Rn×m is the pseudo-inverse of the diagonal matrix Σ ∈ Rm×n.5

It is sometimes a point of confusion that the notation for the full SVD and

the compact SVD coincide. In this course, we will mostly work with the compact

SVD, unless stated otherwise.

5 That is, Σ† is a diagonal matrix with the diagonal entries Σ−1
ii for all Σii > 0.
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Approximation Properties.
The SVD provides an immediate solution to several approximation problems.

Most fundamentally, it gives a way of forming a best rank-r approximation to

A:

Theorem A.37 (Best Rank-r Approximation). Let A ∈ Rm×n have singular

value decomposition

A =

min{m,n}∑

i=1

σiuiv
∗
i . (A.8.6)

Then an optimal solution to the rank-r approximation problem

min ‖X −A‖F
subject to rank (X) ≤ r

(A.8.7)

is the truncated SVD

Âr =

r∑

i=1

σiuiv
∗
i . (A.8.8)

If σr(A) > σr+1(A), then the solution is unique.

Interestingly, if we change ‖·‖F to other unitary invariant matrix norms (such

as the operator norm), the above result remains unchanged. The SVD also gives

a way of optimally approximating a given square matrix with an orthogonal

matrix:

Theorem A.38 (Best Orthogonal Approximation). Let A ∈ Rn×n, and let A =

UΣV ∗ be any full singular value decomposition of A. Then an optimal solution

to the problem

min ‖X −A‖F
subject to X ∈ O(n)

(A.8.9)

is given by X = UV ∗.

A.9 Vector and Matrix Norms

Norms on Vector Spaces.
A norm on a vector space V gives a way of measuring lengths of vectors, that

conforms in important ways to our intuition from lengths in R3. Formally:

Definition A.39 (Norm). A norm on a real vector space V is a function ‖ · ‖ :

V→ R that is

1 Nonnegatively homogeneous: ‖αx‖ = |α|‖x‖ for all vectors x ∈ V, scalars

α ∈ R,

2 Positive definite: ‖x‖ ≥ 0, and ‖x‖ = 0 if and only if x = 0,
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3 Subadditive: ‖·‖ satisfies the triangle inequality ‖x+y‖ ≤ ‖x‖+ ‖y‖ for all

x,y ∈ V.

One very important family of norms are the `p norms. If we take V = Rn, and

p ∈ [1,∞), we can write

‖x‖p =

(∑

i

|xi|p
)1/p

. (A.9.1)

The most familiar example is the `2 norm or “Euclidean norm”

‖x‖2 =

√∑

i

x2
i =
√
x∗x,

which coincides with our usual way of measuring lengths. Two other cases are of

almost equal importance: p = 1, and p→∞. Setting p = 1 in (A.9.1), we obtain

‖x‖1 =
∑

i

|xi|, (A.9.2)

Finally, as p becomes larger, the expression in (A.9.1) accentuates large |xi|. As

p→∞, ‖x‖p → maxi |xi|. We extend the definition of the `p norm to p =∞ by

defining

‖x‖∞ = max
i
|xi|. (A.9.3)

However, the `p norms are far from the only norms on vectors.

Example A.40. The following are examples of norms:

• For p ≥ 1, ‖x‖p is a norm.

• Every positive definite matrix P � 0 defines a norm, via ‖x‖P =
√
x∗Px.

• For x ∈ Rn, let [x](k) denote the k-th largest element of the sequence: |x1|, |x2|,
. . . , |xn|. Then

‖x‖[K] =

K∑

k=1

[x](k) (A.9.4)

is a norm.

• For X ∈ Rm×n, the Frobenius norm ‖X‖F =
√
〈X,X〉 is a norm.

One fundamental result in the theory of normed spaces is that in finite dimen-

sions, all norms are comparable:

Theorem A.41 (Equivalence of Norms). Let ‖·‖a and ‖·‖b be two norms on a

finite dimenisonal vector space V. Then there exist α, β > 0 such that for every

v ∈ V,

α ‖v‖a ≤ ‖v‖b ≤ β ‖v‖a . (A.9.5)
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It is important not to over-interpret this result. “Equivalence” here means that

the values of the norms can be compared up to constants, as in (A.9.5). It does

not mean that the norms behave in the same way – they may produce very

different results when selected to define constraint sets, or as objective func-

tions for optimization. For purposes of analysis, it is useful to note the following

comparisons

Lemma A.42 (Comparisons between `p Norms). For all x ∈ Rn,

• ‖x‖2 ≤ ‖x‖1 ≤
√
n ‖x‖2,

• ‖x‖∞ ≤ ‖x‖2 ≤
√
n ‖x‖∞,

• ‖x‖∞ ≤ ‖x‖1 ≤ n ‖x‖∞.

To each norm, we can associate a dual norm. To do this precisely, we need

to define a normed linear space. If V is a vector space and ‖·‖ is a norm on V,

we call the pair (V, ‖·‖) a normed linear space. A linear functional is a linear

map φ : V → R. Since linear combinations of linear functionals are again linear

functionals, the space of all linear functionals on a given vector space V is itself

a vector space (called the “topological dual” of V). On this space, we can define

another function

‖φ‖∗ = sup
v∈V, ‖v‖≤1

|φ(v)|. (A.9.6)

As the notation suggests, ‖φ‖∗ is a norm, if we restrict to φ for which the

supremum is finite:

Definition A.43 (Dual Space and Dual Norm). The normed dual of the space

(V, ‖·‖) is the space (V∗, ‖·‖∗), where the dual norm ‖·‖∗ of a linear functional

φ : V→ R is defined as in (A.9.6) and

V∗ =
{
φ : V→ R linear | ‖φ‖∗ < +∞

}
. (A.9.7)

This definition may seem somewhat abstract; for our purposes, the dual spaces

and dual norms we encounter will have fairly concrete descriptions:

Theorem A.44. Let 〈·, ·〉 denote the standard inner product on Rn (and by

extension on Rm×n). Every linear functional φ : Rn → R can be written as

φ(x) = 〈v,x〉 , (A.9.8)

for some vector v ∈ Rn. Similarly, every linear functional φ : Rm×n → R can be

written as

φ(X) = 〈V ,X〉 , (A.9.9)

for some matrix V ∈ Rm×n.

The implication of this is that if we are considering a space (Rn, ‖·‖]), the dual

space can be identified with (Rn, ‖·‖∗] ), where

‖v‖∗] = sup
‖x‖]≤1

〈v,x〉 . (A.9.10)
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In particular, we have the following examples:

Example A.45 (Duals of Common Norms). Check the following:

• The dual of the `∞ norm is the `1 norm.

• The dual of the `1 norm is the `∞ norm.

• The `2 and Frobenius norms are self-dual; i.e., ‖·‖∗2 = ‖·‖2 and ‖·‖∗F = ‖·‖F .

• If p, q ∈ [1,∞), with p−1 + q−1 = 1, then ‖·‖∗p = ‖·‖q and ‖·‖∗q = ‖·‖p.

It is immediate from the definition that for any x,x′, and any norm ‖·‖,

〈x,x′〉 ≤ ‖x‖ ‖x′‖∗ . (A.9.11)

If we take ‖x‖ = ‖x‖2, we obtain the Cauchy-Schwarz inequality.

Matrix and Operator Norms.
Even more interesting structure can arise when V is a space of matrices, e.g.,

V = Rm×n, due to the interpretation of a matrix as a linear operator. For square

matrices, many authors reserve the term “matrix norm” for a function ‖·‖ that

satisfies the three criteria in Definition A.39, and is submultiplicative

‖AB‖ ≤ ‖A‖ ‖B‖ . (A.9.12)

They use the term “vector norm on matrices” for functions on V that only

satisfy Definition A.39. We will not emphasize this distinction in terminology.

Nevertheless, the submultiplicative property (A.9.12) is often useful, and we will

note it where it occurs.

The most important source of norms on matrices comes from the notion of a

matrix as a linear operator:

Definition A.46 (Operator Norm). Let (W, ‖·‖a) and (W′, ‖·‖b) be two normed

linear spaces, and let L : W→ W′. The operator norm of L is

‖L‖a→b = sup
‖w‖a≤1

‖L[w]‖b . (A.9.13)

Specializing the definition a bit, for an m × n matrix A, if ‖·‖a and ‖·‖b are

norms on Rn and Rm, respectively, we write

‖A‖a→b = sup
‖x‖a≤1

‖Ax‖b . (A.9.14)

The most important special case is

Theorem A.47. The norm of a matrix A as an operator from `2n = (Rn, ‖·‖2)

to `2m = (Rm, ‖·‖2) is

‖A‖2→2 = σ1(A). (A.9.15)

Several other cases are of interest:
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Theorem A.48. The norm of any matrix as an operator from (Rn, ‖·‖1) to any

normed space (Rm, ‖·‖]) is simply the largest ‖·‖] of any column of A:

‖A‖1→] = max
j=1,...,n

‖Aej‖] . (A.9.16)

The norm of any matrix as an operator from (Rn, ‖·‖[) for any norm ‖·‖[ into

(Rm, ‖·‖∞) is the largest dual norm of any of the rows:

‖A‖[→∞ = max
i=1,...,m

‖e∗iA‖∗[ , (A.9.17)

where the dual norm ‖·‖∗[ is

‖v‖∗[ = sup
‖u‖[≤1

〈u,v〉 . (A.9.18)

For example, ‖A‖1→1 is just the largest `1 norm of any column of A.

Unitary Invariant Matrix Norms.
It is interesting to note that the operator norm of a matrix A depends only on

the singular values of A:

‖A‖2,2 = σ1(A) = ‖σ(A)‖∞ , (A.9.19)

where σ(A) is the vector of singular values. In fact, the Frobenius norm ‖A‖F
depends only on the singular values as well:

‖A‖F =

√√√√
min{m,n}∑

i=1

σi(A)2 = ‖σ(A)‖2 . (A.9.20)

This fact is not too difficult to observe from the orthogonal invariance of ‖·‖F :

∀A ∈ Rm×n, P ∈ O(m), Q ∈ O(n), ‖PAQ‖F = ‖A‖F . (A.9.21)

This suggests a pattern. In fact, any `p norm of the singular values is a norm on

matrices A:

Definition A.49 (Schatten p-Norm). For A ∈ Rm×n, let σ(A) ∈ Rmin{m,n}

denote the vector of singular values. For p ∈ [1,∞], the function

‖A‖Sp = ‖σ(A)‖p (A.9.22)

is a norm on Rm×n.

It is easy to recognize the operator norm and Frobenius norm as special cases.

One other special case is of great interest – the Schatten 1-norm

‖A‖S1
=
∑

i

σi(A). (A.9.23)

This is also sometimes called the trace norm or nuclear norm. We reserve a

special notation

‖A‖∗ =
∑

i

σi(A) (A.9.24)
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for this norm. The operator norm ‖·‖2,2 and the nuclear norm ‖·‖∗ are dual

norms.

We have defined several interesting, useful norms on matrices A, by applying

different vector norms to the singular values σ(A). Because the singular values

are orthogonal invariant, i.e., for P ∈ O(m),Q ∈ O(n), σ(PAQ) = σ(A), norms

defined in this way are also orthogonal invariant. It is natural to ask whether

every function ‖σ(A)‖ generates a valid norm on Rm×n. It turns out that with

several restrictions, this is true.

Definition A.50 (Symmetric Gauge Function). A function f : Rn → R is a

symmetric gauge function if it satisfies the following three conditions:

• norm: f is a norm on Rn;

• permutation invariance: For every x ∈ Rn and permutation matrix Π,

f(Πx) = f(x);

• symmetry: For every x ∈ Rn and diagonal sign matrix Σ (i.e., matrix with

diagonal entries ±1), f(Σx) = f(x).

Theorem A.51 (Von Neumann’s Characterization of Unitary Invariant Norms).

Fix m ≥ n. For M ∈ Cm×n, let σ(M) ∈ Rn denote its vector of singular values.

Then for every symmetric gauge function f],

‖M‖]
.
= f](σ(M)) (A.9.25)

defines a unitary invariant matrix norm on Cm×n. Conversely, for every unitary

invariant matrix norm ‖M‖[ there exists a symmetric gauge function f[ such

that ‖M‖[ = f[(σ(M)).



Appendix B Convex Sets and Functions

The notion of convexity arises when we try to formalize the property that “good

local decisions lead to globally optimal solutions.” Consider a generic uncon-

strained optimization problem

min f(x). (B.0.1)

Here x ∈ Rn is the variable of optimization, and f : Rn → R is the objective

function, which we are trying to make as small as possible using a numerical

algorithm. Figure B.1 displays two objective functions f . The one on the right

has many peaks and valleys – it may be very difficult to find the lowest valley,

corresponding to the global optimum x?. Moreover, for the function f on the

right, local information around a point x is not particularly helpful for deter-

mining what direction to move to reach the global optimum. In contrast, the

bowl-shaped function on the left is much more amenable to global optimization

– a “gradient descent” type algorithm, that simply determined which direction

to move by considering the slope of the graph of the function, would easily “ski”

down to the global minimum.

The notion of convexity formalizes this property. Convexity is a geometric

property. It is convenient to first introduce the notion of a convex set, and then

extend this definition to functions.

B.1 Convex Sets

A set C is said to be closed if it contains its boundary. More precisely, for any

converging sequence of points {xk} in C, we must have:

xk → x̄ ⇒ x̄ ∈ C.

A set C ⊆ Rn is convex if for every pair of points x,x′ ∈ C, the line segment

obtained by joining the two points also lies entirely in C:

Definition B.1 (Convex Set). C ⊆ Rn is convex if

∀ x, x′ ∈ C, α ∈ [0, 1], αx+ (1− α)x′ ∈ C. (B.1.1)
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NonconvexConvex

x

f(x)

x

f(x)

Figure B.1 Two optimization problems min f(x). The objective f at left appears
to be amenable to global optimization, while the one at right appears to be more
challenging.

Convex Nonconvex

x
x′

x′
x

Figure B.2 Convex and nonconvex sets. A set is convex if we can select any pair of
points x, x′ in the set, and the line segment joining them lies entirely within the set.
The set to the left has this property, while the set to the right does not.

Figure B.2 gives an example of two sets, one of which is convex and one of which

is not.

Example B.2 (Convex sets). Show that the following are convex:

• Every affine subspace.

• Every norm ball B‖·‖ = {x | ‖x‖ ≤ 1}.
• The empty set.

• Any intersection C = C1 ∩ C2 of two convex sets C1,C2.

Proposition B.3. 1 The intersection of a collection of convex sets
⋂
i Ci is

convex.

2 The image of a convex set under an affine transformation is convex.

Definition B.4 (Convex Hull). The convex hull of any given set S is the min-

imal convex set containing S, denoted as conv(S). If S contains a finite number

of S = {xi}ni=1 points, we have

conv(S)
.
=

{
n∑

i=1

αixi
∣∣ ∀αi ≥ 0 with

n∑

i=1

αi = 1.

