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Foreword

I recall a moment, perhaps ten or fifteen years ago, of prodigious scientific ac-
tivity. To give our reader a sense of this blessed time, consider a series of regular
scientific workshops, each involving at most forty participants. Despite the small
size and almost intimate nature of these workshops, they brought together an
energized and enthusiastic mix of people from an array of disciplines, including
mathematics, computer science, engineering, and the life sciences. What a privi-
lege to be in a room with mathematicians such as Terence Tao and Roman Ver-
shynin and learn about high-dimensional geometry; with applied mathematicians
and engineers such as David Donoho, Joel Tropp, Thomas Strohmer, Michael
Elad, and Freddy Bruckstein and learn about the power of algorithms; with sta-
tistical physicists such as Andrea Montanari and learn about phase transitions
in large stochastic systems. What a privilege to learn about fast numerical meth-
ods for large-scale optimization from computer scientists such as Stephen Wright
and Stanley Osher. What a privilege to learn about compressive optical systems
from David Brady and Richard Baraniuk and Kevin Kelly (of single-pixel camera
fame); about compressive analog-to-digital conversion and wideband spectrum
sensing from Dennis Healy, Yonina Eldar, and Azita Emami Neyestanak; about
breakthroughs in computer vision from Yi Ma, John Wright, and René Vidal;
and about dramatically faster scan times in magnetic resonance imaging from
Michael Lustig and Leon Axel. Bringing all these people—and others I regretfully
cannot name for lack of space—together, with their different perspectives and
interests, sparked spirited discussions. Excitement was in the air and progress
quickly followed.

Yi Ma and John Wright were frequent participants to these workshops and
their book magically captures their spirit and richness. It exposes readers to
(1) a variety of real-world applications including medical and scientific imaging,
computer vision, wideband spectrum sensing, and so on, (2) the mathematical
ideas powering algorithms in use in these fields, and (3) the algorithmic ideas
needed to implement them. Let me illustrate with an example. On the one hand,
this is a book in which we learn about the principles of magnetic resonance
(MR) imaging. There is a chapter in which we learn how an MR scan excites
the nucleus of atoms by means of a magnetic field. These nuclei have a magnetic
spin, and will respond to this excitation, and it is precisely this response that
gets recorded. As for other imaging modalities, such as computed tomography,
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there is a mathematical transformation, which relates the object we wish to infer
and the data we collect. In this case, after performing a few approximations,
this mathematical transformation is given by the Fourier transform. On the
other hand, this is a book in which we learn that most of the mass of a high-
dimensional sphere is concentrated not just around the equator—this is already
sufficiently surprising—but around any equator! Or that the intersection between
two identical high-dimensional cubes, one being randomly oriented vis-a-vis the
other, is essentially a sphere! These are fascinating subjects, but what is the
connection? There is one, of course, and explaining it is the most wonderful
strength of the book. In a nutshell, ideas and tools from probability theory, high-
dimensional geometry, and convex analysis inform concrete applied problems and
explain why algorithms actually work. Returning to our MR imaging problem,
we learn how to leverage mathematical models of sparsity to recover exquisite
images of body tissues from what appear to be far too few data points. Such a
feat allows us to scan patients ten times faster today.

Through three fairly distinct parts — roughly: theory, computations, and ap-
plications — the book proposes a scientific vision concerned by the development
of insightful mathematics to create models for data, to create processing algo-
rithms, and to ultimately inspire real concrete improvements; for instance, in
human health as in the example above.

The first part of the book explores data models around two main themes,
namely, sparsity, and low-rankedness. Sparsity expresses the idea that most of
the entries of an n-dimensional signal vanish or nearly vanish so that the informa-
tion can be effectively summarized using fewer than n data bits. Low-rankedness
expresses the idea that the columns of a data matrix ‘live’ near a linear sub-
space of lower dimension, thereby also suggesting the possibility of an effective
summary. We then find out how to use these data models to create data pro-
cessing algorithms, for instance, to find solutions of underdetermined systems of
linear equations. The emphasis is on algorithms formulated as solutions to well-
formulated convex optimization problems. That said, we are also introduced to
nonconvex methods in Chapter 7 to learn effective empirical representations from
data in which signals exhibit enhanced sparsity. All along, the authors use their
rich experiences to communicate insights and to explain why some things work
while others do not.

The second part reviews effective methods for solving optimization problems—
convex or not—at scale; that is, involving possibly millions of decision variables
and a possibly equally large number of constraints. This is an area that has seen
tremendous progress in the last fifteen years and the book provides readers with
a valuable point of entry to the key ideas and vast literature.

The last part is a deep dive into applications. In addition to the imaging
challenges I already mentioned, we find a chapter on wireless radio communi-
cation, where we see how ideas from sparse signal processing and compressed
sensing allow cognitive radios to efficiently identify the available spectrum. We
also find three chapters on crucial problems in computer vision, a field in which
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the authors have brought and developed formidable tools, enabling major ad-
vances and opening new perspectives. Exposition starts with a special contribu-
tion, which also exploits ideas from compressed sensing, to the crucial problem
of face recognition in the presence of occlusions and other nonidealities. (I recall
an exciting Wired article about this work when it came out.) The book then
introduces methods for inferring 3D structure from a series of 2D photographs,
and to identify structured textures from a single photograph; solving the latter
problem is often the starting point to recover the appearance, pose, and shape
of multiple objects in a scene. Finally, at the time of this writing, deep learning
(DL) is all the rage. The book contains an epilogue which establishes connections
between all the better understood data models reviewed in the book and DL: the
one hundred million dollar question is whether they will shed significant insights
on deep learning and influence or improve its practice.

Who would enjoy this book? First and foremost, students in mathematics,
applied mathematics, statistics, computer science, electrical engineering, and re-
lated disciplines. Students will learn a lot from reading this book because it is
so much more than a text about a tool being applied with minor variations.
They will learn about mathematical reasoning, they will learn about data mod-
els and about connecting those to reality, and they will learn about algorithms.
The book also contains computer scripts so that we can see ideas in action and
carefully crafted exercises making it perfect for upper-level undergraduate or
graduate-level instruction. The breadth and depth makes this a reference for
anyone interested in the mathematical foundations of data science. I also believe
that members of the applied mathematical sciences community at large would
enjoy this book. They will be reminded of the power of mathematical reasoning
and of the all-around positive impact it can have.

Emmanuel Candes
Stanford, California
December 2020






Preface

“The coming century is surely the century of data. A combination of blind faith and
serious purpose makes our society invest massively in the collection and processing of
data of all kinds, on scales unimaginable until recently.”

— David Donoho, High-Dimensional Data Analysis: The Curses and Blessings of
Dimensionality, 2000

The Era of Big Data.

In the past two decades, our world has entered the age of “Big Data.” The
information technology industry is now facing the challenge, and opportunity,
of processing and analyzing massive amounts of data on a daily basis. The size
and the dimension of the data have reached an unprecedented scale and are still
increasing at an unprecedented rate.

For instance, on the technological side, the resolution of consumer digital cam-
eras has increased nearly ten-fold in the past decade or so. Each day, over 300
million photos are uploaded to Facebook;' 300 hours of videos are posted on
Youtube every minute; and over 20 million entertaining short videos are pro-
duced and posted to Douyin (also known as TikTok) of China.