}
. (B.1.2)
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αf(x) + (1− α)f(x′)

f(x′)

f(αx+ (1− α)x′)

epi(f)

x

f(x)

x′αx+ (1− α)x′

graph(f)

Figure B.3 Convexity of functions: a function f is convex if its epigraph
epi(f) = {(x, t) | t ≥ f(x)} is a convex set (right). This is true if and only if for every
pair of points x, x′ and scalar α ∈ [0, 1], f(αx+ (1− α)x′) ≤ αf(x) + (1− α)f(x′).
The picture at right illustrates this inequality: the segment joining (x, f(x)) and
(x′, f(x′)) lies above the graph of f .

B.2 Convex Functions

For a function f : D → R defined on a (convex) domain D ⊆ Rn, its graph is

the set of pairs (x, f(x)) that can be generated by evaluating the function f at

every point:

graph(f)
.
= {(x, f(x)) | x ∈ D, f(x) < +∞} ⊆ Rn+1. (B.2.1)

We give another name to everything that lies above the graph: the epigraph:

epi(f)
.
= {(x, t) | x ∈ D, t ∈ R, f(x) ≤ t} ⊆ Rn+1. (B.2.2)

We say that f is a convex function if its epigraph is a convex set. Figure B.3

(right) illustrates this property. Figure B.3 (left) suggests an equivalent defini-

tion, which is sometimes easier to work with: f is convex if for any pair of points

x and x′, the line segment joining (x, f(x)) and (x′, f(x′)) lies entirely above

the graph of f :

Definition B.5 (Convex Function). A function f : D → R is convex if for all

x,x′ ∈ D and α ∈ [0, 1],

αf(x) + (1− α)f(x′) ≥ f(αx+ (1− α)x′). (B.2.3)

Notice that above definitions do not require f to be differentiable. If f is differ-

entiable, the notion of convexity can be characterized in terms of its derivatives.

Since the epigraph is convex, then the tangent plane at each point of the graph

should lie beneath the graph. The following statement makes this precise:

Proposition B.6 (First-Order Condition). Let f : D → R be differentiable.

Then f is convex if and only if it satisfies the condition:

f(x′) ≥ f(x) +∇f(x)∗(x′ − x)

for all x,x′ ∈ D.
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This is precisely the geometry of the “nice” function in Figure B.1 (left). From

this picture, it is clear that convexity is very favorable for global optimization.1

There also exist nonconvex functions that are easy to optimize – Chapter 7

provides a brief introduction to this emerging literature. However, if we want

to talk about a class of functions, rather than a particular one, then there is

a very beautiful motivation for studying convex functions. To appreciate this

motivation, we need to first observe a useful fact: if f(x) and g(x) are convex

functions, then for any α, β ≥ 0, h(x) = αf(x) + βg(x) is also convex. If we

let F be the largest class of continuously differentiable functions that satisfy the

following three demands:

• every linear function φ(x) = a∗x+ b is in F ;

• every nonnegative combination αf1(x) + βf2(x) of f1, f2 ∈ F is in F ;

• for every f ∈ F , the stationarity condition ∇f(x?) = 0 implies that x? is a

global optimizer of f ,

then it turns out that the F is precisely the class of convex, continuously differ-

entiable functions. You can interpret this as suggesting that for global solutions,

convex functions really are the right general class of functions to study. For more

details, see the book of Nesterov [Nes03].

You may also notice that in Figure B.3, the function f(x) “curves upward”:

its second derivative is nonnegative at every point of the domain. For twice dif-

ferentiable functions, this leads to a simpler condition for convexity: the function

is convex if and only if its second derivative at any point, and in any direction

is positive. The following makes this precise:

Proposition B.7 (Second-Order Conditions). Let f : D → R be twice differen-

tiable. Then f is convex if and only if its Hessian is positive semidefinite:

∇2f(x) � 0

for all x ∈ D.

The class of convex functions includes important examples such as linear func-

tions and norms:

Example B.8 (Convex Functions). Show that the following are convex functions:

• Every affine function f(x) = a∗x+ b.

• Every norm f(x) = ‖x‖.
• Every semidefinite quadratic f(x) = x∗Px, with P � 0.

Before continuing, we note one nice property of convex functions which will be

useful for deriving an appropriate tractable replacement for the `0 norm.

1 Once you’ve internalized the definition a bit, you may begin to wonder to what extent the
implication “convexity =⇒ easy-to-optimize” is actually true. The convex functions that
we encounter in this book will all possess special structure that makes them very amenable
to efficient algorithms. However, this is not true of all convex functions – there exist

convex functions that are NP-hard to optimize.
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Definition B.9 (Convex Combination). A convex combination of a set of points

x1, . . . ,xk is an expression of the form λ1x1 + · · ·+ λkxk, with λi ≥ 0 for each

i and
∑
i λi = 1.

Lemma B.10 (Jensen’s Inequality). Let f : Rn → R be a convex function. For

any k, x1, . . . ,xk ∈ Rn, λ1, . . . , λk ∈ R+, with
∑
i λi = 1,

f

(∑

i

λixi

)
≤
∑

i

λif(xi). (B.2.4)

Proof The proof is by induction on k. For k = 1, there is nothing to show. Now

suppose the claim is true for 1, . . . , k − 1. Then

f

(
k∑

i=1

λixi

)
≤
(
k−1∑

i=1

λi

)
f

(∑k−1
i=1 λixi∑k−1
i=1 λi

)
+ λkf(xk) (B.2.5)

≤
k∑

i=1

λif(xi) (B.2.6)

as desired. Above, the first step uses the definition of convexity, and the second

uses the inductive hypothesis.

With this lemma, it is easy to show that any α-sublevel set of a convex function

f : D → R:

Cα = {x ∈ D | f(x) ≤ α} (B.2.7)

is a convex set. However, a function with all its sublevel sets being convex is not

necessarily a convex function!2 A function is said to be a closed function, if each

sublevel set is a closed set. We typically only consider closed convex functions,

unless otherwise stated.

Proposition B.11. We can use convex functions to generate other associated

convex functions:

1 A function is convex if and only if it is convex when restricted to any line that

intersects its domain.

2 A weighted sum of convex functions with nonnegative weights is convex.

3 If f, g are convex functions and g is non-decreasing in its univariate domain,

then h(x) = g(f(x)) is convex.

4 Given a collection of convex functions fα : D → R, α ∈ A, their point-wise

supremum

f(x)
.
= sup
α∈A

fα(x)

is also convex.

Example B.12. The maximal eigenvalue of a symmetric matrix is a (closed)

convex function.

2 Such functions are called quasi-convex. Please find an example for yourself.
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Proof To see that, the maximal eigenvalue function can be written as

λmax(X) = sup{y∗Xy}, ‖y‖2 = 1.

Since the function is the point-wise supremum of a set of linear functions with

respect to X, it is a convex function.

Convex Envelop and Conjugate.
For any non-convex (closed) function g : D → R defined on a convex domain D,

it has a naturally associated convex function that bounds it from below:

Definition B.13 (Convex Envelope). The convex envelope of a closed function

g is defined as

convg(x) = sup{h(x) | h(x) convex & h(x) ≤ g(x) ∀x ∈ D}. (B.2.8)

Let us define the (Fenchel) conjugate of a function g(x) (not necessarily con-

vex) as:

g∗(λ) = sup
x
λ∗x− g(x). (B.2.9)

The conjugate of a function g is essentially the negated dual function of g that

we often see in the method of Largrange multipliers (see Section C.3).

Proposition B.14. Assuming the conjugate is well-defined, we have the follow-

ing:

1 The conjugate g∗(λ) is always a convex function.

2 g∗∗(x) = convg(x).

Strong Convexity.
In this book, we sometimes are interested in stronger notion of convexity.

Definition B.15 (Strongly Convex Function). A function f : D → R is strongly

convex if f is convex and for all x,x′ ∈ D and α ∈ [0, 1],

αf(x) + (1− α)f(x′) ≥ f(αx+ (1− α)x′) + µ
α(1− α)

2
‖x− x′‖22 (B.2.10)

for some µ > 0.

Notice that the above definition does not require f to be differentiable. If f

is first or second-order differentiable, we have the following sufficient conditions

for f being strongly convex.

Proposition B.16. For a differentiable convex function f over D, we have f is

strongly convex if either of the following conditions hold:

1 f(x′) ≥ f(x) +∇f(x)∗(x′ − x) + µ‖x′ − x‖22, ∀x,x′ ∈ D;

2 ∇2f(x) � µ · I, ∀x ∈ D;

for some µ > 0.
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However, as we see in Section 3.3.2, we are interested in strong convexity in a

restricted sense.

Lipschitz Continuous Gradients.
The functions we encounter in many optimization problems are often “smooth”

in their landscape in the sense that their gradients do not vary so dramatically.

One way to characterize such smoothness is the notion of Lipschitz continuous

gradients.

Definition B.17 (Lipschitz Continuous Gradient). A differentiable function f :

D → R has L-Lipschitz continuous gradients if ∇f(x) satisfies

‖∇f(x′)−∇f(x)‖2 ≤ L‖x′ − x‖2, ∀x′,x ∈ D, (B.2.11)

for some constant L > 0. The constant L is called the Lipschitz constant of ∇f .

When the function f is twice differentiable, then it is not difficult to prove

from fundamental theorems of calculus (also see proof of Lemma 8.2) that f has

L-Lipschitz continuous gradients (over the domain D) if we have

‖∇2f(x)‖ ≤ L, ∀x ∈ D. (B.2.12)

As we will see, when a convex function f over a domain D is both strongly convex

and smooth (in the sense of having Lipschitz continuous gradients), then it can

be efficiently minimized over D by a simple gradient descent algorithm of the

type:

xk+1 = xk − tk∇f(xk), (B.2.13)

where the step size tk can be chosen to be between 1
L and 2

L+µ . Somewhat

surprisingly, one can easily show (see Theorem D.4) that such a vanilla algorithm

enjoys `2 error contraction around the (global) minimum x?:

‖xk+1 − x?‖2 ≤ ρ‖xk − x?‖2 (B.2.14)

for some ρ ≤ 1− µ
L < 1. That is the estimate error drops exponentially with the

number of iterations.

B.3 Subdifferentials of Nonsmooth Convex Functions

For smooth, convex functions f , the local information encoded in the gradient∇f
and Hessian∇2f characterize both the local and global behavior of f , allowing us

to give optimality conditions and construct minimization algorithms. Familiar,

classical algorithms such as gradient ascent, Newton’s method, and their variants,

are all constructed using differential information. Moreover, as we saw in the

previous section, these quantities play a critical role in characterizing convexity

for smooth functions f .



B.3 Subdifferentials of Nonsmooth Convex Functions 613

differentiable

x0

f(x)

f(x0) + 〈∇f(x0),x− x0〉

x0

f(x)

f(x0) + 〈g,x− x0〉 , g ∈ ∂f(x0)

nondifferentiable

Figure B.4 Differential and subdifferentials of convex functions.

It is a curious fact, then, that many of the most useful convex objective func-

tions arising in high-dimensional data analysis are nondifferentiable: their gradi-

ents and Hessians do not exist. For example, the `1 norm ‖x‖1 =
∑n
i=1 |xi| is

nondifferentiable at any point x ∈ Rn with fewer than n nonzero entries. These

are precisely the points that we care about for sparse estimation! This nons-

mooth behavior is actually desirable from the statistical perspective. However, it

forces us to make recourse to analytical tools that are general enough to handle

nondifferentiable functions. Fortunately, for convex functions, the nondifferen-

tiable theory rests on simple, geometrically intuitive ideas, which we describe in

this section. For accessible introductions to the general theory of convexity, we

recommend [Nem95,Nem07,Nes03,BV04].

The most important notion is that of a subgradient of a convex function, which

provides a very satisfactory replacement for the gradient, when the function is

not differentiable. Recall from Proposition B.6 that for convex, differentiable f ,

f(y) ≥ f(x) + 〈∇f(x),y − x〉 , ∀x,y ∈ D. (B.3.1)

This inequality has a simple geometric interpretation, which we visualize in Fig-

ure B.4. We visualize the graph of the function f : Rn → R. The graph is the

collection of points of the form (x, f(x)) ∈ Rn+1. The graph of

h(y) = f(x) + 〈∇f(x),y − x〉

is a hyperplane, which is tangent to the graph of f at (x, f(x)). The inequality

(B.3.1) says that at all points y in the domain of the function f this tangent

hyperplane lies below (or more precisely, not above) the graph of f .

Figure B.4 (right) visualizes the graph of another convex function f , which is

not differentiable at point x. The gradient of f does not exist at x. Nevertheless,

we can still define a nonvertical hyperplane H ⊆ Rn+1 that passes through

(x, f(x)), and lies below the graph of f . This hyperplane has normal vector

(v,−1), and can be expressed in notation as

H = {(y, t) | t = f(x) + 〈v,y − x〉} . (B.3.2)
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We say that v ∈ Rn is a subgradient of f at x if it defines a hyperplane that

supports the graph of f at x, and lies below the graph everywhere:

Definition B.18 (Subgradient). Let f : D ⊂ Rn → R ∪ {+∞} be a convex

function. A vector v is a subgradient of f at x ∈ D if for all y ∈ D,

f(y) ≥ f(x) + 〈v,y − x〉 . (B.3.3)

When f is differentiable, from Proposition B.6 it is clear that v = ∇f(x)

satisfies (B.3.3). When f is nondifferentiable, at a given point x there can be

multiple distinct hyperplanes that support the graph of f , and hence, there can

be multiple subgradients v (see Figure B.4). The collection of all subgradients is

called the subdifferential of f at x, and is denoted ∂f(x). Formally:

Definition B.19 (Subdifferential). Let f : D ⊆ Rn → R ∪ {+∞} be a convex

function. The subdifferential ∂f(x) is the collection of all subgradients of f at

x:

∂f(x) = {v | f(y) ≥ f(x) + 〈v,y − x〉 , ∀y ∈ D} . (B.3.4)

Notice that if f : Rn → R is differentiable at x, its subdifferential at x is

a singleton: ∂f(x) = {∇f(x)}. This coincides with the classical definition of

differentials.

A number of functions of interest have relatively simple subdifferentials.

Example B.20. As good exercises, the reader may try to verify the subdifferen-

tials for the following functions:

1 The subdifferential for f(x) = ‖x‖1 with x ∈ Rn.

2 The subdifferential for f(x) = ‖x‖∞ with x ∈ Rn.

3 The subdifferential for f(X) =
∑n
j=1 ‖Xej‖2 with X a matrix in Rn×n.

4 The subdifferential for f(x) = ‖X‖∗ with X a matrix in Rn×n.

Below are some basic properties of subdifferentials.

Lemma B.21 (Monotonicity Property). Given a convex function f : Rn → R ∪
{+∞} and any x,x′,v,v′ ∈ Rn such that v ∈ ∂f(x) and v′ ∈ ∂f(x′), we have

〈x− x′,v − v′〉 ≥ 0. (B.3.5)

Proof From the definition of subgradient (B.19), we have

f(x′) ≥ f(x) + 〈v,x′ − x〉, f(x) ≥ f(x′) + 〈v′,x− x′〉. (B.3.6)

Adding these two inequalities together we obtain:

f(x) + f(x′) ≥ f(x) + f(x′) + 〈v − v′,x′ − x〉. (B.3.7)

Canceling f(x) + f(x′) from both sides obtains the desired result.
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Lemma B.22. If a convex function f(x) has Lipschitz continuous gradients with

constant L, then for any x1 and x2, we have:

〈∇f(x1)−∇f(x2),x1 − x2〉 ≥
1

L
‖∇f(x1)−∇f(x2)‖22 ≥ 0. (B.3.8)

Proof Let us define a function h(z)
.
= f(z) − z∗∇f(x). Then h(z) is convex

and is minimized at z = x (as ∇h(x) = 0). Hence for any z, we have

h(x) ≤ h
(
z − 1

L
∇h(z)

)
≤ h(z) + 〈∇h(z),− 1

L
∇h(z)〉+

L

2
‖ 1

L
∇h(z)‖22.

The last inequality comes from the fact that the function f(x) (and hence h(z))

has Lipschitz continuous gradients with constant L. This gives

h(x) ≤ h(z)− 1

2L
‖∇h(z)‖22. (B.3.9)

Now applying the inequality to x = x1, z = x2 as well as the reverse case

x = x2, z = x1, we get

f(x1)− x∗1∇f(x1) ≤ f(x2)− x∗2∇f(x1)− 1

2L
‖∇f(x2)−∇f(x1)‖22,

f(x2)− x∗2∇f(x2) ≤ f(x1)− x∗1∇f(x2)− 1

2L
‖∇f(x1)−∇f(x2)‖22.

Adding these two together gives the desired bound (B.3.8).



Appendix C Optimization Problems and
Optimality Conditions

“Since the fabric of the universe is most perfect and the work of a most wise
Creator, nothing at all takes place in the universe in which some rule of maximum or
minimum does not appear.”

– Leonhard Euler

C.1 Unconstrained Optimization

The mathematical model of an (unconstrained) optimization problem can be

generally described by a domain or constraint set D in Rn and an objective

function f : D → R that maps an element of D to a real value. The optimization

problem seeks an optimal solution x? ∈ D such that the value of f is minimized:

f(x?) ≤ f(x), for all x ∈ D.

In particular, if D = Rn, it is called an unconstrained optimization problem.

Definition C.1 (Local and Global Minima). A variable x? is a local minimum

of f if there exists a neighborhood B(ε,x?)
.
= {x ∈ D | ‖x− x?‖2 < ε} for some

ε > 0 such that

f(x?) ≤ f(x), for all x ∈ B(ε,x?).

The variable x? is a global minimum of f if B(ε,x?) = D. The above local and

global minima are said to be strict if the corresponding inequalities are also strict

for x 6= x?.

If the objective function f is differentiable, then conditions for the optimality

can be expressed in terms of its derivatives. In particular, if x? is a local mini-

mum, then within a small neighborhood B(ε,x?), for any given vector v ∈ Rn,

we have

f(x? + t · v) ≥ f(x?)

for sufficiently small t > 0 such that t · v ∈ B(ε,0). Hence we have

lim
t→0

f(x? + t · v)− f(x?)

t
= ∇f(x?)

∗v ≥ 0.
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Notice that this must be true for both v and −v. Then for the inequality to hold

for all v ∈ Rn, we must have

∇f(x?) = 0. (C.1.1)

Definition C.2 (Stationary Point or Critical Point). A point x? that satisfies

the condition ∇f(x?) = 0 is referred to as a stationary point of f(x). A station-

ary point is also known as a critical point.

If f is twice continuously differentiable and x? is a stationary point with

∇f(x?) = 0, we have:

f(x? + t · v) ≈ f(x?) +
1

2
v∗∇2f(x?)vt

2 + o(t2).

If x? is a local minimum, we have

f(x? + t · v)− f(x?) ≥ 0 ⇒ 1

2
v∗∇2f(x?)vt

2 ≥ 0

for all v ∈ Rn. This implies the matrix ∇2f(x?) is necessarily positive semi-

definite, namely,

∇2f(x?) � 0. (C.1.2)

A stationary point satisfying the above condition is also called a second-order

stationary point.

It is then not difficult to show the following sufficient condition for local min-

ima:

Proposition C.3 (Second-Order Sufficient Optimality Condition). Let f : D →
R be twice continuously differentiable. If x? satisfies the conditions

∇f(x?) = 0 and ∇2f(x?) � 0,

Then x? is a strict local minimum of f(x).

In general, a local minimum is not necessarily a global minimum in the domain

of f(x). Therefore, the global minimum can be found by exhaustively comparing

the values of f at all local minima. However, when the objective function f is

convex, the following proposition shows that any local minimum is also a global

minimum.

Proposition C.4 (Global Optimality of Convex Functions). Let f : D → R be

a convex function over convex set D. Then

1 A local minimum of f is also a global minimum. Furthermore, if f is strictly

convex, then the global minimum, if it exists, is unique.

2 A point x? ∈ D is a global minimum of f if 0 ∈ ∂f(x?). In the case that f is

differentiable, ∇f(x?) = 0 implies that x? is a global minimum.
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Finally, we note that given an objective function f , a local minimum need not

exist. For example, the simple scalar function f(x) = x does not have a minimal

value in the domain of real numbers as infx∈R f(x) = −∞. Therefore, a sufficient

condition for f to have at least one local minimum is that the set {f(x)|x ∈ D}
is bounded below. Alternatively, according to the Weierstrass theorem, if f is

continuous and the domain set D ⊆ Rn is compact (i.e.closed and bounded),

then f has at least one local minimum.

C.2 Constrained Optimization

In the previous section, the constraint set of the optimization problems is as-

sumed to be any general set. However, in most optimization problems considered

in this book, the constraints are formulated as equality or inequality conditions.

For example, the domain D ⊂ Rn of a polyhedron can be specified by a set of

equality and inequality conditions. Lagrange multipliers are a set of supportive

variables to facilitate the derivation of optimality conditions for such constrained

optimization problems. Arguably, Lagrange multiplier theory is the most influ-

ential theory in constrained optimization. In duality theory that we will discuss

in the next section, the same Lagrange multiplier variables are also called dual

variables, which will play a central role as the optimization variables of the dual

problems.

First, we consider the optimization problem with equality constraints:

min f(x) subject to hi(x) = 0, i = 1, . . . ,m, (C.2.1)

where f and each hi are assumed to be continuously differentiable.1 Conveniently,

we further assume the gradients of the equality conditions at any feasible solution

x′ (that satisfies the equality constraints)

∇h1(x′),∇h2(x′), . . . ,∇hm(x′)

are linearly independent. Such a solution x′ is also called regular.

The optimality conditions for (C.2.1) can be conveniently derived in terms of

the Lagrangian function L : Rn+m → R as

L(x,λ)
.
= f(x) +

m∑

i=1

λihi(x) = f(x) + 〈λ,h(x)〉, (C.2.2)

where λi are the Lagrange multipliers for the equality conditions, and λ =

[λ1, λ2, . . . , λm]∗ ∈ Rm is the corresponding Lagrange multiplier vector; and for

brevity, we denote h = [h1, h2, . . . , hm]∗ as a map from Rn to Rm.

The basic Lagrange multiplier theory states the following necessary condition

for the optimality of a regular solution.

1 In the main text, we need to generalize to cases when f is not differentiable.
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Proposition C.5 (Necessary Conditions for Optimality). Let x? be a local min-

imum of function f(x) subject to hi(x) = 0, i = 1, . . . ,m. Further assume x? is

regular. Then there exists a Lagrange multiplier vector λ? = (λ?,1, λ?,2, . . . , λ?,m) ∈
Rm, such that

∇xL(x?,λ?) = ∇f(x?) +
∑m
i=1 λ?,i∇hi(x?) = 0,

∇λL(x?,λ?) = h(x?) = 0.
(C.2.3)

Furthermore, if f and h are twice continuously differentiable, we have

v∗∇2
xxL(x?,λ?)v = v∗

(
∇2f(x?) +

∑m
i=1 λ?,i∇2hi(x?)

)
v

≥ 0, ∀v : v∗∇hi(x?) = 0, i = 1, . . . ,m.
(C.2.4)

In (C.2.4), the conditions for vector v ∈ Rn that satisfies v∗∇hi(x?) = 0 can

be understood as follows. If we consider a new point x′ = x? + t · v for some

small t ∈ R, due to the fact that v∗∇hi(x?) = 0, a small variation along v will

not change the value of h(x′) ≈ 0. Therefore, we can define

V(x?) = {v | v∗∇hi(x?) = 0, i = 1, . . . ,m}. (C.2.5)

as the subspace of first-order feasible variations.

In summary, the first-order condition (C.2.3) implies the gradient ∇f(x?) is

orthogonal to V(x?), which resembles the first-order condition∇f(x?) = 0 in un-

constrained optimization. The second-order condition (C.2.4) implies the Hessian

of the Lagrangian function L(x?,λ?) is positive semidefinite when constrained

in V(x?).

Proposition C.6 (Sufficient Conditions). Assume f and h are twice continu-

ously differentiable. Let (x?,λ?) ∈ Rn+m satisfy

∇xL(x?,λ?) = 0,

∇λL(x?,λ?) = 0,

v∗∇2
xxL(x?,λ?)v > 0, ∀v ∈ V(x?),v 6= 0.

(C.2.6)

Then x? is a strict local minimum of f(x) subject to h(x) = 0.

C.3 Basic Duality Theory

Recall the Lagrangian function for the above equality-constrained optimization

problem:

L(x,λ)
.
= f(x) +

m∑

i=1

λihi(x) = f(x) + 〈λ,h(x)〉, (C.3.1)

where λ = [λ1, λ2, . . . , λm]∗ ∈ Rm are the Lagrangian multipliers.

In duality theory, the vector λ is also called the dual variables for the so-called

dual function:

q(λ)
.
= inf
x∈D
L(x,λ). (C.3.2)
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Correspondingly, f(x) is referred to as the primal function and x the primal

variables.

A simple property of the dual function q is that it is a concave function re-

gardless whether the primal problem is convex or not, since q is the point-wise

infimum of a family of affine functions with respect to (λ).

Another important property of the dual function is that q(λ) is a lower bound

of f(x′) for any feasible solution x′. In particular, q(λ) is a lower bound of the

optimal value f(x?). This can be easily verified since for a feasible x′ satisfying

h(x′) = 0, we have

q(λ) = inf
x∈D

f(x) + 〈λ,h(x)〉 ≤ inf
x∈D,h(x)=0

f(x) ≤ f(x′).

For the dual function q(λ) to provide a meaningful lower bound for f(x?), it

is natural to avoid trivial cases when q(λ) = −∞. So we normally restrict the

domain of the dual function q to:

C .
= {λ | q(λ) > −∞}. (C.3.3)

More specifically, the dual variables (λ) that satisfy above conditions are called

dual feasible solutions.

A very useful concept in duality theory is the so-called duality gap between

the primal and dual functions

f(x)− q(λ). (C.3.4)

Since the dual function q(λ) is a lower bound of the primal function f(x), in

particular of its minimal value f(x?). The duality gap is always nonnegative

(over the set of feasible solutions). More importantly, when the duality gap is

zero, namely, there exists a feasible solution x? and λ? such that f(x?) = q(λ?),

then x? is the optimal primal solution and λ? is the optimal dual solution.

Naturally, when we want to achieve the best lower-bound estimation of the

minimal value, we can consider the following optimization problem in the dual

space:

max
λ

q(λ). (C.3.5)

The problem (C.3.5) is called the Lagrange dual problem associated with the

original primal problem (C.2.1).

Since the optimal solution q(λ?) is the best lower-bound approximation of the

global minimum f(x?), the following inequality condition holds trivially:

q(λ?) ≤ f(x?). (C.3.6)

The condition is known as the weak duality condition. Furthermore, when the

equality can be obtained in (C.3.6), the duality gap between f and q becomes

zero, and we say the primal and dual function pair satisfy the strong duality

condition.

The strong duality condition can be achieved for convex objective functions

subject to linear constraints.
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Theorem C.7 (Strong Duality Theorem). Let the objective function f(x) in

(C.2.1) be convex and h(x) be linear. If the optimal value f? is finite, then the

optimal solution for its dual problem exists and there is no duality gap.

Under the strong duality condition, the minimal value of f can be found by

optimizing the dual problem q(λ), and the optimal primal solution can also be

obtained by minimizing the Lagrangian function L(x,λ?) over x. In other words,

the optimal (x?,λ?) is the saddle point of the Lagrangian function L(x,λ) that

solves the following program:

max
λ

min
x
L(x,λ). (C.3.7)

In the above, we have assumed all functions are differentiable. In this book,

we often need to optimize a convex function that is not differentiable and the

type of constraints are in the form Ax = y.

Lemma C.8 (Dual Certificate). Let f : Rn → R convex, y ∈ Rm, A ∈ Rm×n,

and let x? be some point satisfying Ax? = y. If there exists ν such that

A∗ν ∈ ∂f(x?), (C.3.8)

then x? is a solution to the optimization problem

min f(x)

subject to Ax = y.

(C.3.9)

Proof Consider any x′ satisfying Ax′ = y. By the subgradient inequality

(B.3.3),

f(x′) ≥ f(x?) + 〈A∗ν,x′ − x?〉
= f(x?) + 〈ν,A(x′ − x?)〉
= f(x?), (C.3.10)

since Ax′ = Ax?. Thus, x? is optimal.
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In this chapter, we review classical approaches to solving optimization problems

of the form

min
x∈D

f(x), (D.0.1)

in which we seek to minimize an objective function f over some domain D. All of

the algorithms we describe are iterative methods of optimization, which produce

a sequence of points

x0,x1, . . . ,xk, . . . (D.0.2)

starting from some initialization x0. The goal is to generate a sequence {xk}
which quickly converges to a minimizer x? of f over D. The total time an iter-

ative method requires to produce an acceptable answer depends chiefly on two

quantities:

1 per iteration cost: how much computation it takes to generate the next

point xk+1 given the previous points x0, . . . ,xk.

2 convergence rate: how quickly the iterate xk improve in quality. This dic-

tates how many iterations are required to produce a sufficiently accurate so-

lution. This may be measured either in terms of the distance of the iterate xk
to a minimizer,

‖xk − x?‖2 , (D.0.3)

or in terms of the sub-optimality in objective value:

|f(xk)− f(x?)|, (D.0.4)

or its gradient:1

‖∇f(xk)−∇f(x?)‖2 = ‖∇f(xk)‖2. (D.0.5)

The above two cost quantities are usually in tension: we can have fast convergence

rate at the price of very expensive iterations, or we can have very cheap iterations

at the price of a relatively slow convergence. Hence, the overall complexity of an

optimization algorithm is typically measured as:

complexity = per iteration cost×# of iterations, (D.0.6)

1 when we are only interested in converging to stationary point of the objective function

with ∇f(x?) = 0.
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subject to a prescribed accuracy in x or the objective value f(x).