On the business side, on a single busy day, Alibaba.com needs to take in over
800 million purchase orders for over 15 million products, handle over a billion
payments, and deliver more than 30 million packages. Amazon.com also operates
at a similar scale, if not even larger. Those numbers are still growing and growing
fast!

On the scientific front, super-resolution microscopy imaging technologies have
undergone tremendous advances in the past decades,? and some are now capa-
ble of producing massive quantities of images with subatomic resolution. High-
throughput gene sequencing technologies are capable of sequencing hundreds of
millions of DNA molecule fragments at a time,? and can sequence in just a few

1 Almost all of them are passing through several processing pipelines for face detection, face

recognition, and general object classification for content screening, etc.

For example, in 2014, Eric Betzig, Stefan W. Hell, and William E. Moerner were awarded

the Nobel Prize in Chemistry for the development of super-resolution fluorescence

microscopy that bypasses the limit of 0.2 micrometers of traditional optical microscopy.

3 In 2002, Sydney Brenner, John Sulston, and Robert Horvitz were awarded the Nobel Prize
for their pioneering work and contributions to the Human Genome project.
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Figure 0.1 Tmages of Mary & Isabella: the resolution of the image on the left is
2,500 x 2,500, whereas the image on the right is down-sampled to 250 x 250, with
only 1/100th fraction of pixels of the original one.

hours an entire human genome that has a length of over 3 billion base pairs and
contains 20,000 protein-encoding genes!

Paradigm Shift in Information Acquisition, Processing, and Analysis.

In the past, scientists or engineers have sought to carefully control the data acqui-
sition apparatus and process. Since the apparatus was expensive and the process
time-consuming, typically only necessary data (or measurements) were collected
for a specific given task. The data or signals collected were mostly informative for
the task and did not contain much redundant or irrelevant information, except
for some uncontrollable noise. Hence, classical signal processing or data analysis
typically operated under the premise that

Classical Premise: Data = Information,

and in this classical paradigm, practitioners mostly needed to deal with problems
such as removing noise or compressing the data for storage or transport.

As mentioned above, technologies such as the Internet, smart phones, high-
throughput imaging, and gene sequencing have fundamentally changed the na-
ture of data acquisition and analysis. We are moving from a “data-poor” era
to a “data-rich” era. As pointed out by Jim Gray (a Turing Award winner),
“increasingly, scientific breakthroughs will be powered by advanced computing
capabilities that help researchers manipulate and explore massive datasets.” This
is now heralded as the Fourth Paradigm of scientific discovery [HTT09].

Nevertheless, data-rich does not necessarily imply “information-rich,” at least
not for free. Massive amounts of data are being collected, sometimes without
any specific purpose in advance. Scientists or engineers often do not have direct
control of the data acquisition process anymore, neither in the quantity nor the
quality of the acquired data. Therefore, any given new task could be inundated
with massive amounts of irrelevant or redundant data.

To see intuitively why this is the case, let us first consider the problem of face
recognition. Figure 0.1 shows two images of two sisters. It is arguably the case
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Figure 0.2 Detecting and recognizing faces in a large group photo, from the BIRS
workshop on “Applied Harmonic Analysis, Massive Data Sets, Machine Learning, and
Signal Processing,” held at Casa Matematica Oaxaca (CMO) in Mexico, 2016.

that to human eyes, both images convey the identity of the persons equally well,
even though pixels of the second image are merely 1/100th of the first one. In
other words, if we view both images as vectors with their pixel values as coordi-
nates, then the dimension of the low-resolution image vector is merely 1/100th
of the original one. Clearly, the information about the identity of a person relies
on statistics of much lower dimension than the original high-resolution image®.
Hence, in such scenarios, we have a new premise:

New Premise I: Data > Information.

For object detection tasks such as face detection in images or pedestrian detec-
tion in surveillance videos, the issue is no longer with redundancy. Instead, the
difficulty is to find any relevant information at all in an ocean of irrelevant data.
For example, to detect and recognize familiar people from a group photo shown
in Figure 0.2, image pixels associated with human faces only occupy a very tiny
portion of the image pixels (10 millions in this case) whereas the mass majority
of the pixels belong to completely irrelevant objects in the surroundings. In ad-
dition, the subjects of interest, say the two authors, are only two among many
human faces. Now imagine scaling this problem to billions of images or millions of
videos captured with mobile phones or surveillance cameras. Similar “detection”

4 In fact, one can continue to argue that even such a low-resolution image is still highly
redundant. Studies have shown that humans can recognize familiar faces from images with
a resolution as low as around 7 X 10 pixels [SBORO06]. Recent studies in
neuroscience [CT17] reveal that it is possible for the brain to encode and decode any
human face using just 200 cells in the inferotemporal (IT) cortex. Modern face recognition
algorithms extract merely a few hundred features for reliable face verification.
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Figure 0.3 An example of collaborative filtering of user preferences: how to guess a
customer’s rating for a movie even if he or she has not seen it yet?

and “recognition” tasks also arise in studying genetics: out of the nearly 20,000
genes and millions of proteins they encode, scientists need to identify which one
(or handful of ones) is responsible for certain genetic diseases. In scenarios like
these, we have:

New Premise 1I: Data = Information 4+ Irrelevant Data.

The explosive growth of e-commerce, online shopping, and social networks
has created tremendous datasets of user preferences. Major internet companies
typically have records of billions of people’s preferences, across millions of com-
mercial products, media contents, and more. By nature, such datasets of user
preferences, however massive, are far from complete. For instance, in the case of
a dataset of movie ratings as shown in Figure 0.3, no one could have seen all the
movies and no movie would have been seen by all people. Nevertheless, companies
like Netflix need to guess from such incomplete datasets a customer’s preferences
so that they could send the most relevant recommendations or advertisements
to the customer. This problem in information retrieval literature is known as
collaborative filtering, and most internet companies’ business® relies on solving
problems such as this one effectively and efficiently. The most fundamental rea-
son why complete information can be derived from such a highly-incomplete
dataset is that user preferences are not random and the data have structure. For
instance, many people have similar tastes in movies and many movies are sim-
ilar in style. Rows and columns of the user preference table would be strongly
correlated, hence the intrinsic dimension (or rank) of the complete table is in
fact extremely low compared to its size. Hence, for large (incomplete) datasets
drawn from low-dimensional structures, we have:

New Premise III:  Incomplete Data =~ Complete Information.

As above examples suggest, in the modern era of big data, we often face

5 Most internet companies make money from advertisements, including but not limited to
Google, Baidu, Facebook, Bytedance, Amazon, Alibaba, Netflix, etc.
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problems of recovering specific information that is buried in highly redundant,
irrelevant, seemingly incomplete, or even corrupted® data sets. Such information
without exception is encoded as certain low-dimensional structures underlying
the data, and may only depends on a small (or sparse) subset of the (massive)
dataset. This is very different from the classical settings and is precisely the
reason why modern data science and engineering are undergoing a fundamen-
tal shift in their mathematical and computational paradigms. At its foundation,
we need to develop a new mathematical framework that characterizes precise
conditions under which such low-dimensional information can be correctly and
effectively acquired and retained. Equally importantly, we need to develop ef-
ficient algorithms that are capable of retrieving such information from massive
high-dimensional datasets, at unprecedented speed, at arbitrary scale, and with
guaranteed accuracy.