In the era of big data or large models, many practical problems involve opti-

mizing over very large number of model parameters or training over large-scale

datasets. Due to computation limitations, we typically can only afford to do

fairly simple calculations in each iteration. Hence we are mainly interested in

methods that achieve the fastest possible convergence rate out of methods that

only work with first-order information (values of f(x) and ∇f(x)). Sometimes

due to memory limitation and time requirement, we need to store the data and

conduct the calculation over many parallel processes or a distributed network of

machines. To reduce communication cost and delay, we often prefer algorithms

that are amenable to parallel or distributed implementation and require minimal

exchange of data and information across different processes or machines. In this

appendix, we sketch basic ideas of some of the most popular and effective tech-

niques that enhance the performance of first-order methods, especially those that

are suitable for solving large-scale problems. We also provide references where

the reader can find more complete exposition and analysis of these techniques.

D.1 Gradient Descent

Perhaps the simplest iterative method of optimization is gradient descent, also

known as the gradient method, which applies to differentiable functions f : Rn →
R. The method was first introduced by Cauchy in 1847 to solve systems of equa-

tions [Cau47]. It comes from the simplest idea that from the current state xk, one

would like to take a small step t ≥ 0 in the direction v ∈ Rn to xk+1 = xk + t ·v
such that the value of f decreases:

f(xk+1) < f(xk).

Since f is differentiable, we know that up to first-order approximation:

f(xk+1)− f(xk) = f(xk + t · v)− f(xk) ≈ t · ∇f(xk)∗v.

The gradient ∇f(xk) points in the direction of steepest increase of the objective

f ; the negative gradient is the direction of steepest decent. So in order for f(xk+1)

to be smaller than f(xk), it is natural to take the direction in which the value

of f drops the fastest: v ∝ −∇f(xk). Hence the gradient descent is also know as

the steepest descent.

Therefore, gradient descent generates its next iterate by stepping in the direc-

tion of the negative gradient

xk+1 = xk − tk∇f(xk). (D.1.1)

Here, tk ≥ 0 is a scalar, often called the step size.2 The step size tk can either be

determined analytically from the properties of the function f , or numerically by

2 or the learning rate in learning algorithms.
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performing a line search, which produces an approximate solution3 to the one

dimensional problem:

min
t≥0

f (xk − t∇f(xk)) . (D.1.2)

Convergence of Gradient Descent.
A principal virtue of gradient descent is that for many problems, ∇f can be

computed efficiently. To understand the overall properties of the method, we

need to know how many iterations it requires to obtain a solution of a given

desired quality. This depends in turn on the properties of the objective function

f .

We begin by assuming that f is a convex, differentiable function, and that the

gradient ∇f(x) is L-Lipschitz:

‖∇f(x)−∇f(x′)‖2 ≤ L ‖x− x′‖2 , ∀x,x′. (D.1.3)

This condition states that the gradient does not change too rapidly as we move

from point to point. Intuitively, this means that a first-order model for the ob-

jective function generated by taking a Taylor expansion at point x will be valid

over a relatively large portion of the space. Indeed, it turns out that under these

hypotheses, we can take tk to a uniform

tk = 1
L ,

and smaller L allows larger steps. Moreover, it can be shown that with this

choice,

f(xk+1) ≤ f(xk)− 1
2L ‖∇f(xk)‖22

≤ f(xk). (D.1.4)

Thus, with this choice, the gradient method is a descent method: it strictly de-

creases the objective at each iteration, until xk reaches a minimizer. The fol-

lowing theorem gives an overall control on the rate of convergence, measured in

function values:

Theorem D.1. Let f : Rn → R be a differentiable function with ∇f(x) L-

Lipschitz. Let X? 6= ∅ denote the set of minimizers of f , and f? the minimum

value of f over Rn. Consider the gradient method with constant step size tk = 1
L .

Then

f(xk)− f? ≤
L

2

‖x0 − x?‖22
k

. (D.1.5)

Moreover, as k →∞, xk → X?.

A proof of this theorem (actually a more generalized version) can be found in

Chapter 8, Section 8.2.

Several aspects of this result are worth noting. First, the suboptimality in

3 Typically, this is done by backtracking: starting from some nominal value of t, we reduce t
until the function value decreases adequately, say satisfying the Armijo rule.
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function values decreases as 1/k. In particular, as k →∞, f(xk)→ f?. Second,

the rate of convergence depends on the Lipschitz constant L – the smaller L is,

faster f approaches f?. Finally, the rate of convergence depends on the distance

of the initialization to x?. A strength of this result is that it is nonasymptotic

(the bound works for all k, not just k large) and does not depend on dimension

n. For applications, we care not just about function values, but about the quality

of the iterates {xk}. Here, we are guaranteed that xk approaches X?. However,

no general, dimension-independent bound on the rate of convergence is known.

D.2 Rates of Convergence and Acceleration

How good is the gradient method? More generally, if we restrict ourselves to

relatively simple methods that only use gradient and function value informa-

tion, what rate can we obtain? This fundamental question motivates the study

of lower bounds for the computational efficiency of methods. This requires a

model of computation. One simple model for first-order methods assumes that

at each iteration, the next point xk+1 is generated based only on the pre-

vious points x0, . . . ,xk, their function values f(x0), . . . , f(xk), and gradients

∇f(x0), . . . ,∇f(xk):

f(xk+1) = Fk+1

(
x0, . . . ,xk, f(x0), . . . , f(xk),∇f(x0), . . . ,∇f(xk)

)
. (D.2.1)

This is sometimes referred to as a black box model, since the method only accesses

the function f through its value and gradient at a finite discrete set of points.4

It has been shown that (see [Nes03]):

Theorem D.2 (Convergence Rate of Gradient Descent). For every L and R,

there exists a convex differentiable function f with ∇f L-Lipschitz, and an initial

point x0 satisfying ‖x0 − x?‖2 ≤ R such that

f (xk)− f? ≥ c
LR2

k2
, (D.2.2)

where c > 0 is a numerical constant.

This result can be read as saying that for the class of functions with Lipschitz

continuous gradients, the best generic rate of convergence that any gradient-

like method can achieve is O(1/k2). Notice that Theorem D.1 implies that the

gradient method converges at a rate of O(1/k). For large k, this is much worse!

4 This is fundamentally different from having access to those values over a continuous set,

since any algorithm that relies on such assumption is in fact, strictly speaking, not
computable. Sometimes we may use the continuous time dynamics such as the negated

gradient-flow ẋ = −∇f(x) to study qualitative behaviors of certain algorithms, such as
what type of critical points they converge to. Such dynamics however do not directly
translate to implementable algorithms through naive discretization of the time, because

many of the quantitative properties of the dynamics would not necessarily be preserved by

such discretization.
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Figure D.1 Illustration of the iteration behaviors of gradient descent. Left: A
quadratic function with spherical level sets. Right: A quadratic function with more
ellipsoidal level sets.

Could the gradient method be suboptimal? Figure D.1 shows the behavior

of gradient descent on two different problems. The figure plots the level sets

Sβ = {x | f(x) = β} of the objective f as well as the iterates {xk}. Because the

gradient ∇f(x) is orthogonal to the level set containing x, the gradient method

moves orthogonal to the level sets. At left, we show a function f(x) whose level

sets are nearly circular. The gradient method makes rapid progress. At right

is a function f(x) whose level sets are more elongated. The iterates “chatter”

repeatedly changing direction and making slow progress towards x?.

The Heavy Ball Method.
The bad behavior in Figure D.1 can be mitigated by preventing the steps xk+1−
xk from changing direction too rapidly. An intuitive way to accomplish this is

to treat the iterate xk as the trajectory of a particle with some amount of

momentum, which causes it to continue moving in the same direction. This

suggests an update of the form

xk+1 = xk − tk∇f(xk) + βk (xk − xk−1) . (D.2.3)

Because this emulates the trajectory of a particle with nonzero mass, this method

is aptly called the heavy ball method, first introduced by Polyak in 1964 [Pol64].

This method is also sometimes known as the momentum method, as the second

term can be viewed as carrying some momentum from the previous iteration.

This is the basis for the popular momentum-based ADAM algorithm for training

modern neural networks [KB14]. Figure D.2 compares the heavy ball method to

the gradient method on an ill-conditioned quadratic. Notice that the heavy ball

method takes far fewer iterations to reach the vicinity of x?.

Nesterov’s Accelerated Method.
Although the heavy ball method improves over the gradient method, its worst

case rate of convergence is still O(1/k). However, by using momentum in a clever

way, it is possible to achieve a better rate of convergence of O(1/k2), which

matches the lower bound in Theorem D.2. This means, perhaps surprisingly,
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x0

x1
x2

x3

x4

x?

Figure D.2 Illustration of gradient descent with the heavy ball method.

that there is a gradient-like method that is fundamentally better than gradient

descent!

The method that achieves this optimal rate is known as Nesterov’s accelerated

gradient method. Strictly speaking, it is not a momentum method. Rather, it uses

two sequences of iterates {xk} and {pk}. The auxiliary point pk is extrapolated

from xk in a form similar to that in the heavy ball method:

pk+1
.
= xk + βk

(
xk − xk−1

)
.

At each iteration, we move to this new point, compute the gradient at this point,

and descend from it (instead of xk):

xk+1 = pk+1 − α∇f(pk+1). (D.2.4)

As we will show in Section 8.3 of Chapter 8, with properly chosen weights βk
and α, the gradient method is indeed accelerated and can achieve the optimal

convergence rate of O(1/k2), for the class of functions with Lipschitz continuous

gradients,.

Theorem D.3 (Convergence Rate of Accelerated Gradient Method). Let f :

Rn → R be a differentiable function with ∇f(x) being L-Lipschitz. Let X? 6= ∅
denote the set of minimizers of f and f? the minimum value of f over Rn. The

iterates {xk} produced by the accelerated gradient method satisfy

f(xk)− f? ≤
L

2

‖x0 − x?‖22
(k + 1)2

. (D.2.5)

Moreover, as k →∞, xk → x?.

Recently several work try to understand such acceleration by characterizing

the stability of continuous ordinary differential equations associated with such

iterations [SBC14] (and many subsequent work [KBB16, KBB15, WWJ16]). A

more detailed survey and discussion can be found in Section 8.3 of Chapter 8.

Strongly Convex Functions.
Notice that Theorem D.2 characterizes the best possible rate of convergence

for gradient-like methods for the class of functions with Lipschitz continuous

gradients; and Theorem D.3 states that this rate can be achieved with the ac-

celerated gradient methods. Nevertheless, this does not means that this is the
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best one can do for more restricted classes of functions with better properties.

If, in addition to Lipschitz continuous gradients, the functions satisfy additional

properties such as strongly convex defined in Appendix B, it is long known in

the optimization literature that gradient-descent type methods can converge at

a linear rate [BV04].

Theorem D.4. Let f : Rn → R be a differentiable strongly convex function

with constant µ and ∇f(x) being L-Lipschitz. Let f? be the minimum value

of f over Rn. Then the iterates {xk} produced by the gradient-descent xk+1 =

xk − t∇f(xk) with t = 1
L satisfy

f(xk)− f? ≤
L

2
e−αk ‖x0 − x?‖22 (D.2.6)

for some constant α > 0.

Proof We here give a proof to this simple fact as it helps explain why gradient

descent converges very fast for many statistical learning problems in practice

– the objective (loss) functions often concentrate on a function that is both

strongly convex and smooth, as the size of random samples increase.

First, notice that at the optimal solution x? we have ∇f(x?) = 0. According

to Lemma 8.2, we have

f(xk)− f(x?) ≤
L

2
‖xk − x?)‖22.

Also, due to the strong convex and smooth assumption, we also have:

µ · I � ∇2f(x) � L · I, ∀x. (D.2.7)

From the gradient descent rule, and with the fundamental theorem of calculus,

we have

xk+1 − x? = xk − t∇f(xk)− x?

= xk − x? − t
(∫ 1

0

∇2f(x? + τ(xk − x?))dτ
)

(xk − x?).

This gives:

‖xk+1 − x?‖2 ≤
∥∥∥∥I − t

∫ 1

0

∇2f(x? + τ(xk − x?))dτ
∥∥∥∥ ‖xk − x?‖2

≤ (1− tµ)‖xk − x?‖2.
If we choose t = 1/L, then (1 − µ

L ) < 1, we have contraction of xk − x? in `2

norm. So we have

‖xk − x?‖2 ≤
(
1− µ

L

)k‖x0 − x?‖2, ∀k.

Or equivalently

‖xk − x?‖22 ≤
(
1− µ

L

)2k‖x0 − x?‖22, ∀k.

Now, let α = − log(1− µ
L )2 > 0, we obtain the desired result.
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As we see from the above proof, we may also set the step size to be t = 2
L+µ

and get slightly better contraction factor.

According to the above theorem, f(xk) − f? converges to zero exponentially

in the order of O(e−αk), much faster than O(1/k2). In this book, the class of

functions that we often encounter are not necessarily globally strongly convex.

Nevertheless, they may satisfy certain weaker notion of strong convexity, such as

restricted strong convexity or local strong convexity. We will see that under such

conditions, one may also expect gradient-like methods to achieve linear rate of

convergence around the global minimum.

Nondifferentiable Functions.
The main assumption of gradient descent methods is that the objective function

f(x) is differentiable in x. In this book, we often need to minimize functions that

are not everywhere differentiable, such as functions involving the `1 norm ‖x‖1.

In such cases, we need to generalize the notion of gradient to “subgradients” (see

Definition 2.12 in Chapter 2). Essentially, subgradients at a point x is the set of

vectors u ∈ Rn such that

f(y) ≥ f(x) + 〈u,y − x〉, ∀y.

We often denote the set of subgradients as ∂f(x). To minimize such a function

f(x), we may generalize the gradient descent method by replacing the gradient

∇f(x) with any subgradient:

xk+1 = xk − tkgk, gk ∈ ∂f(x).

A main disadvantage of such subgradient descent methods is their relatively

poor convergence rate. In general, the convergence rate of subgradient descent

for non-smooth objective functions is

f(xk)− f? = O
(
1/
√
k
)
.

The reader can refer to [Nem95, Nem07, Nes03] for more detailed analysis of

subgradient descent algorithms.

It is worth noticing the significant difference in convergence rates for the same

gradient-descent algorithm being applied to two extreme subclasses of convex

functions: the strongly convex functions versus nondifferentiable ones. For the

former, gradient descent converges linearly O(e−αk), and yet for the latter it

converges much slower with a rate O(1/
√
k).

Nevertheless, as we will see in Chapter 8, in many of our problems, the ob-

jective function f(x) is of the form f1(x) + f2(x) with f1 being smooth and f2

nonsmooth. If for the nonsmooth part f2, the so called proximal operator:

min
x
f2(x) +

1

2
‖x−w‖22 (D.2.8)

has a closed-form solution or can be solved efficiently, then the subgradient de-

scent method can be properly modified so that it would enjoy the same conver-
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gence rate as the smooth case. See the proximal gradient method in Section 8.2

of Chapter 8.

D.3 Constrained Optimization

It is very common in practice that we want to minimize a function f(x) while

the desired solution x? is constrained to some subset C ⊂ Rn:

min f(x)

subject to x ∈ C.

(D.3.1)

Solutions in the subset C are called feasible solutions. Notice that if we still apply

the gradient descent method to minimize f(x). Then, after each descent iteration

pk+1 = xk − tk∇f(xk),

even if xk is feasible, the new state pk+1 may step outside of the constrained

set: pk+1 6∈ C. A natural and simple fix to this issue is to “project” pk+1 back

to the set C:

xk+1 = PC[pk+1] = arg min
x∈C

1
2

∥∥x− pk+1

∥∥2

2
, (D.3.2)

where xk+1 is the point in C closest to pk+1. This will ensure the new iterate

xk+1 is always feasible. This method is called projected gradient descent, and we

use it to provide a simplest algorithm for minimizing the `1 norm in Chapter

2. This simple method is also the inspiration for other first-order constrained

optimization methods such as the classic Frank-Wolfe method [FW56] that we

study in Section 8.6 of Chapter 8.

One disadvantage of such projected gradient descent methods is their relatively

poor convergence rate or computational efficiency per iteration5. In the case the

constraints are equality constraints: C = {x | h(x) = 0}, one could try to convert

the constrained optimization

min f(x)

subject to h(x) = 0

(D.3.3)

to an unconstrained one by penalizing any deviation of h(x) from 0:

min f(x) +
µ

2
‖h(x)‖22. (D.3.4)

This is known as the penalty method. One can show that as µ→ +∞, the solu-

tion to the unconstrained optimization approaches that of the constrained one.

However, in practice, as µ becomes large, the unconstrained problem becomes in-

creasingly harder to solve as its gradient Lipschitz constant becomes increasingly

large. See Section 8.4 of Chapter 8 for an example.

5 unless the constraint set C is nice so that projection onto it or optimization over it is easy.

That is precisely the assumption of the Frank-Wolfe method.
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As we have discussed in Appendix C, another way to convert the constrained

optimization problem is through the Lagrangian formulation. The optimal (feasi-

ble) solution x? to the above constrained optimization is also the optimal solution

(x?,λ?) to the unconstrained optimization:

max
λ

min
x
L(x,λ) (D.3.5)

where the Lagrangian function is defined as

L(x,λ)=̇f(x) + 〈λ,h(x)〉.

It is natural to consider solving the above min-max problem through the following

alternating optimization scheme:

xk+1 = arg min
x
L(x,λk), (D.3.6)

λk+1 = arg max
λ
L(xk+1,λ). (D.3.7)

Although the saddle point of the Lagrangian is the desired optimal solution,

there is no guarantee that each step of the above iteration would produce feasible

iterates nor the process is guaranteed to converge. As we see in Section 8.4 of

Chapter 8, even for some simple problems, the above subproblems might fail to

have a solution (the value of the objective function can be unbounded).

To remedy this problem, one could augment the Lagrangian L(x,λ) with an

extra quadratic penalty term for the constraint:

Lµ(x,λ)=̇f(x) + 〈λ,h(x)〉+
µ

2
‖h(x)‖22,

which is known as the augmented Lagrangian [Hes69,Roc73,Pow69]. As we will

see in Section 8.4 of Chapter 8, the augmented Lagrangian leads to much better

conditioned subproblems for the alternating scheme:

xk+1 = arg min
x
Lµ(x,λk), (D.3.8)

λk+1 = arg max
λ
Lµ(xk+1,λ), (D.3.9)

and the sequence of iterates {(xk,λk)} typically converge to the desired optimal

solution (x?,λ?) for a properly chosen µ or a sequence {µk}.

D.4 Block Coordinate Descent and ADMM

In many optimization problems we may encounter in practice, the dimension of

x could be so high that we might not even afford to conduct gradient descent to

minimize f(x) for all the variables together. Very often the objective function

f(x) has certain decomposable structures such as a finite sum:

min f(x) =

m∑

i=1

fi(x
i). (D.4.1)
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For example, the `1-norm function ‖x‖1 =
∑n
i=1 |xi| is such a decomposable

function. In such cases, we may conduct the so-called block coordinate descent

to take advantage of such decomposable structures by iteratively minimizing the

objective function with respect to one block of variables at a time.

More specifically, assume the domain D can be written as a Cartesian product

D = D1 ×D2 × · · · × Dm,

where each Di ⊆ Rni , n1+n2+· · ·+nm = n. The variables can be also partitioned

into m blocks as x = (x1,x2, . . . ,xm) ∈ Rn with each xi ∈ Di. The block

coordinate descent scheme proceeds as follows:

1 Initialize x0 = (x1
0,x

2
0, . . . ,x

m
0 ).

2 In the k-th iteration, for every i = 1, . . . ,m,

xik = arg min
x̄∈Di

f
(
x1
k, . . . ,x

i−1
k , x̄,xi+1

k−1, . . . ,x
m
k−1

)
.

3 Repeat Step 2 until the solution converges.

In the literature, the convergence of block coordinate descent methods can be

proven under different conditions. A most natural condition is when the objective

function f(x1, . . . ,xi−1,xi,xi+1, . . . ,xm) is strictly convex with respect to each

block xi. This guarantees the minimal solution xi? is also unique. For a more

detailed discussion about conditions under which such methods converge, the

reader is referred to [Ber03].

In compressive sensing or statistical learning,6 very often we need to deal with

an objective function f(x) that is a sum of multiple terms:

f(x) = f1(x) + f2(x) + · · ·+ fm(x). (D.4.2)

To obtain more scalable algorithms such that we can optimize each term in a

parallel or distributed fashion, we could rewrite this problem in terms of a set of

local variables xi ∈ Rn and one global variable z:

min

m∑

i=1

fi(x
i) subject to xi = z, i = 1, . . . ,m. (D.4.3)

In the literature, this is also known as the consensus optimization. To solve such

a constrained optimization problem, we could apply the above block descent

method to its augment Lagrangian:

L(x1, . . . ,xm, z,λ) =

m∑

i=1

fi(x
i) + 〈λi,xi − z〉+

µ

2
‖xi − z‖22. (D.4.4)

6 Say training a deep neural networks over a very large set of training samples, where x are

the network parameters.
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This leads to the following iterative process:

xik+1 = arg min
xi

fi(x
i) + 〈λi,xi − z〉+

µ

2
‖xi − z‖22,

zk+1 =
1

m

m∑

i=1

(
xik+1 +

1

µ
λik
)
,

λik+1 = λik + µ
(
xik+1 − zk+1

)
.

This is known as the Alternating Direction Method of Multipliers (ADMM).

Notice that the above scheme is rather amenable to distributed implementation

as each local process can solve in parallel a subproblem for xi and then share

the information through the common variable z.

Although ADMM has been a very popular scheme widely used by practition-

ers, the analysis for its convergence and convergence rate is far from trivial. In

Chapter 8, we will study the ADMM scheme for the case with m = 2 in great de-

tail, as it is closely applicable to our problems (such as the Robust PCA problem

considered in Chapter 5). Convergence analysis for more general cases remains

largely open research topics. For a more detailed exposition of ADMM and more

general variants, the reader may refer to the recent manuscript of [BPC+11].



Appendix E Facts from
High-Dimensional Statistics

“God tirelessly plays dice under laws which he has himself prescribed.”
– Albert Einstein

In this appendix, we recount a few facts about high-dimensional statistics and

concentration of measure which are used throughout the text. The results that we

quote are examples of a pervasive phenomenon: functions of many independent

random variables often concentrate sharply about their expectations. In this

section we give only a brief account of a few concentration inequalities that are

used throughout the text, starting in with classical scalar inequalities in Section

E.1 and their counterparts for matrices in Section E.2. We refer the reader to the

recent texts [BLM13,Ver08,Ver18,Wai19] for deeper and more through accounts

of high-dimensional probability and its applications.

E.1 Basic Concentration Inequalities

Our first concentration inequality pertains to sums of independent bounded ran-

dom variables X1, . . . , Xm. For simplicity, we assume that the Xi have zero

mean.

Theorem E.1 (Hoeffding’s Inequality). Let X1, . . . , Xm be independent random

variables, with E[Xi] = 0, and |Xi| ≤ R almost surely,

P

[∣∣∣∣∣
m∑

i=1

Xi

∣∣∣∣∣ > t

]
≤ 2 exp

(
− t2

2mR2

)
. (E.1.1)

This theorem implies that the sum
∑
iXi exhibits a subgaussian tail: the tail

probability decays as e−ct
2

. The proof is an application of the exponential mo-

ment method (sometimes referred to the Cramer-Chernoff method), in which we

apply Markov’s inequality1 to the nonnegative random variable exp(λ
∑
iXi).

This general approach yields not only Hoeffding’s inequality, but many other

classical concentration inequalities. We illustrate the method by proving Theo-

rem E.1 below:

1 Recall that Markov’s inequality states that for a nonnegative random variable Y ,

P[Y > t] < E[Y ]/t.
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Proof We calculate

P

[
m∑

i=1

Xi > t

]
= P

[
exp

(
λ

m∑

i=1

Xi

)
> exp (λt)

]

≤ e−λtE
[

exp

(
λ

m∑

i=1

Xi

)]

= e−λtE

[
m∏

i=1

eλXi

]

= e−λt
m∏

i=1

E
[
eλXi

]
. (E.1.2)

Using that for s ∈ [−R,R], eλs ≤ 1 + λs+ 1
2λ

2R2, we have that

E
[
eλXi

]
≤ E

[
1 + λXi + 1

2λ
2R2

]

= 1 + 1
2λ

2R2

≤ exp
(

1
2λ

2R2
)
. (E.1.3)

Plugging in to (E.1.2), we get that

P

[
m∑

i=1

Xi > t

]
≤ exp

(
−λt+

m

2
λ2R2

)
. (E.1.4)

Minimizing the exponent, by setting λ = t/mR2, we obtain the claimed result,

(E.1.1).

Hoeffding’s inequality gives a convenient tool for controlling sums of bounded

random variables, which we use several times throughout the text. As mentioned

above, it shows that the sum exhibits a subgaussian tail. In many cases the

“variance” suggested by this tail, mR2 is larger than the true variance if, e.g.,

E[X2
i ] = σ2 with σ � R. The classical Bernstein inequality also accounts for

variance information:

Theorem E.2 (Bernstein’s Inequality). Let X1, . . . , Xm be independent random

variables, with E[Xi] = 0, |Xi| ≤ R almost surely, and E[X2
i ] ≤ σ2. Then

P

[∣∣∣∣∣
m∑

i=1

Xi

∣∣∣∣∣ > t

]
≤ 2 exp

(
− t2/2

mσ2 + 3Rt

)
. (E.1.5)

In essence, it says that for small t, the tail behaves e−ct
2/mσ2

, i.e., Gaussian

with standard deviation mσ2, while for large t, the tail is subexponential, e−ct/R.

The proof of Bernstein’s inequality proceeds under exactly the same lines as

the proof of Hoeffding’s inequality, up to line (E.1.2), but uses slightly different

calculations to control the moment generating function E[eλXi ].
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Concentration for norms of Gaussian vectors.
Using similar reasoning, we can obtain the following useful bound on the `2 norm

of a Gaussian vector, which is used throughout Chapter 3 to establish embedding

results such as the Johnson-Lindenstrauss lemma and the Restricted Isometry

Property:

Lemma E.3. Let g = (g1, . . . , gm) with the gi independent N (0, 1/m) random

variables. Then for any t ∈ [0, 1],

P
[∣∣∣‖g‖22 − 1

∣∣∣ > t
]
≤ 2 exp

(
− t

2m

8

)
. (E.1.6)

This lemma again follows from the proof scheme of Theorem E.1, noting that

‖g‖22 =
∑m
i=1 g

2
i is a sum of independent random variables and using the following

expression for the moment generating function of the random variable hi = g2
i :

E
[
eλhi

]
=

(
1− 2λ

m

)−1/2

λ <
m

2
, (E.1.7)

and making an appropriate choice of λ.

General concentration results for Lipschitz functions.
The basic concentration results described above show that sums f(X1, . . . , Xm) =∑m
i=1Xi of independent random concentrate sharply about their expectations

E[f(X1, . . . , Xm)] =
∑m
i=1 E[f(Xi)]. Depending on the assumptions on the ran-

dom variables Xi the tail probability of the random variable f(X1, . . . , Xm) −
E[f(X1, . . . Xm)] is either subgaussian or subexponential, i.e., it is dominated by

either e−ct
2

or e−ct. In fact, this behavior can be observed not only for sums of

random variables, but for much more general functions f(X1, . . . , Xm). At the

slogan level, sufficiently “nice” functions of many random variables concentrate

sharply about their expectations.

For example, suppose that f satisfies a Lipschitz condition

|f(x)− f(x′)| ≤ L‖x− x′‖2 for all x,x′ ∈ Rm, (E.1.8)

which controls how rapidly f changes as the vector x changes. Then if g1, . . . , gm
are Gaussian random variables, f(g1, . . . , gm) concentrates about its expectation:

Theorem E.4 (Gauss-Lipschitz Concentration). Let f : Rm → R by an L-

Lipschitz function, and let g1, . . . , gm ∼iid N (0, 1). Then

P [|f(g1, . . . , gm)− E [f(g1, . . . , gm)]| > t] < 2 exp

(
− t2

2L

)
. (E.1.9)

This theorem states that the random variable f(g1, . . . , gm) has a subgaussian

tail, which acts like a Gaussian random variable with variance L. The smaller the

Lipschitz constant L (i.e., the nicer the function f), the sharper the concentration

about the expectation. The the orientation of the random vector g = (g1, . . . , gm)

uniform: u = g/‖g‖2 is uniformly distributed on the sphere Sm−1. It should be no
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surprise, then, that Lipschitz functions of uniformly distributed random vectors

on the sphere also concentrate:

Theorem E.5 (Concentration on the Sphere). Let f : Sm−1 → R be an L-

Lipschitz function and let u ∼ uni(Sm−1) be uniformly distributed on the sphere.

Then

P [ |f(u)−medianf(u)| > t ] < 2 exp

(
−mt

2

8L

)
. (E.1.10)

This result again shows subgaussian concentration with variance proportional

to the Lipschitz constant L. The result happens to be phrased in terms of the

median, rather than the mean. However, brief calculations using (E.1.10) show

that the median is close to the mean (|median(f)− E[f ]| ≤ C/
√
L) and so f(u)

is typically within O(1/
√
L) of its expectation as well. In our book, this result

has been used to construct incoherent matrices in Chapter 3.