Purposes of This Book.

Over the past two decades, there have been explosive developments in the study
of low-dimensional structures in high-dimensional spaces. To a large extent, the
geometric and statistical properties of representative low-dimensional models
(such as sparse and low-rank and their variants and extensions) are now well un-
derstood. Conditions under which such models can be effectively and efficiently
recovered from (minimal amount of sampled) data have been clearly charac-
terized. Many highly efficient and scalable algorithms have been developed for
recovering such low-dimensional models from high-dimensional data. The work-
ing conditions and data and computational complexities of these algorithms have
also been thoroughly and precisely characterized. These new theoretical results
and algorithms have revolutionized the practice of data science and signal pro-
cessing, and have had significant impacts on sensing, imaging, and information
processing. They have significantly advanced the state of the art for many appli-

cations in areas such as scientific imaging”, image processing®, computer vision?,

1'1 and machine learning'?. As we will see

bioinformatics'?, information retrieva,
from applications featured in this book, some of these developments seem to defy
conventional wisdom.

As witnesses to such historical advancements, we believe that the time is now
ripe to give a comprehensive survey of this new body of knowledge and to orga-
nize these rich results under a unified theoretical and computational paradigm.
There are a number of excellent existing books on this topic that already focus on
the mathematical/statistical principles of compressive sensing and sparse/low-

dimensional modeling [FR13,HTW15, Van16, Wail9, FLZZ20]. Nevertheless, the

say due to negligence, misinformation, rumors, or malicious tampering.
compressive sampling and recovery of medical and microscopic images, etc.
denoising, super-resolution, inpainting of natural images, etc.

regular texture synthesis, camera calibration, and 3D reconstruction, etc.
microarray data analysis for gene-protein relations etc.

© 0w N O
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collaborative filtering of user preferences, documents and multimedia data etc.
especially for interpreting, understanding, and improving deep networks.
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goal of this book is to bridge, through truly tractable and scalable computa-
tion, the gap between principles and applications of low-dimensional models for
high-dimensional data analysis:

C tati
A New Paradigm: Principles omputation

Applications.

Hence, not only does this book establish mathematical principles for modeling
low-dimensional structures and understanding the limits on when they can be
recovered, but it also shows how to systematically develop provably efficient and
scalable algorithms for solving the recovery problems, leveraging both classical
and recent developments in optimization.

Furthermore, through a rich collection of exemplar applications in science and
technology, the book aims to further coach readers and students on how to incor-
porate additional domain knowledge or other non-ideal factors (e.g. nonlinearity)
in order to correctly apply these new principles and methods to model real-world
data and solve real-world problems successfully.

Although the applications featured in this book are inevitably biased by the
authors’ own expertise and experiences in practicing these general principles and
methods, they are carefully chosen to convey diverse and complementary lessons
we have learned (often in a hard way). We believe these lessons have value for
both theoreticians and practitioners.

Intended Audience.
In many ways, the body of knowledge covered in this book has great pedagogical
value to young researchers and students in the area of data science. Through
rigorous mathematical development, we hope our readers are able to gain new
knowledge and insights about high-dimensional geometry and statistics, far be-
yond what has been established in classical signal processing and data analysis.
Such insights are generalizable to a wide range of useful low-dimensional struc-
tures and models, including modern deep networks, and can lead to entirely new
methods and algorithms for important scientific and engineering problems.

Therefore, this book is intended to be a textbook for a course that introduces
basic mathematical and computational principles for sensing, processing, ana-
lyzing and learning low-dimensional structures from high-dimensional data. The
targeted core audience of this book are entry-level graduate students in Electrical
Engineering and Computer Science (EECS), especially in the areas of

data science, signal processing, optimization, machine learning,

and applications. This book equips students with systematic and rigorous train-
ing in concepts and methods of high-dimensional geometry, statistics, and opti-
mization. Through a very diverse and rich set of applications and (programming)
exercises, the book also coaches students how to correctly use such concepts and
methods to model real-world data and solve real-world engineering and scientific
problems.

The book is written to be friendly to both instructors and students. It pro-
vides ample illustrations, examples, exercises, and programs from which students
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may gain hands-on experience with the concepts and methods covered in the
book. Materials in this book were developed from several one-semester gradu-
ate courses or summer courses offered at the University of Illinois at Urbana-
Champaign, Columbia University, ShanghaiTech University, Tsinghua Univer-
sity, and the University of California at Berkeley in the past ten years. The main
prerequisites for such a course are college-level linear algebra, optimization, and
probability. To make this book accessible to a broader audience, we have tried
to make the book as self-contained as possible: we give a crisp summary of facts
used in this book from linear algebra, optimization, and statistics in the Ap-
pendices. For EECS students, preliminary courses on signal processing, matrix
analysis, optimization or machine learning will improve their appreciation. From
our experiences, besides beginning graduate students, many senior undergradu-
ate students at these institutes were able to take the course and read the book
without serious difficulty.

Organization of This Book.

The main body of this book consists of three inter-related Parts: Principles,
Computation, and Applications (PCA). The book also contains five Appendices
on related background knowledge.

e Part I: Principles (Chapters 2-7) develops the fundamental properties and
theoretical results for sparse, low-rank, and general low-dimensional models. It
characterizes the conditions, in terms of sample/data complexity, under which
the inverse problems of recovering such low-dimensional structures become
tractable and can be solved efficiently, with guaranteed correctness or accuracy.

e Part II: Computation (Chapters 8-9) introduces methods from convex and
nonconvex optimization to develop practical algorithms that are tailored for
recovering the low-dimensional models. These methods show powerful ideas
how to systematically improve algorithm efficiency and reduce overall compu-
tational complexity so that the resulting algorithms are fast and scalable to
large-size and high-dimensional data.

e Part III: Applications (Chapters 10-16) demonstrates how principles and com-
putational methods in the first two parts could significantly improve the so-
lutions to a variety of real-world problems and practices. These applications
also coach how the idealistic models and algorithms introduced in this book
should be properly customized and extended to incorporate additional domain-
specific knowledge (priors or constraints) about the applications.

o Appendices A—E at the end of the book are meant to make the book largely
self-contained. The appendices cover basic mathematical concepts and results
from Linear Algebra, Optimization, and High-Dimensional Statistics that are
used in the main body of the book.

The overall organization of these chapters (and appendices) as well as their
logical dependency is illustrated in Figure 0.4.
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Ap. B Ap. A Ch. 1 Ap. E
Ap. C Ch. 2
Ch. 3 Ch. 4
Ap. D Ch. 6 Ch. 5 Ch. 7
/
Ch. 8 Ch. 9
\\
N\
Ch. 10 Ch. 11 Ch. 12 Ch. 13 Ch. 14 Ch. 15
Ch. 16

Figure 0.4 Organization Chart of the Book: dependency among chapters and
appendices. Red route: sparse recovery via convex optimization; Blue route: low-rank
recovery via convex optimization; nonconvex approach to
low-dimensional models; development of optimization algorithms.