These results on Lipschitz concentration have generalizations to other spaces

[Led01]. They also have generalizations to other distributions. One powerful

related result is Talagrand’s inequality for convex Lipschitz functions on the

cube [Tal95]. Finally, it is possible to show concentration under other hypothe-

ses on the function f – see [BLM13].

E.2 Matrix Concentration Inequalities

The basic concentration inequalities in Section E.1 have natural generalizations

from sums of independent random scalars to sums of independent random ma-

trices. The basic concentration in equalities in Section E.1 are obtained by the

exponential moment method, illustrated in the proof of Theorem E.1. This ele-

gant approach can be used to derive a number of classical probability inequalities,

by using different assumptions to get different bounds on the moment generating

function. However, our interest is not just in scalar random variables, but in ma-

trices, or even operators. Is there any natural way to generalize this approach?

Remarkably, the answer is yes. Since the crucial step above is exponentiating and

then applying Markov’s inequality, we might hope to simply replace the scalar

exponential with the matrix exponential. Surprisingly, it is almost that easy.

Facts about the matrix exponential.
Before carrying the above argument over to the matrix case, let us recall a few

facts about matrices and matrix exponentials. Recall that a symmetric matrix

M is semidefinite (M � 0) iff for all x, x∗Mx ≥ 0. We write

A � B,

whenever

A−B � 0.
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The matrix exponential is the function

exp(M) =

∞∑

n=0

Mn

n!
= I +M +M2/2 + . . . . (E.2.1)

Since a symmetric matrix M has a complete orthonormal basis of eigenvector,

M = V ΛV ∗, with Λ = diag(λ1, . . . , λn), the exponential of a symmetric matrix

has a particularly simple form:

exp(M) = V exp(Λ)V ∗ = V



eλ1

. . .

eλn


V ∗ � 0. (E.2.2)

The exponential of a symmetric matrix is always semidefinite.

The matrix exponential satisfies many of the natural properties also satisfied

by the scalar exponential. It differs in important ways, however, because matrix

multiplication is not precisely analogous to scalar multiplication. In particular,

in general, matrix multiplication does not commute: AB 6= BA. This causes

the property exp(s+ t) = exp(s) exp(t) to fail for matrices:

In general, exp(A+B) 6= exp(A) exp(B). (E.2.3)

The only exception occurs when A and B do commute: AB = BA.

If our imagined program is to replace the scalar exponential with the matrix

exponential in the proof of Bernstein’s inequality, this fact is very bad news.

The proof used in a very critical way, the fact that exp(s + t) = exp(s) exp(t).

Fortunately, there is a weak analogue of this property that does hold for matrices,

given by the following result of Golden [Gol65] and Thompson [Tho04]:

Theorem E.6 (Golden-Thompson Inequality). Let A and B be self-adjoint ma-

trices. Then

trace[exp(A+B)] ≤ trace[exp(A) exp(B)]. (E.2.4)

Before proceeding, we also note that for symmetric matrices A and B,

trace[AB] ≤ ‖A‖ trace[B]. (E.2.5)

Matrix Bernstein inequality.
Let us apply the above results to demonstrate a probability inequality for ma-

trices:

Theorem E.7 (Matrix Bernstein Inequality). Let X1, . . . ,Xn be d × d inde-

pendent, identically distributed self-adjoint random matrices, with EXi = 0 and

‖Xi‖ ≤ 1 almost surely. Then

P

[
λmax

(
n∑

i=1

Xi

)
> t

]
≤ d exp

(
−min

{
t2

4n
,
t

2

})
. (E.2.6)
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Proof Note that

λmax

(
n∑

i=1

Xi

)
> t ⇐⇒ λmax

(
λ
∑

i

Xi

)
> eλt

=⇒ trace

(
exp

(
λ
∑

i

Xi

))
> eλt.

So,

P

[
λmax

(
n∑

i=1

Xi

)
> t

]
≤ P

[
trace

(
exp

(
λ
∑

i

Xi

))
> eλt

]

≤ e−λt E trace

(
exp

(
λ

n∑

i=1

Xi

))

≤ e−λt E trace

(
exp (λXn) exp

(
λ

n−1∑

i=1

Xi

))

≤ e−λt trace

(
E [exp(λXn)] E

[
exp

(
λ

n−1∑

i=1

Xi

)])

≤ e−λt ‖E [exp(λXn)]‖ trace

(
E

[
exp

(
λ

n−1∑

i=1

Xi

)])

≤ e−λt ‖E [exp(λXn)]‖ Etrace

(
exp

(
λ

n−1∑

i=1

Xi

))

≤ e−λt
n∏

i=2

‖E [exp(λXi)]‖ Etrace (exp(λX1))

≤ de−λt ‖E exp(λX)‖n . (E.2.7)

To bound the “matrix moment generating function”

MX(λ) = E [exp(λX)] , (E.2.8)

we use a matrix variant of the scalar inequality 1 + s ≤ exp(s) ≤ 1 + s + s2,

namely, for any self-adjoint matrix S satisfying −I � S � I, we have

I + S � exp(S) � I + S + S2. (E.2.9)

Thus,

E [exp(λX)] � E
[
I + λX + λ2X2

]
(E.2.10)

� I + λ2E[X2] (E.2.11)

� I + λ2I. (E.2.12)

So, ‖E exp(λX)‖ ≤
∥∥I + λ2I

∥∥ = 1 + λ2 ≤ exp(λ2). From this, we obtain

P

[
λmax

(
n∑

i=1

Xi

)
> t

]
≤ de−λteλ

2n. (E.2.13)
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The proof then concludes as in the scalar case.

The matrix Bernstein inequality can also be expressed in the following form

that we will use in the book.

Theorem E.8 (Matrix Bernstein Inequality [Tro12]). Suppose that W 1,W 2, . . .

are independent random matrices of dimension n1 × n2, with E[W j ] = 0, and

‖W j‖ ≤ R almost surely. Define

σ2 = max





∥∥∥∥∥∥
∑

j

E[W jW
∗
j ]

∥∥∥∥∥∥
,

∥∥∥∥∥∥
∑

j

E[W ∗
jW j ]

∥∥∥∥∥∥



 . (E.2.14)

Then

P



∥∥∥∥∥∥
∑

j

W j

∥∥∥∥∥∥
≥ t


 ≤ (n1 + n2) exp

( −t2/2
σ2 +Rt/3

)
. (E.2.15)
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[LBBH98] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.

Gradient-based learning applied to document recognition. Proceedings

of the IEEE, 86(11):2278–2324, 1998. 537

[LBH15] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning.

nature, 521(7553):436–444, 2015. 24, 533
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List of Symbols

R The real numbers.

C The complex numbers.

i =
√
−1 The unit imaginary number as a solution to x2 + 1 = 0.

Rn,Cn The n-dimensional real or complex space.

Rm×n,Cm×n The space of m× n real or complex matrices.

Sn−1 A unit sphere in Rn.

G A general (matrix) group.

[k] The set {1, . . . , k}.
I A subset of indices usually indicating the support of a sparse

vector.

Ω A subset of indices for entries of a matrix.

S A subspace.

O(n) The orthogonal group.

GL(n) The general linear group.

SL(n) The special linear group.

SP(n) The sign permutation group.

a, b, c, x, y, A,B,C Scalars.

C1, C2, . . . Large constants.

c1, c2, . . . Small constants.

x,y Vectors, always represented as columns.

supp (x) For x ∈ Rn, the indices of the nonzero entries, ⊆ [n].

sign (x) The signs of a vector x ∈ Rn, in {−1, 0, 1}n.

X,Y Matrices.

L,S L indicates a low-rank matrix, and S a sparse matrix.

X Tensors (of order > 2).

A � B The semidefinite order, i.e., A−B is semidefinite.

A � B Strict semidefinite order, i.e., A−B is positive definite.

Sn+ The cone of symmetric positive semidefinite matrices of size

n× n.

e1, . . . , en The standard basis vectors for Rm.

Ei,j The standard basis vectors for the space of matrices Rm×n.

0 The zero vector or matrix, depending on context.

1 The all ones vector or matrix, depending on context.

I The identity matrix.



688 LIST OF SYMBOLS

a∗, A∗ The (conjugate) transpose of a vector a or a matrix A.

A−1 The inverse of a nonsingular matrix A.

A† The pseudoinverse of an arbitrary matrix A.

null (A) The null space of A.

range(A) The range (column space) of A.

range(A∗) The row space of A.

Xi,j The (i, j) element of matrix X. Where possible, use i for

the first index, j for the second index.

X I,J For X ∈ Rm×n, the square submatrix index by I ⊆ [m],

J ⊆ [n].

X∗,J Shorthand for the column submatrix indexed by J.

X I,∗ Shorthand for the row submatrix indexed by I.

P I Abuse of notation for the projection (matrix) of a vector

onto the coordinate subspace indexed by I.

A = UΣV ∗ The singular value decomposition of A. Prefer the “com-

pact” form. If A ∈ Rm×n and rank (A) = r, U ∈ Rm×r,
Σ ∈ Rr×r, and V ∈ Rn×r.

P = UΛU∗ The eigenvector decomposition of a symmetric matrix P ∈
Rm×m. Here, Λ is diagonal, and U ∈ Rm×m with U∗U = I.

[x]k A best k-term approximation to x.

soft(·, τ) Entry-wise soft thresholding operator on a scalar, vector or

a matrix, with a threshold τ ≥ 0.

Sτ (·) A shorthand for the entry-wise soft thresholding operator,

with the threshold τ .

Dτ (A) The soft thresholding operator on the singular values of the

matrix A, with the threshold τ .

a~ x The convolution of two signals a and x. When both are of

finite length, it can represent either circulant convolution

or truncated one, depending on the context.

‖x‖p The vector `p norm

‖X‖ The `2 operator norm, σ1(X).

‖X‖F The Frobenius norm.

‖X‖∗ The nuclear norm.

‖A‖V→W The operator norm of A, as an operator from normed space

V to normed space W .

‖X‖`1→`p The `1 → `p operator norm, maxj ‖Xej‖p.
‖X‖`2→`∞ The `2 → `∞ operator norm, maxi ‖e∗iX‖2.

‖·‖∗♦ The dual norm of ‖·‖♦.

‖X‖∗`1→`2 The dual norm of the `1 → `2 operator norm,
∑
j ‖Xej‖2.

O(n) “Big-O” means upper bounded by C · n for some constant

C.

Ω(n) “Big-Omega” means lower bounded by C · n for some con-

stant C.
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Θ(n) “Big-Theta” means lower bounded by c·n for some constant

c and upper bounded by C · n for some constant C > c.

o(n) “little-o” means ultimately smaller than n.

∂f(x) Subdifferential of a function f(·) at x.

∇f(x) The gradient of a differentiable function f at x.

∇2f(x) The Hessian of a twice-differentiable function f at x.

A,B,P General linear maps. These act on elements of their domain

via square brackets, e.g., A[X].

PS Orthonormal projector onto a subspace of a vector space.

PΩ The projection operator of a matrix onto the coordinate

subspace indexed by Ω.

min (x+ 1)2 Unconstrained minimization.

max −(x+ 1)2 Unconstrained maximization.

min f(x)

subject to h(x) ≤ 0.

Constrained minimization.

xtrue, Xtrue Ground truth solutions.

xo, Xo Shorthand for ground truth solutions and objective for any

algorithm.

x0,xk,xk+1 Initial point, and estimates at the k-th and the (k + 1)-th

iteration of an algorithm.

{xi} A sequence of (vector) iterates in optimization or a set of

samples in statistics.

X0,Xk,Xk+1 Initial point, and estimates at the k-th and the (k + 1)-th

iteration of an algorithm.

{Xi} A sequence of (matrix) iterates in optimization or a set of

samples in statistics.

x̂, X̂ Estimated approximate solutions (to an estimation or op-

timization problem).

x?, X? Converged solutions of an iterative algorithm.

x̂ ∈ arg min f(x). Set of minimizers of a function f(·).
x? = arg min f(x). Shorthand when the minimizer of f(·) is unique.

P [X > t ] < exp(−t2/2) Probability.

P [X > 1 | X < 2 ] = 0 Conditional probability.

E [·] Expectation.

E [· | ·] Conditional expectation.

1x≤3 Indicator for an event.

e, E A gross error vector or matrix.

z, Z A vector or matrix of noise.

N (µ,Σ) The Gaussian or normal distribution with mean µ and co-

variance Σ.

Ber(ρ) The Bernoulli distribution with the probability ρ ∈ [0, 1].





Index

`0 minimization, 49

complexity, 50

NP-hardness, 52

`1 ball, 73, 245

`1 minimization, 14, 57, 72

coefficient space, 72

geometry, 245

incoherence, 77

noise, 107

observation space, 74

phase transition, 63, 116

projected subgradient descent, 63

random noise, 112

simulation, 64

stability, 108

under RIP, 91

`1 norm

descent cone, 246

`4 maximization, 414

dictionary learning, 293

`p norm, 601

ε-net, 99, 157

for the unit ball, 100

ν-incoherent, 172

O(n) - orthogonal group, 590

SO(n) - special orthogonal group, 590

SU(n) - special unitary group, 590

U(n) - unitary group, 590

k-support norm, 265

p-stable distribution, 96

GL(n,R) - general linear group, 590

Accelerated gradient, 627

convergence rate, 627

Accelerated proximal gradient, 323, 326

BPDN, 327

convergence, 328

PCP, 233

Stable PCP, 327

Acceleration

approximate duality gap technique, 331

continuous dynamics, 330

estimation sequence, 330

high order methods, 331

momentum analysis, 330

Nesterov’s method, 325

ADGT, 331

Adjoint map, 589

ADM, see also alternating descent method

ADMM, see also alternating direction
method of multipliers, 339, 439, 443,

511, 529, 631, 633

as PPA, 344

convergence, 346, 363

MRI, 440

multiple terms, 349

principal component pursuit, 203, 339

Affine group, 515

Algorithm

`0-Minimization by Exhaustive Search, 48

`1 Minimization by Projected Subgradient,

63

Accelerated Proximal Gradient, 326

Accelerated Proximal Gradient for BPDN,

327

Accelerated Proximal Gradient for Stable

PCP, 327

Alternating Descent Method, 468

Augmented Lagrange Multiplier, 335

Augmented Lagrange Multiplier for BP,
336

Augmented Lagrange Multiplier for PCP,

337

Compact Code for Fast Nearest Neighbor,

97

Cubic Regularized Newton’s Method, 380

Fast Iterative Shrinkage-Thresholding

Algorithm, 327

Fixed Point of a Contraction Mapping, 417

Frank-Wolfe for Noisy Sparse Recovery,
357

Frank-Wolfe for Stable Matrix

Completion, 356

Frank-Wolfe method, 352

Hybrid Gradient and Negative Curvature
Descent, 384

Hybrid Negative Curvature and Newton
Descent., 392
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Hybrid Noisy Gradient Descent Method,