How to Use This Book to Teach or to Learn.
The book contains enough material for a two-semester course series. We have
purposely organized the material in the book in a modular fashion so that the
chapters and even sections can be easily selected and organized to support dif-
ferent types of courses. Here are some examples:

e A One-Quarter Course on Sparse Models and Methods for Graduate or Upper
Division Undergraduate Students: the introduction Chapter 1 and two theo-
retical Chapters 2 and 3; the convex optimization Chapter 8, and two to three
applications from Chapters 10, 11, and 13, plus some appendices will be ideal
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for an eight to ten-week summer or quarter course for senior undergraduate
students and early year graduate students. That is essentially the red route
highlighted in Figure 0.4.

e A One-Semester Course on Low-Dimensional Models for early year Graduate
Students: the introduction Chapter 1 and the four theoretical Chapters 2-5;
the convex optimization Chapter 8, and the several application Chapters 10,
11, 13-15, plus the appendices will be adequate for a one-semester course on
low-dimensional models for graduate students. That is essentially both the red
and the blue routes highlighted in Figure 0.4.

o An Advanced-Topic Course on High-Dimensional Data Analysis for senior
Graduate Students who conduct research in related areas: with the previ-
ous course as prerequisite, a more in-depth exposition of the mathematical
principles including Chapter 6 on convex methods for general low-dimensional
models and Chapter 7 on nonconvex methods. One then can give a more
in-depth account of the associated convex and nonconvex optimization meth-
ods in Chapters 8 and 9, and several application Chapters 12, 15, and 16 for
nonlinear and nonconvex problems. Those are essentially and

highlighted in Figure 0.4. In addition, the instructor may choose
to cover new developments in the latest literature, such as broader families
of low-dimensional models, more advanced optimization methods, and exten-
sions to deep networks (for low-dimensional submanifolds), say along open
directions suggested in the epilogue of Chapter 16.

Certainly, this book can be used as a supplementary textbook for existing
(graduate-level) courses on Signal Processing or Image Processing, since it offers
more advanced new models, methods, and applications. It can also be used as a
complementary textbook for more traditional courses on Optimization as Chap-
ters 8 and 9 give a rather complete and modern coverage of the first-order (hence
more scalable) methods. For a conventional Machine Learning or Statistical Data
Analysis course, this book may serve as an additional reference for deeper and
broader extensions to classic regression analysis, principal component analysis,
and deep learning. For a more theoretical course on High-dimensional Statistics
and Probability, this book can be used as a secondary text and provides ample
motivating and practical examples.

In the future, we would very much like to hear from experienced instructors
and seasoned researchers about other good ways to teach or study material in this
book. We will share those experiences, suggestions, and even new contributions
(examples, exercises, illustrations etc.) at the book’s website:

https://book-wright-ma.github.io.

Yi Ma, Berkeley, California
John Wright, New York, New York
December 2020
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1.1

1.11

Introduction

“Entities should not be multiplied without necessity.”
— William of Ockham, Law of Parsimony

A Universal Task: Pursuit of Low-Dimensional Structure

The problem of identifying low-dimensional structure of signals or data in high-
dimensional spaces is one of the most fundamental problems that, through a long
history, interweaves many engineering and mathematical fields such as system
theory, pattern recognition, signal processing, machine learning, and statistics.

Identifying Dynamical Systems and Serial Data

The low-dimensionality of real-world signals or data often arises from the in-
trinsic physical mechanisms from which the data are generated. Many real-world
signals or data are observations of physical processes governed by certain genera-
tive mechanisms. For instance, magnetic resonance (MR) images’ are generated
by manipulating magnetic fields that obey Maxwell’s equations; dynamics of
any mechanical systems such as cars and legged robots follow Newton’s laws of
motion.

Mathematically such dynamics can often be modeled by a set of differential
equations,” also known as a state-space model in system theory [CD91,Sas99):

\
~
—

8
=
g
=

o(t) =
L5 2 seouen (1
where & € R™ is the state, u € R™ is the input, and y € R™ is the (observed)
output. Governed by such dynamical models, the output y(t) and state x(t)
as functions in time ¢ cannot be free and they are restricted to certain low-
dimensional submanifold in their respective functional space.

To see this more clearly, we consider the simplified case when the dynamical

I that we will study in detail in Chapter 10.
2 Here for simplicity, we only consider ordinary differential equations. But the same
argument carries over to data or signals associated with partial differential equations.
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model is (discrete) linear time invariant [CD91, OSB99]:

{mu+4) = Ax(t) + Buf(t),

y(t) = Cz(t) + Duf(t). (1.1.2)

According to the theory of system identification [VAM96], the observed output
{y(¥)}:2, are correlated with the input {wu(¢)}72; through a subspace of dimen-
sion no more than n = dim(x). To be more precise, let us define two Hankel type

matrices:
y(1) y(@) - y(N) u(l) w2 - ul)

v y<.z> y(.g) y<N.+1> € RUNN "<_2> “<_3) “(Nf” c RUNXN
y(:N) y(N:+1) y(21\:f—1) u(:N) u(]\;-&-l) u(2151—1)

Then from (1.1.2), the two matrices Y and U are related as:
Y =GX +HU, (1.1.3)

where G and H are matrices with blocks of the form C A" and C A’ B respec-
tively, and

X = [z(1),2(2),...,2(N)] RN,
Let U™ be the orthogonal complement to U.* We have:
YU' = GXU™ . (1.1.4)
Hence we have:

FacTt 1.1 (Linear System Identification). Regardless of the measurement se-
quence length N, the so-defined input-output matriz YU?' is always of rank
less than or equal to the dimension n of the state space:

rank(YUT) < n. (1.1.5)

In other words, the column vectors of the matrix YU span an n-dimensional
subspace in an ambient space of R"*". From the theory of system identification
[VAM96, LV09, LV10], recovering this n-dimensional subspace associated with
the input and output is the key to identifying the (unknown) parameters of the
system (A, B,C, D) as they can subsequently be computed from the singular
value decomposition® of the matrix YU™. In fact, system identification is one
of the first problems that have inspired the convex approach for low-rank models
[FHBO1], which we will thoroughly study in Chapter 4.

3 In many applications, linear time invariant models can be viewed as a good approximation

to real dynamical systems that could be mildly nonlinear or slowly time-varying. Or for
many classes of nonlinear systems, they can be converted, either via feedback
linearization [Sas99] or via a smooth nonlinear Koopman operator [Koo31, LKB18], to
linear dynamical systems.

4 That is, columns of UL span the null space of U. See Appendix A.
For details on singular value decomposition, please see Section A.8 of Appendix A.
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Figure 1.1 From Left to Right: a texture image of regular pattern, a binary image
of a Chinese character which is nearly symmetric, and an image of the Tiantan
Temple of Beijing, which has a cylindrical body with its surface decorated with
regular structural patterns.

ExaMPLE 1.2 (Recurrent Neural Network). Notice that, in modern practice of
deep neural networks (DNNs), variants to such state-space models® have been
widely adopted, also known as recurrent neural networks (RNNs). A typical RNN
model is of the so-called Jordan form [Jor97]:

{ z(t+1) = og(Az(t)+ Bu(t) +b),
y(t) oy (Ca(t) +d),

where o5 and oy are certain nonlinear activation functions”. RNNs and its many
variants have empirically proven to be very effective for modeling serial data such
as speech signals, videos, and natural languages. The intrinsic low-dimensionality
of such models is the key to capturing structure or order in such serial data.
Fundamental concepts, principles, and methods developed in this book will lead
to a principled understanding of such deep models, as we will see in Chapter 16.

(1.1.6)

Patterns and Orders in Man-Made World

Of course, many other factors may attribute to the ubiquitous presence of low-
dimensional structures in real world data that do not necessarily involve natural
dynamics or serial order. Another ample source of low-dimensional structures
is due to human influence: almost all man-made objects are built by following
simple code, rules, and procedures, both for economy and beauty. Those struc-
tures often visually manifest as repeated patterns in textures and decorations;
symmetry in letters and characters; parallel, orthogonal, and regular shapes in
man-made objects and architectures etc, as the few examples shown in Figure
1.1 and many more to be given in Chapter 15.

If we are to model such structures mathematically, low-dimensional models
become the natural choices. For example, consider the leftmost image of a regular
texture in Figure 1.1. We may view pixels of the 2D image array as the entries of

6 usually with additional nonlinear activations introduced to places in the state space model.
7 Popular choices of activation functions include the sigmoid function o(z) = ef—ml or the

+
rectified linear unit (ReLU) function o(z) = max{0,z}.
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LEQ’

Figure 1.2 Column vectors v; € R" of a low-rank n X n matrix span a low-dimensional
subspace S C R™.

a matrix M, say a matrix of n x n pixels. Obviously the column (or row) vectors
of this matrix, viewed as vectors v; in R", are highly linearly dependent. They
actually span only a very low-dimensional subspace S whose dimension, say d, is
much less than n, as illustrated in Figure 1.2. That is

rank (M) =d < n. (1.1.7)

Notice that this is the same type of low-rank condition that we have seen in
the system identification problem (1.1.4). In the application Chapter 15, we will
see how such natural low-rank regular textures would allow us to efficiently,
accurately and robustly recover geometric information encoded in such images —
revealing the reason why we are able to accurately perceive 3D geometry of the
Tiantan Temple and recover the rectified 2D texture from only a single image,
shown on the right of Figure 1.1.

As a matter of fact, even for any generic 3D scene, when taken photos from
multiple poses, the multiple 2D images of the same point, line, plane or (sym-
metric) object in 3D are all related in such a way that certain measurement
matrix, known as the multiple-view matriz M, becomes low-rank [MSKS04]. In
fact, somewhat remarkably, the rank of such matrices will always be

rank (M) =1 or 2, (1.1.8)

regardless of the number of views or the size of the matrix. A similar low-rank

condition applies to multiple images of the same scene taken under different

lighting conditions: rank (M) = 3, as we will study thoroughly in Chapter 14.
In general, we do not expect all data in human society to be equally regular
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Figure 1.3 Functions with spectrum supported in the red region are known as
band-limited function. They have the same size of spectral support as functions with
spectrum supported in the two blue regions.

and orderly. Nevertheless, many data that arise from societal, commercial, and
financial activities or from social networks do exhibit very good patterns that can
be well approximated by low-dimensional models, as we will see from plenty of
examples in Chapters 4 and 5 and in the application Chapters 14—16. In this book
we will establish the fundamental principles and algorithms that would allow us
to exploit such low-dimensional structures in real data for correct and efficient
recovering information from minimal (incomplete or imperfect) observations.

Efficient Data Acquisition and Processing

In classical signal processing, the intrinsic low-dimensionality of data is mostly
exploited for purposes of efficient sampling, storage, and transport [OSB99,
PV08]. In applications such as communication, it is often reasonable to assume
the signals of interest mainly consist of limited frequency components®. To be
more precise, consider a signal z(t) as a function of time ¢ and its Fourier trans-

form:?

Z(w) = / x(t) exp(—iwt)dt. (1.1.9)
Typically &(w) will be zero when |w| > Q for some Q > 0. Let B1(2) be the set of
band-limited functions whose Fourier transform vanishes outside of the spectrum
[, Q:

Bi(Q) = {z € L'(R) | (w) =0 V|w| > Q}, (1.1.10)

as illustrated in Figure 1.3.
In other words, all functions in B; has a maximal cut-off frequency fmnax =

8 as analog and digital information is often physically carried by modulating periodic signals
generated by resonant circuits, as we will elaborate more in Chapter 11.
9 One may see Appendix A for a discretized version of the Fourier transform, equation

(A.7.13), that can be applied to discretized signals or vectors.
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Figure 1.4 Comparison of classical signal acquisition and processing pipeline (top) and
the compressive sensing paradigm to be introduced in this book (bottom).

Q/2m. Notice that By forms a subspace in the space of all functions, just like the
range of low-rank matrix is a subspace in a vector space. This structure allows us
to represent such functions rather efficiently with their discrete samples. To see
this, given #(w) the signal x(¢) can be expressed by the inverse Fourier transform:

o) Q
z(t) ! / Z(w) exp(iwt)dw ! Z(w) exp(iwt)dw. (1.1.11)

T or “ o ) g

— 00
So if we view &(w) as a periodic function in the spectral domain with a period
2€), it is fully determined by all its Fourier coefficients:

x(@) 1 /Q ;%(w)exp(iw%)dw, n=0,+1,42,....

= — 1.1.12
Q 27T -Q ( )

Notice that the left hand side is precisely the values of the function z(t) sampled
with a period T'= &, or equivalently at a frequency

1 Q
F=2 5 (1.1.13)

Hence we have:

Fact 1.3 (Nyquist-Shannon Sampling). To perfectly recover a band-limited sig-
nal x(t), we need to sample it at a rate that is twice its maximal frequency

fmax = /2.

This is known as the classical Nyquist-Shannon sampling theorem [OSB99].
The sampled (hence discrete) signal can then be digitized and compressed based
on its additional statistics. For images, such sampling and subsequent compres-
sion are done by the popular schemes such as JPEG or MPEG for videos. The
compressed data are then used for storage, transport, and to be decoded later for
various applications. Figure 1.4 (top) illustrates a traditional pipeline for data
acquisition and processing.

However, for signals that contain both low-frequency and high-frequency com-
ponents, sampling at the Nyquist rate sometimes can be rather costly. For in-
stance, as shown in Figure 1.3, for signals with their spectrum supported only
in the red area, their maximum cut-off frequency is /27; yet for signals with
spectrum supported only in the blue areas, the maximum frequency is k - /2.
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So when k is very large (which is the situation in modern wide-band wireless
communication, see Chapter 11), the Nyquist sampling scheme would be rather
expensive to realize. As an important example, in order to capture sharp edges
or boundaries in natural images,'® the number of pixels of imaging sensors in
digital cameras has increased dramatically in recent years. Such a brute force
sensing scheme is obviously rather wasteful since sharp edges occupy only a very
tiny fraction of the image and yet all the relatively smooth regions are sampled
at the same rate! In medical imaging, such brute force increasing of sampling
density is not even allowed due to patient comfort and safety [LDPO7].