409

Inexact Hybrid Negative Curvature and
Newton Descent, 395

Inner Loop of TILT, 519

Matching Pursuit, 358

Matching, Stretching, and Projection, 415

Matrix Completion and Recovery via

ALM, 497

Matrix Completion by ALM, 171

Orthogonal Matching Pursuit, 359

Perturbed Accelerated Gradient Descent,

411

Principal Component Pursuit by ADMM,

203

Proximal Gradient, 318

Proximal Gradient for Augmented

Lagrangian, 171

Proximal Gradient for Lasso, 319

Proximal Gradient for Stable Principal

Component Pursuit, 321

Robust Sparse Representation-based
Classification, 481

Sparse Representation-based Classification
(SRC), 478

The TILT Algorithm, 517

ALM, see also augmented Lagrange
multiplier, 331, 443, 496, 511, 529

algorithm, 335

as PPA, 344

basis pursuit, 336

convergence, 334, 346, 363

matrix completion and recovery, 497

principal component pursuit, 336

Alternating direction method of multipliers,

312, 339, 633

Analysis filter, 559

Anisotropic total variation, 443

APG, see also accelerated proximal gradient,

336, 497

BPDN, 327

Approximate kinematic formula, 253, 259

Armijo rule, 624

Atomic gauge, 241

examples, 242

Atomic norm, 242

descent cone, 246

proximal operator, 243

Atomic norm minimization, 243

decomposing two structures, 258

phase transition, 252, 253

Atomic set, 238

atoms, 238

column sparse, 238

dictionary, 238

low-rank tensor, 240

multi-tone signal, 241

sparse and low-rank, 240

spatial continuous, 239

Augmented Lagrange multiplier, 311, 331,

631

algorithm, 335

convergence, 334

matrix completion, 169

PCP, 233

Augmented Lagrangian, 333, 337

PCP, 339

Banach-Caccioppoli Fixed Point, 417

Band-limited function, 5

Basis

vector space, 585

Basis pursuit, 310

ALM algorithm, 336

Basis pursuit denoising, 107

Bernstein’s inequality, 217, 635

Bidirectional reflectance distribution
function, 490

Bilinear lasso, 465

Bilinear problem, 262

Blind deconvolution

convolution, 296

multi-channel, 296

short and sparse, 294

sparse, 294

BLITZ, 363

Bloch equation, 427

Block coordinate descent, 360, 632

BPDN, 107, 108, 311

low-rank recovery, 162

BRDF, 490

Bregman iteration, 336

CAB, see also cross and bouquet

Cardinal series, 446

Cauchy distribution, 96

Cauchy random matrix, 96

CELER, 363

Circulant matrix, 104, 555, 597

properties, 598

Classification, 534

sparse representation, 535

Clustering

symmetry, 298

Coded aperture, 442

Coding length, 542

Coding rate, 542

Collaborative filtering, 139, 199

Column sparse matrix, 238

Community discovery, 200

Compact projection

approximate nearest neighbor, 134

Companion matrix, 589

Complete dictionary learning, 292
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Compressed sensing, 7

Compressive PCP, 227, 228

theorem, 228

Compressive principal component pursuit,

228

Compressive sampling

MRI, 39

Compressive sensing, 7, 23

frequency domain, 450

Concentration

Gauss-Lipschitz concentration, 636

Lipschitz function, 636

norms of Gaussian vectors, 636

on the sphere, 637

Conditional gradient, 351

Conditional independence

Gaussian variables, 30

Conic kinematic formula, 250

Conjugate

Fenchel conjugate, 611

Conjugate gradient method, 398, 422, 592

complexity, 399

Consensus optimization, 632

Constrained optimization

continuation, 332

necessary conditions, 619

penalty method, 332

sufficient conditions, 619

Contraction mapping, 416

fixed point, 417

Contrastive learning

versus MCR2, 546

Convex combination

definition, 610

Convex cone, 244

Convex envelope, 611

`0 norm, 57

definition, 611

rank, 151

Convex function, 53

definition, 608

examples, 609

first-order condition, 608

global optimality, 617

monotone property, 614

second-order condition, 609

subgradient, 613

Convex hull, 607

Convex optimization, 27

Convex quadratic program, 398

Convex relaxation

high-order tensor, 261

limitations, 259

multiple structures, 260

Convex set

definition, 606

examples, 607

Convolution

circular, 556, 597

cyclic, 556

random convolution, 104

spherical, 571

Convolutional dictionary learning, 296

Convolutional neural network, 561

COSAMP, 360, 362, 368

CP rank, 240

CPCP, 228

Cramer-Chernoff method, 634

Critical point, 143

definition, 617

maximizer, 270

minimizer, 270

saddle, 270

second-order, 377

Cross and bouquet model, 484

Cross entropy, 536

versus MCR2, 548

Cross polytope, 45

Cubic regularized Newton’s method, 378

subproblem, 382

Curvilinear search, 385

DCT, see also discrete cosine transform, 511

Deconvolution, 301

blind deconvolution, 294

Deep convolutional network

multi-channel, 555

Deep learning, 23, 24, 533

classification, 534

forward propagation, 553

implicit regularization, 537

isometry, 537

ISTA, 554

Deep network, 533

activation function, 536

convolutional neural network, 561

layer, 535

linear deep network, 287

recurrent neural network, 561

spectral domain, 560

unrolled optimization algorithm, 537

Deep neural network, 3, 533

dropout, 305

stochastic matrix factorization, 305

symmetry, 298

Definition

atomic gauge, 241

basis for a vector space, 585

contraction mapping, 417

convex combination, 610

convex envelope, 611

convex function, 55, 608

convex hull, 607
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convex set, 606

critical point, 617

determinant of a matrix, 589

dual space and dual norm, 602

eigenvalue and eigenvector, 595

inner product, 586

internal angle, 122

intrinsic volume, 249

Kruskal rank, 49

linear independence, 585

linear map, 588

linear subspace, 586

Lipschitz continuous gradient, 612

local and global minima, 616

matrix restricted strong convexity, 154

matrix rigidity, 196

monotone relation, 341

mutual coherence, 76

norm, 44

null space property, 89

operator norm, 603

orthogonal complement, 587

planted clique, 197

rank-RIP, 152

restricted isometry property (RIP), 87

restricted strong convexity, 90

Schatten p-norm, 604

stationary point, 617

statistical dimension, 251

strongly convex function, 611

subdifferential, 61, 614

subgradient, 61, 614

symmetric function, 272

symmetric gauge function, 605

trace of a matrix, 587

vector space, 584

weak proportional growth, 485

weak separability, 97

Dense error correction, 221

Derandomization

PCP, 222

Descent cone

`1 norm, 254

atomic norm, 246

of `1 norm, 246

Determinant

definition, 589

DFT, 560, see also discrete Fourier transform

Dictionary

face recognition, 42

overcomplete, 40

Dictionary learning, 12, 262, 267, 291, 301,

558

`4 maximization, 293

complete, 292, 414

convolution, 296

one sparsity, 288

overcomplete, 294

Diffusion process, 400

Dimension of a cone, 251

Discrete cosine transform, 40, 511

Discrete Fourier transform, 64, 560, 597

Distribution

degenerate, 541

DNN, 3

Dropout, 538

deep learning, 305

low-rank regularization, 305

nuclear norm squared, 305

stochastic matrix factorization, 305

Dual certificate, 621

optimality, 212

Dual feasible solution, 620

Dual function, 619

Dual norm, 148, 602

definition, 602

examples, 603

of `1 norm, 603

of `∞ norm, 603

of `p norm, 603

Dual space

definition, 602

Duality, 619

Duality condition

strong, 620

weak, 620

Duality gap, 620

Eckart and Young decomposition, see also

PCA

Eigenvalue

definition, 595

Gershgorin Disc Theorem, 598

Lanczos method, 388

Power iteration, 388

variational characterization, 596

Eigenvector

definition, 595

Epigraph

convex function, 608

Equivariance

group transform, 532

Error correction, 12, 23, 64

dense, 221

Estimation sequence, 330

Euclidean distance embedding, 140

Euclidean norm, 601

Exponential moment method, 634

Face recognition, 199, 535

robust face recognition, 42

Feasible cone restriction, 154

Fenchel conjugate, 611

Finite sum
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stochastic gradient descent, 360

FISTA, 327, 363

Fixed point

contraction mapping, 416

dictionary learning, 415

generalized power iteration, 416

power iteration, 413

Forward propagation, 553

Fourier magnitude, 267

Fourier phase retrieval, 267, 277, 299

Fourier transform, 5, 277, 429

2D, 37

short time Fourier transform, 278

Frank-Wolfe, 350, 351

noisy sparse recovery, 357

over `1 ball, 353

over nuclear norm ball, 353

stable matrix completion, 355

Gauss-Lipschitz concentration, 636

Gauss-Seidel iteration, 339

Gaussian random matrix, 94

RIP, 98

General linear group, 590

Generalized PCA, 20

Generalized power iteration, 412

Generalized power method, 416

Generalized principal component analysis,

540

Generalized principal components

nonlinear, 540

Gibbs measure, 401

Global minimum

definition, 616

Golden-Thompson inequality, 638

Golfing scheme, 181

GPCA, 540

Gradient

Riemannian gradient, 290

Gradient descent, 54, 58, 372, 623

conditional gradient, 351

convergence for nonconvex functions, 373

convergence rate, 625

escaping saddle point, 405

Frank-Wolfe, 351

Nesterov acceleration, 627

noisy, 404

nondifferentiable function, 629

perturbed accelerated, 411

projected gradient descent, 59, 630

projected subgradient descent, 61

randomly perturbed, 410

strongly convex function, 628

subgradient, 629

with random noise, 399, 403

Graphical model, 7

conditional independence, 9

Group

affine group, 515

equivariance, 532

general linear group, 590

homography group, 515

invariance, 263, 532

orthogonal group, 28, 412, 590

special linear group SL(3), 521

special orthogonal group, 590

special unitary group, 590

unitary group, 590

Group invariance, 555

Group sparsity, 244, 364

Hankel matrix, 2

Harmonic plane, 207

Heavy ball method, 325, 626

High-dimensional geometry, 25

High-order tensor, 261, 529

convex relaxation, 261

Hoeffding’s inequality, 94, 219, 220, 634

Homogeneous space, 412

Stiefel manifold, 412

Homography group, 515

Homotopy continuation, 470

Huber function, 286

Hybrid singular value thresholding, 364

ICA

nonlinear, 540

Implicit regularization, 574

deep learning, 537

Incoherence, 78, 257, 543

shift incoherent, 466

Incoherent matrix, 80

Independent component analysis

nonlinear, 540

Indicator function, 335

Inequality

Bernstein’s inequality, 635

Golden-Thompson inequality, 638

Hoeffding’s inequality, 634

Jensen’s inequality, 610

Markov’s inequality, 634

matrix Bernstein inequality, 638

Inexact sparse signal, 114

Information gain, 544

Inner product

definition, 586

Interior point method, 310

Internal angle

definition, 122

Intrinsic volume, 247

a cone in R2, 250

a linear subspace, 250

definition, 249

Invariance, 573

group transform, 532
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translation, 560

Invariance and sparsity tradeoff, 557
Isometry

deep learning, 537

ISTA, see also iterative soft-thresholding
algorithm, 362

deep learning, 554

Iterative soft-thresholding algorithm, 319

Jensen’s inequality, 56, 610

Johnson-Lindenstrauss lemma, 95, 636

Kernel

neural tangent kernel, 569
Kinematic formula

approximate, 253, 259

of two convex cones, 251
KKT conditions, 129

Kruskal rank, 76

coherence, 77
definition, 49

Krylov information, 387

Ky-Fan k-norm, 147

Lagrange dual problem, 620

Lagrange multiplier, 332, 618
Lagrange multiplier method, 631

augmented, 631

Lagrangian function, 618, 631
Lambertian model, 137, 490

Lambertian surface, 199, 207
Lanczos method, 387

complexity, 388

computing negative curvature, 386
Langevine dynamics, 400

Langevine Monte Carlo, 403

Laplace’s method, 400
continuous family of global optima, 402

multiple global optima, 402

scalar case, 401
Lasso, 107, 112, 310

bilinear, 465

low-rank recovery, 163
Lasso regression, 17

Latent Dirichlet allocation, 141
Latent semantic analysis, 140
Latent semantic indexing, 141, 199

Least absolute deviations, 12
Least squares, 12

Levenberg-Marquardt method, 418

Line search, 624
Linear independence, 585
Linear map

adjoint map, 589
definition, 588

invertible, 589

Linear subspace, 586
Linear systems

existence of solution, 592

invertible, 592

of equation, 592

overdetermined, 593

underdetermined, 594

uniqueness of solution, 592

Lipschitz continuous gradient, 313, 624

definition, 612

Lipschitz continuous Hessian, 378

Lipschitz function

concentration, 636

Local minimum

definition, 616

Logan’s phenomenon, 14, 64

Low-dimensional submanifold, 535

Low-rank approximation, 20, 145

Low-rank matrix

factorization, 281

signs, 153, 175

support, 153, 175

tangent space, 153

Low-rank sparse decomposition, 195, 200,

201, 257

algorithm, 203

convex formulation, 201

incoherence conditions, 210

uniqueness, 211

Low-rank tensor, 240, 529

Low-rank textures, 506

Magnetic resonance image, 36

Magnetic resonance imaging, 425

Manifold, 263

Markov’s inequality, 634

Matching pursuit, 357, 362

algorithm, 358

Matching, stretching, and projection

algorithm, 415

Matrix

column sparse, 238

Hankel matrix, 2

inverse, 589

positive definite, 596, 601

positive semidefinite, 597

pseudo-inverse, 593, 595

sparse and low-rank, 260

symmetric matrix, 595

Matrix Bernstein inequality, 638, 640

Matrix completion, 231

collaborative filtering, 140

golfing scheme, 181

noise, 185

nonconvex, 285

with corruptions, 229

Matrix exponential, 638

Matrix factorization, 262, 281, 282

Matrix inverse, 589

Matrix norm, 603
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unitary invariant matrix norm, 604