As we will see in this book, the number of samples truly needed to recover a
signal should be proportional to the total width of its spectral support regard-
less of the location! For the examples shown in Figure 1.3, both types of signals
would have the same effective bandwidth of 22 and in principle can be correctly
recovered with effectively the same sampling rate. As a result, to acquire signals
with spectrum supported in the blue regions, the sampling rate can be signifi-
cantly lower than the Nyquist sampling rate [Trol0, ME10], hence the notion of
“compressed sensing’ or “compressive sensing’, coined by [Don0O6a, Can06]. We
will see in Chapter 11 precisely how such a new sampling scheme is realized in
the context of modern wide-band wireless communications.

In this book, we will systematically study the theoretical foundation for de-
signing such compressive sampling schemes in a principled manner and develop
algorithms for recovering the full signal from such samples correctly and effi-
ciently. In general, such compressive samples of the signals are already compact
enough for storage and transport, and the original signals can be fully recov-
ered later when they are eventually being used. Figure 1.4 (bottom) illustrates
this new data acquisition and processing paradigm. In additional to wide-band
communications, we will also see a few striking applications of this paradigm at
work. For instance, this new paradigm has revolutionized the field of medical
imaging [LDPO07], as we will elaborate more in Chapter 2 and further in Chapter
10.

Interpretation of Data with Graphical Models

In the practice of modern data science, we often deal with data that are not
necessarily generated from any clear physical processes or artificial protocols.
Their generative mechanisms can be hidden from us or are difficult to derive
from first principles. Data such as customer ratings, web documents, natural
languages, and gene expression data are such examples. Nevertheless, such data
are by no means structureless, and there are usually strong and rich statistical
correlation, dependency/independency, and causal relationships among the data.

To model such structure, one may view the observed data as samples of a set
of random variables &, € R™, which are generated through certain conditional

10 A sharp edge can be represented by a step function which is not band-limited!
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Figure 1.5 Graphical model for a set of jointly Gaussian random variables. The inverse
covariance matrix @ is often sparse if the dependency graph is sparsely connected.
Suppose that gray nodes represent observed variables @, = [z1, Z2,...,zs|" and blue
ones x5, = [z7,xs]" are hidden.

probability distribution given another set of hidden or latent variables x;, € R™".
The structure of the data is fully described by the joint distribution of the random
vector & = (x,,xp) € R™ with n = n,+n;,. Now consider the n random variables
{z;}_, in «. For simplicity, let us assume that {z;}?_, are jointly zero-mean
Gaussian'!| i.e., £ ~ N(0,X) with a covariance matrix 3 € R"*". Let

@=%"" eRv"

be the inverse of its covariance matrix. From statistics, we have the following
well-known fact:

Fact 1.4 (Conditional Independence in Graphical Model). Any two variables x;
and x; are conditionally independent given all other variables {x) | k # 1,5} if
and only if the (i,7)-th entry of © satisfies 6;; = 0.

In machine learning, such dependencies among random variables in @ = {z;} ,
is often described with a graphical model [Pea00, Jor03, WJ08], denoted as G =
(V, E): The set of vertices V consists of all the random variables V = {z;} ;, and
the set of edges E = {e;;} indicate dependency among pairs of random variables
(xi, ;) — there is an edge between x; and z; if and only if they are conditionally
dependent. Figure 1.5 shows one such example. In fact, the state-space model
(1.1.1) in Section 1.1.1 can be viewed as a special case of such latent variable
graphical models'?.

A fundamental and challenging problem in statistical learning is how to infer
the joint distribution of & from marginal statistics of the observed variables x,

11 In practice, Gaussian can be used to approximate any distribution up to its second-order
statistics.

12 the input u and output y would be the observations and the (randomly initialized) state a
would be the hidden latent variables.
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even if the number of latent variables and their relationships with the observed
ones are unknown. In the most basic case when all the variables are jointly
Gaussian, we may partition the covariance matrix ¥ of = (x,, ;) as:

—1
> Soh S Oon
=G & ] = [ S & } € R"X™, 1.1.14

|:Eo,h 2n ®o,h Oy ( )

Notice that in the above covariance matrix, only the covariance associated with
the observed data 3, can be obtained from (statistics of) the data. Using facts
from linear algebra, one can show that 3, is of the form:

3,'-0,-0,,0;'0;, ecRwm. (1.1.15)

In the above expression, the first term ®, will be sparse if the graph G is and the
second term @Oyh®;1®;h has a rank less than the number of latent variables,
which is often relatively small. For the example shown in Figure 1.5, there are
only two hidden nodes; hence the rank of the second term would be at most 2 and
the first term 3, would have the same pattern as the upper-left 6 x 6 submatrix
of ® shown on the right of the figure. It has been shown that, in general, a
graphical model is identifiable via tractable means only if the graphical model
G is sufficiently sparse [CPW12]. Popular models such as trees and multi-layer
deep networks are representative examples of such graphical models.

Under such conditions, the covariance matrix X, of the observed variables x,
always has the following decomposable structure:

S'=8+L €RWxme (1.1.16)

where S is a sparse matrix and L is a low-rank matrix. The rank of L is associated
with the number of (independent) latent variables in the graph: rank (L) =
dim(zxy); the sparse matrix S is associated with the conditional dependency of
the observed variables — an entry s;; of S is zero if the two observed variables
x; and x; are conditionally independent given the others.

So to a large extend, the problem of inferring the full graphical model G, or the
covariance matrix 3 in the Gaussian case, reduces to a problem of decomposing
a matrix E;l into a low-rank matrix L and a sparse matrix S. Although this
decomposition problem (1.1.16) is generally NP-hard,' we will see in Chapter 5,
when both L and S are sufficiently low-dimensional, this problem actually be-
comes tractable and can be solved correctly and efficiently by methods introduced
in this book.

13 The well studied “planted clique” problem [GZ19,BB20] in complexity theory is a special
case of this problem, as we will discuss in Chapter 5.
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A Brief History

Due to the ubiquity and importance of low-dimensional structures, there has
been a long and rich history of studying, understanding, and exploiting them in
Science, Engineering, Statistics, and Computation.

Neural Science: Sparse Coding

Through millions of years of evolution, the brains of humans and other animals,
in particular the visual cortex, has adapted well to its living environment. The
natural vision systems of primates are able to exploit statistics of natural images
and achieves highly accurate visual perception with extreme efficiency in time
and energy. This phenomenon has long been observed and studied extensively in
neural science. Back in 1972, visual neuroscientist Horace Barlow proposed the
following dogma for natural vision [Bar72]:

“... the overall direction or aim of information processing in higher sensory centres is to
represent the input as completely as possible by activity in as few neurons as possible.”

In 1987, David Field provided the first scientific evidence in support of this
conjecture by showing that the oriented receptive fields of simple cells in the
visual cortex are well suited to encode natural images with a small fraction of
active units [Fie87]. His results support Barlow’s dogma that the goal of natural
vision is to represent the information in the natural environment with minimal
redundancy.

Later in 1996, Bruno Olshausen and David Field had further hypothesized in
their seminal work [OF97] that in biological vision systems, visual sensory input
data, say y € R™, are represented in terms of linear combination of a set of
elementary patterns (or features) a; € R™:

n
y=>» xa;+e €R", (1.2.1)

i=1
where & = [21,79,...,2,]* € R" are sparse coefficients'* and & € R™ is some
small modeling errors. The collection of all patterns A = [a1, as, ..., a,] € R™*"

is called a dictionary, which is learned from statistics of the input. When adapted
to a large collection of image patches extracted from natural images, the dictio-
nary converges to a set of localized, oriented bandpass functions at different
scales (or spatial-frequencies) strikingly similar to the receptive fields found in
visual cortex (see Figure 1.6). Such a learned dictionary enables the vision sys-
tem to reformat sensory information into a sparse code  during the early stages
of visual processing. Subsequent studies of a wide range of animals (e.g. mouse,
rat, rabbit, cat, monkey) and human brain have provided further evidences for
sparse coding of sensory input in natural vision [OF04]. More recent studies of

14 That is, most x;’s are zeros.
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Figure 1.6 a. Results from training a system of 192 basis functions on 16 x 16-pixel
image patches extracted form natural scenes [OF96b]. b. The receptive fields
corresponding to the last row of basis functions in a. ¢. The distribution of the learned
basis functions in space, orientation and scale. d. Activity histograms averaged over
all coefficients for the learned basis functions (solid line) and for random initial
conditions (broken line). Image reprinted with permission from Bruno Olshausen.

neurons in the monkey cerebellum by Reza Shadmehr’s group at Johns Hop-
kins [HKSS15, HKSS18] further suggest that the same sparse coding dictionary
organizes sensory motor control output and prediction errors which, in turn,
organizes the entire closed-loop learning network for natural vision.

The fact that sparse coding becomes a central principle for natural vision
sends two encouraging messages to engineers: first, seemingly complex real data,
such as natural images, do have good intrinsic structures that can be exploited
for compact and efficient representations [OF96al; second, such structures and
representations are already learned effectively and efficiently by nature [OF97,
GS12,LLT18]. To mathematicians and computer scientists, the second message
might seem a little surprising. It contradicts a known fact that finding the sparse
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code x € R™ for a given signal
y=Ax €R™ (1.2.2)

is in general an NP-hard problem even when the dictionary A is known but
over-complete, i.e., m < n (see Theorem 2.8). Hence sparse coding can be com-
putationally prohibitive and yet nature seems to learn to do it effortlessly. To a
large extent, studies in this book reconcile this contradiction by characterizing
conditions under which the sparse coding problem can be solved efficiently and
effectively (Chapter 3). Furthermore, we will see in later part of this book (Chap-
ter 7) that, even when the dictionary A is not known in advance and needs to be

learned (as in natural vision), given sufficient observations Y = [y, ¥ys, ..., Yn]:
Y =AX eR™Y, (1.2.3)
both the correct dictionary A and associated sparse codes X = [z, xa,...,TN]

can be learned correctly and efficiently, under fairly broad conditions! Even-
tually, towards the end of the last Chapter 16, we will see how mathematical
and computational principles developed in this book might provide compelling
mathematical justification for the need of sparse coding (even in nature), as well
as other computational mechanisms that resonate more deeply with phenomena
observed in neural science or cognitive science.

Signal Processing: Sparse Error Correction

The properties of sparse signals and data have long been studied by mathemati-
cians and statisticians. Throughout history many have explored and proposed
computationally efficient ways to exploit such properties. A classical problem in
data analysis is to model an observation, say y € R, as a linear function of a set

of known variables a* = [a1, as, ..., a,] € R™
y=fla)=a"x =a1x1 + asxa + - - + apnTy, (1.2.4)
where the @ = [z1,22,...,2,]* € R™ are some unknown parameters to be deter-

mined. Given multiple, say m, observations of the form:
yi=a;r+e, 1=1,2...,m, (1.2.5)

where ¢; is possible measurement noise or error, we may stack y; as entries of a
vector y € R™ and a} € R” as rows of a matrix A € R™*". The goal is then to
find a set of parameters * € R™ such that Ax fits well with the given observation
y € R™. In the classical setting, we usually have the number of measurements
larger than the unknowns, i.e., m > n. Hence there may be no solution & that
satisfies the equation y = Ax precisely due to measurement errors.

Least Absolute Deviations versus Least Squares.
As early as in 1750, French mathematician Roger Joseph Boscovich had proposed
to solve for x that minimizes the absolute deviations between y and Az [Bos50],
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Figure 1.7 Data fitting with few but large errors versus small noises on almost every
data points. The least absolute deviations (minimizing £' norm of ¢) is more suitable
for the situation on the left whereas the least squares is for the right.

namely:
m
min ly — Az|y =) |y; - afal, (1.2.6)
i=1
where || - ||; is the ! norm of a vector which is the sum of absolute values of

all its entries. This is also known as the method of least absolute deviations.
According to historical account [Pla72], this work has made significant influence
on Laplace’s conception of Laplace distribution [Lap74], see Exercise 1.5. During
the period which followed Boscovich and Laplace, mainly in early 1800’s, the
method of least squares was proposed independently by Legendre in 1805 [Leg05]
and Gauss in 1809 [Gau09]:

m
min|ly — Az|} =Y (s - az)” (12.7)
i=1
The method of least squares (or minimizing the £2 norm of errors) is known to be
statistically optimal when the measurement errors ¢;’s are i.i.d. Gaussian noise'®.
In addition, the optimal minimizer x, admits a closed-form solution (which we
leave as an exercise to the reader), hence is very appealing to practitioners before
the age of computers.

At the time of Boscovich and Gauss, people intuitively knew that the least
absolute deviations method (1.2.6) is more robust if the measurements contain
large but few errors, as illustrated in Figure 1.7. However, the precise working
conditions of /! minimization were mostly not know or clarified, and unlike least

15 To Gauss’ credit, in his work [Gau09], he went beyond Legendre and established the
connection between least squares and statistics, and showed its optimality for errors with
Gaussian, also known as the normal, distribution. See Exercise 1.5.
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squares, there is no closed-form solution to ¢! minimization'®. As a result, the
method of least squares had dominated data analysis for the next nearly three
centuries! Nevertheless, as we will see in this book, the lack of closed-form solu-
tion for /! minimization is very much alleviated by modern efficient optimization
methods. With computers, solving /! minimization is no longer a bottleneck even
when the scale is very large (see Chapter 8). Advance in computation has paved
the way for a strong return of methods based on numerical solutions such as
¢! minimization. The remaining questions are when ¢! minimization works and
why.

Logan’s Phenomenon.

The theoretical analysis of /! minimization for error correction has its earliest
roots in work by Benjamin Logan'” in the 1960’s. His PhD thesis, completed at
the Electrical Engineering Department of the Columbia University, featured the
following intriguing result:

“Suppose we observe a signal y which consists of a band-limited signal x,, superimposed
with an error e, which is sparse in the time domain. If the product of the bandwidth of
Zo and the size of the support of e, is less than /2, the true band-limited signal can be

recovered by £ minimization, no matter how large the error is in magnitude, or where
its support is located.”