Matrix pseudo-inverse, 599

Matrix recovery

nonconvex, 286

Matrix restricted strong convexity

definition, 154

Matrix rigidity, 196

definition, 196

Matrix RSC, 154, 155

Matrix sensing

nonconvex, 284

Maximal coding rate reduction, 544

Maximum likelihood estimate, 30

Gaussian noise, 30

Laplace noise, 30

MCP, 257

MCR2, see also maximal coding rate
reduction

Mean square error, 260

Measure concentration

on a sphere, 26

Minkowski sum, 592

Mixed variational inequality, 342

Mixture of distributions, 534

rate distortion, 542

Mixture of submanifolds, 540

Moment generating function, 635

matrix, 639

Momentum analysis, 330

Momentum method, 470, 626

Monotone operator, 341, 363

Monotone property, 614

Monotone relation, 368

Monotonicity

KTT operator, 342

subgradient, 341

Morphological component analysis, 257

Morse function, 271

Morse-Bott function, 402

Motif, 267

MP, see also matching pursuit

MRI, see also magnetic resonance image, 425

ADMM, 440

compressive sampling, 39

dynamic MRI, 38

MSE, 260

Multi-tone signal, 241

Multiple-view matrix, 4

Mutual coherence

a random matrix, 81

definition, 76

of a matrix, 76

Welch bound, 84

MVI, see also mixed variational inequality

Nearest neighbor

approximate nearest neighbors, 97

compact code, 97

compact projection, 134

fast methods, 96, 97

random projection, 97

weak separability, 97

Negative curvature, 277

symmetry breaking, 283, 291

Negative curvature descent, 384, 390

with random noise, 405

Neighborly polytope, 26

Nesterov’s acceleration, 325, 362, 363, 626

Nesterov’s method, 323

Neural tangent kernel, 569

Newton descent, 390

Newton iteration, 375

Newton’s method, 372, 375

convergence rate, 376

cubic regularized, 378

fixed point, 415

Newton-Raphson method, 375

Noisy gradient descent, 404

Non-asymptotic statistics, 25

Nonconvex optimization, 28

eigenvector computation, 144

Nonconvex problem

bilinear, 262

dictionary learning, 262

matrix factorization, 262

Nonsmoothness, 302

Norm

`0 norm, 46

`1 norm, 45, 601

`2 norm, 45, 601

`4 norm, 414

`∞ norm, 45, 601

`p norm, 44, 601

k-support norm, 265

atomic, 242

definition, 44, 600

dual norm, 602, 603

equivalence, 601

Euclidean norm, 45, 601

Ky-Fan k-norm, 147

matrix norm, 603

nuclear norm, 147

operator norm, 603

Schatten 1-norm, 147

Schatten p-norm, 604

spectral norm, 148

trace norm, 147

unitary invariant matrix norm, 604, 605

Normalization

deep learning, 543

NP-complete problems, 51

NP-hard

finding local minimizers, 269
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NP-hardness, 51

Nuclear norm, 147

dropout in deep learning, 305

dual norm, 148

exponential of nuclear norm, 317

function of nuclear norm, 317, 365

nuclear norm squared, 305, 317

subdifferential, 175

unit ball, 150

variational forms, 148

versus log det(·) , 545

Nuclear norm minimization, 150

matrix completion, 168, 174

Null space, 591

Null space property, 89

definition, 89

Nyquist sampling theorem, 446

Nyquist-Shannon sampling theorem, 6, 30

OMP, see also orthogonal matching pursuit,

367, 459

Operator norm, 603

definition, 603

Optimality condition

second-order sufficient condition, 617

Optimization, 27

acceleration techniques, 27

convex, 27

first-order methods, 27

nonconvex, 28

Oracle

the first-order oracle, 374

the negative curvature oracle, 383

the second-order oracle, 375

Orthogonal complement

definition, 587

Orthogonal group, 28, 302, 412, 590

`4 maximization, 414

Orthogonal low-rank embedding, 545

Orthogonal matching pursuit, 358, 362, 367

algorithm, 359

Outlier pursuit, 223

Overcomplete dictionary learning, 294

PAGD, see also perturbed accelerated

gradient descent

Pauli observables, 161

PCA, see also principal component analysis,
19, 20, 145, 196, 547

ADMM algorithm, 203

Generalized PCA, 20

robust PCA, 195, 196

sparse, 240

PCP, see also principal component pursuit,
230, 310, 311, 339, 513

ADMM algorithm, 202

algorithm, 232

ALM algorithm, 337

compressive, 227

dual, 368

face images, 207

noise stability, 224

nonsquare matrix, 221

phase transition, 207

stable PCP algorithm, 327

theorem, 211

video background modeling, 205

Penalty method, 332, 630

Permutation, 269

Perturbed accelerated gradient descent, 411

Perturbed gradient descent, 410

Phase retrieval, 301

Fourier phase retrieval, 267, 277, 299

generalized phase retrieval, 275, 278

one unknown, 275

sample complexity, 279

Phase transition, 244, 251

`1 minimization, 63

atomic norm minimization, 252, 253

coefficient-space geometry, 119

decomposing two structures, 257, 258

low-rank recovery, 166

low-rank sparse decomposition, 207

matrix completion, 171

observation-space geometry, 122

PCP, 207

sparse recovery, 116

support recovery, 123

Phong model, 493

Photometric stereo, 137, 138, 489

Planted clique

conjecture, 198

definition, 197

Postive definite matrix, 596

Power iteration, 387, 412

generalized, 412

leading eigenvector, 145

negative curvature, 406

PPA, see also proximal point algorithm

Primal function, 619

Principal component analysis, 18, 19, 145,

196

CIFAR10, 547

Principal component pursuit, 201, 310, 311,
339

ADMM, 339

ADMM algorithm, 202

dual, 368

stable version, 310

theorem, 211

Principle of minimum description length, 17

Problem

Mixed Variational Inequality Problem, 343

Projected gradient descent, 59, 630
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Projected subgradient descent, 61

`1 minimization, 63

Proximal gradient, 170, 311, 312, 318

accelerated, 323

convergence rate, 318

Lasso, 319

stable principal component pursuit, 321

Proximal operator, 315, 629

`1 norm, 316

atomic norm, 243

average proximal operator, 364

exponential of nuclear norm, 317

function of nuclear norm, 317, 365

indicator function, 316

nuclear norm, 316

nuclear norm squared, 305, 317

powers of nuclear norm, 317

Proximal point algorithm, 321, 337

convergence, 321, 344

Pseudo random bit sequence, 451

Pseudo-inverse

matrix, 593, 595, 599

Quadrature analog to information converter,

453

Rademacher random variable, 219

Rademacher vectors, 105

Random convolution

RIP, 104

Random projection, 95

fast nearest neighbor, 97

Range, 591

Rank, 591

Candecomp-Parafac rank, 240

CP rank, 240

facts, 591

Tucker rank, 261

Rank minimization, 146

affine rank minimization, 146

Euclidean distance embedding, 140

matrix completion, 140

NP-hardness., 147

photometric stereo, 138

Rank-RIP, 152, 155

definition, 152

Gaussian, 157

Pauli observables, 161

submatrix of unitary basis, 160

RANSAC, 504

RASL, 532

Rate distortion, 541

Gaussian, 542

mixture of distributions, 542

subspace, 542

Rate reduction, 543

invariant, 555

monotonic, 543

normalization, 543

Recommendation system

matrix completion, 138

Rectified linear unit (ReLU), 536

Recurrent neural network, 3, 561

Regression, 16

best subset selection, 16

Lasso regression, 17

lasso regression, 17

ridge regression, 16, 18, 31, 595

sparse regression, 16

stepwise regression, 17

ReLU, 3, see also rectified linear unit

Restricted isometry property, 85

definition, 87

Restricted strong convexity, 90

definition, 90

matrix, 154

Ridge regression, 16, 18, 31, 550, 595

Riemannian gradient, 290

RIP, see also restricted isometry property

Gaussian random matrix, 98

non-Gaussian matrix, 102

rank-RIP, 152

RSC, 92

RNN, see also recurrent neural network

Robust face recognition, 23

Robust PCA, 196, 257

algorithm, 203

applications, 198

identifiability conditions, 210

incoherence conditions, 210

problem formulation, 195

sparse outliers, 223

uniqueness, 211

Robust principal component analysis, 196,
231

Robust sparse representation-based

classification, 481

Robustness, 574

corrupted labels, 548

Rotational symmetry, 275, 282, 300

RPCA, see also Robust PCA, 231, 257

RSC, 90

matrix, 154

RIP, 92

Saddle point, 283, 291

escape, 405

strict saddle point, 271, 301

SaS, see also short and sparse

SaSD, see also short-and-sparse
deconvolution

Scanning tunneling imaging, 462

Schatten p-norm, 604

Second-order critical point, 377

Self-expressive representation
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low rank, 234, 367

sparse, 366

Semidefinite order, 597

Set

closed, 606

convex, 606

SGD, 350, 361

deep learning, 536

finite sum, 360

variance reduced, 361

Short and sparse, 294, 572

Short-and-sparse deconvolution, 465

algorithm, 468

Shrinkage operator, see also soft thresholding

2D, 441

Sigmod function, 3

Signed permutation, 269, 288, 297, 302

Simulated annealing, 403

Singular value decomposition, 2, 20, 141,

196, 598

properties, 599

Singular value thresholding

hybrid singular value thresholding, 364

Singular vector

computing, 142

power iteration, 412

Soft thresholding, see also shrinkage operator

Softmax, 553

Sparse

spatially continuous, 239

Sparse and low-rank, 511

Sparse coding, 10, 558, 577

neural science, 10

Sparse PCA, 240

Sparse representation-based classification,
478, 535

Special linear group SL(3), 521

Special orthogonal group, 590

Special unitary group, 590

Spectral norm

dual norm, 148

Spherical convolution, 571

Spiking neurons, 577

SRC, see also sparse representation-based

classification

State-space model, 1

Stationary point

definition, 617

Statistical dimension, 251

definition, 251

descent cone of `1 norm, 254

properties, 252

Stepwise regression, 17

Stiefel manifold, 302, 412, 415

optimization, 415

STM, see also scanning tunneling imaging

Stochastic gradient descent, 350, 361

deep learning, 536

finite sum, 360

Stochastic matrix factorization, 304

Strong convexity, 364, 611

Strong duality condition, 620

Strong duality theorem, 621

Strongly convex function, 611

gradient descent, 627

Subdifferential

`1 norm, 62, 212

definition, 61, 614

examples, 614

nuclear norm, 175, 212

Subgradient, 613

definition, 61, 614

gradient descent, 629

monotonicity, 341

Subgradient descent, 312

Submanifold, 535

nonlinear, 263

Subspace

affine subspace, 592

SVD, see also singular value decomposition,
20, 141, 142, 196, 598

compact SVD, 598

computing, 142

full SVD, 599

properties, 142, 599

Symmetric function

definition, 272

Symmetric gauge function, 605

unitary invariant matrix norm, 605

Symmetric matrix, 595

eigenvector decomposition, 596

real, 595

semidefinite order, 597

Symmetry

blind deconvolution, 295

conjugate inversion, 299

continuous, 274

cyclic shift, 299

deep neural network, 298

discrete, 274, 297, 300

low-rank model, 281

permutation, 274, 298

phase symmetry, 268

rotation, 274, 275, 282, 300

shift, 466

signed permutation, 269, 288, 297

tensor decomposition, 297

Symmetry breaking, 277

System identification, 2

linear time-invariant system, 2

rank condition, 2

Tail bound
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of failure probability, 96

Tensor, 297

composite norm, 262

high-order low-rank, 529

low-rank, 240

Tucker rank, 261

The first-order oracle, 374

The negative curvature oracle, 383

The second-order oracle, 375

Theorem

`0 Recovery, 49

`0 Recovery under RIP, 87

`1 Recovery under RIP, 87

`1 Succeeds under Incoherence, 78

Banach-Caccioppoli Fixed Point, 417

Bernstein’s Inequality, 635

Best Low-rank Approximation, 145

Best Orthogonal Approximation, 600

Compact SVD, 141

Compact SVD, Existence, 598

Complexity of Approximate Conjugate

Gradient, 399

Compressive PCP, 228

Concentration on the Sphere, 637

Convergence of Accelerated Proximal

Gradient, 326

Convergence of ADMM, 348

Convergence of ALM, 347

Convergence of Augmented Lagrangian,

334

Convergence of Frank-Wolfe, 353

Convergence of Hybrid Gradient and

Negative Curvature Descent, 384

Convergence of Hybrid Negative

Curvature and Newton Descent, 391

Convergence of Orthogonal Matching

Pursuit, 359

Convergence of Proximal Gradient, 318

Convergence of the Proximal Point

Algorithm, 344

Convergence Rate of Accelerated Gradient
Method, 627

Convergence Rate of Cubic Newton’s

Method, 379

Convergence Rate of Gradient Descent,

625

Convergence Rates of Power Iteration and

Lanczos Method, 388

Dense Error Correction with the Cross
and Bouquet, 485

Eigenvector Decomposition, 596

Eigenvectors of Circulant Matrix, 597

Equivalence of Norms, 601

Facts about Rank, 591

Full SVD, 599

Gauss-Lipschitz Concentration, 636

Gershgorin Disc Theorem, 598

Golden-Thompson Inequality, 638

Hardness of `0 Minimization, 52

Hoeffding’s Inequality, 634

Inexact Low-rank Recovery, 165

Invariance of Dimension, 586

Johnson-Lindenstrauss Lemma, 95

Laplace Method: Multivariate and
Multiple Global Minimizers, 402

Logan’s Theorem, 14

Matrix Bernstein Inequality, 638

Matrix Completion via Nuclear Norm
Minimization, 174

Matrix Completion with Corruptions, 230

Matrix Inverse, 589

Matrix Rank, 591

Nuclear Norm Minimization, 152

Nyquist-Shannon sampling theorem, 6

Optimal Representation, 545

Phase Transition in Low-rank Recovery,

167

Phase Transition in Partial Support

Recovery, 125

Principal Component Analysis, 211

Properties of Compact SVD, 599

Rank-RIP Implies Matrix RSC, 155

Rank-RIP of Gaussian Measurements, 157

Reducing ADMM to PPA, 346

Reducing ALM to PPA, 345

RIP Implies RSC, 92

Schoenberg Theorem, 140

Spherical Measure Concentration, 81

Stability of PCP to Bounded Noise, 224

Stable Low-rank Recovery via BPDN, 162

Stable Low-rank Recovery via Lasso, 163

Stable Matrix Completion, 186

Stable Sparse Recovery via BPDN, 108

Stable Sparse Recovery via Lasso, 112

Strong Duality Theorem, 621

Sufficient Conditions for Manifold

Classification, 572

Variational Characterization of

Eigenvalues, 596

Von Neumann’s Characterization of
Unitary Invariant Norms, 605

Welch Bound, 84

Tikhonov regularization, 31

TILT, see also transform invariant low-rank

texture

algorithm, 517

applications, 520

inner loop algorithm, 519

Total variation, 438

anisotropic, 443

Trace

definition, 587
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Trace norm, see also nuclear norm

Transform
2D Fourier transform, 37

discrete cosine transform, 40

discrete Fourier transform, 64
wavelet transform, 38

Transform invariant low-rank texture, 514

Trust region method, 378, 418, 420
Tucker rank, 261, 530

Unimodal function, 299
Union bound, 102, 159

of failure probability, 96

Union of subspaces, 540
Unit ball

`p norm, 45
nuclear norm, 150

Unitary group, 590

Unitary invariant matrix norm, 317, 604
symmetric gauge function, 605

Von Neumann’s characterization, 605

Unitary matrix
submatrix RIP, 103

Vandermonde matrix, 597
Variance reduction, 361

Vector

compressible, 36
dense, 36

Rademacher vectors, 105

sparse, 36
Vector space

basis, 585

definition, 584
Video background modeling

PCP, 205

Wavelet transform, 38, 431
Weak duality condition, 620

Welch bound
mutual coherence, 84

Wiener filter, 31