This observation is known as Logan’s phenomenon. To state this result slightly
more formally, let B;(Q2) be the set of band-limited functions whose Fourier trans-
form vanishes outside of [—£2,Q], as previously defined in (1.1.10). A formal
statement of Logan’s theorem is as follows:

Fact 1.5 (Logan’s Theorem). Suppose that y = x, + e,, with x, € B1(Q),
leolly = J,leo(t)ldt < +00 and supp(e,) C T. If

|ﬂxﬂ<g, (1.2.8)
then x is the unique solution to the (conceptual) optimization problem
min llz =yl (1.2.9)

subject to  x € B1(Q).

Here, |T| should be interpreted as the length of 7' (if T" is an interval) or the
Lebesgue measure of T' (if T is a more general set). This result says that no
matter how large the error e, is in magnitude, as long as it is sparse enough, it
can be exactly corrected by ¢! minimization. Figure 1.8 illustrates the implication
of this result. It highlights three different areas (red, blue, and green) of the same
size in the spectrum-time space for x, and e,, respectively. If the area size is less
than 7/2, then z, and e, can be separated by ¢! minimization.

16 nor were there computers at the time!

17 Harmonic analyst and signal processor at Bell Labs, and also a renowned bluegrass fiddler.



1.2 A Brief History 15

Figure 1.8 Illustration of Logan’s Phenomenon: horizontal axis indicates support
of e, in time ¢, and vertical axis indicates support of the Fourier transform Z, of xz, in
spectrum w. All three colored areas have the same separability by ¢! minimization
according to Logan’s statement.

Logan was working with an eye toward applications in audio signal processing,
in which a band-limited signal is the target of interest, and the corruption e, is
to be removed. Although Logan’s result is stated for continuous-time signals, we
will give a concrete example that shows how it works for discretized digital signals
in Section 2.3.4 of Chapter 2. At this point, acute readers may have recognized
strong conceptual similarity between Logan’s problem and the decomposition
problem (1.1.16) that we have encountered in learning graphical models.

Logan obtained his result in the mid-1960’s. It would be several decades before
the modern theory of ¢! minimization began taking form. However, practition-
ers in many applied computational disciplines were very actively practicing ¢!
minimization and related techniques for robust statistical inference with erro-
neous data, notably practice in the geosciences since the 1970’s [CM73,SS86] as
well as the work in robust statistics in the 1980’s [Hub81, HRRS86]. In many
cases, they observed intriguing phenomena, which seemed to parallel Logan’s
result: /! minimization often exactly recovered sparse-enough solutions, and ex-
actly corrected sparse-enough errors. Beginning in the early 2000’s, a sequence of
theoretical breakthroughs led to increasingly sharper and broader characteriza-
tions of the conditions under which ¢! minimization succeeds in error correction
(e.g., [CT05,WM10]). These are the conditions which we will develop thoroughly
in this book.
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Classical Statistics: Sparse Regression Analysis

A classical problem in statistical data modeling is to study how a given random
variable, say y € R, depends on a set of predictive random variables (also known
as predictors or features), say a* = [a1,az,...,a,] € R™. This is known as
regression analysis [HTF09]. The most popular form is the linear regression in
which we try to represent y as a linear superposition of (some or all of) the
variables:

y=a*x+e=a1x1 + asxo+ -+ anT, +¢, (1.2.10)

where ¢ is an error term whose variance is to be minimized:

minE[(y — a*z)?]. (1.2.11)

In practice, the problem becomes to find the coefficients @ = [x1, z3,...,2,]* €
R™ from multiple, say m, samples y = [y1, Y2, - - -, Ym]™:

y=Axr+e €R", (1.2.12)

where rows of A € R™*™ are corresponding samples of the predictors. The
method of least squares discussed earlier by Legendre and Gauss:

min ||y — Az|3 (1.2.13)

is arguably the earliest, and the most popular, form of regression in which all the
variables a1, as, ..., a, are used to predict y. See Figure 1.9 left for an example.
This is often a reasonable thing to do if the number of variables n is small and
they are already chosen to be somewhat independent of one another. One may
refer to the recent book [BV18,FLZZ20] for a more extensive exposition of this
topic.

Best Subset Selection.

In many settings of data analysis, the number of variables n can be very large.
Many variables can be irrelevant for the prediction or there could be tremendous
redundancy among the relevant ones'®. Very often the number of predictors could
even be larger than the number of available samples, i.e., n > m.'? Hence, in
addition to fitting the prediction y with Ax, one often prefers to find a much
smaller subset of the most relevant variables that can best fit y — the so called
variable selection. In other words, the coefficient vector @ is desired to be a sparse

18 This is certainly the case with natural vision: to detect or identify an object in an image,
the possible predictors can be in the same magnitude as the number of pixels. Hence
dictionary learning and sparse coding becomes crucial in order to identify the most
informative features that help with the detection.

In the over-determined case, the least square problem (1.2.13) no longer has a unique
solution. A classical way to fix this is through introducing an additional Tikhonov-type
regularization term )\||:l:||%, resulting in the so called ridge regression

ming ||y — Az||3 + A||z||3. We leave this as an exercise for the reader, see Exercise 1.8.

19
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vector with only a few, say k < min{m, n}, of its entries being nonzero. A natural
proposal to select x is to use the least squares metric:

min ||y — Az||3 subject to |z|o < k, (1.2.14)
x

where ||z||o indicates the ¢° norm — the number of nonzero entries of a vector.
This is called the best subset selection problem in regression analysis and had
originally proposed by Hocking and Leslie [HL67] and Beale et. al. [BKM67] in
1967. This notion of choosing minimal subset of relevant variables is related to
the more general principle of minimum description length proposed by Rissanen
in 1978 [Ris78], which argues that in choosing between various models, we should
prefer models which can be encoded most efficiently [HYO01].

Although this seems a sensible thing to hope for, directly solving the above
subset selection problem is computationally intractable: when k and m become
very large, the number of possible supports (73) grows exponentially in k£ and
m. In fact, we will soon see in the next chapter this problem is in general NP-
hard. Hence, through the history, several other approaches have been proposed
to address the variable selection problem via computationally tractable means.

Stepwise Regression.

In 1966, Efroymson [Efr66] proposed a greedy forward (or backward) stepwise
regression scheme for variable selection: starting from an empty index set Iy = &,
then at each step add to the index set I the index of a variable which gives the
lowest squared error among all the remaining variables. To be more precise, let
P) be the orthogonal projection on the range of the submatrix A, that consists
of columns of A indexed by |. The greedy selection at each step is given by:

ik = arg?%ilil ly — P'kU{i}(y)”%’ (1.2.15)
and the index set is updated accordingly:
|k+1 =1, U {Zk} (1.2.16)

This forward stepwise selection scheme is very much similar to more recent greedy
algorithms proposed to solve the sparse coding problem, such as the orthogonal
matching pursuit method that we will see in Chapter 8. Tools introduced in
this book will allow us to clarify conditions under which such a greedy scheme
succeeds in finding the optimal subset.

Lasso Regression.

Notice that the main difficulty in solving the subset selection problem (1.2.14) is
the £° norm constraint: ||z||o < k. It makes the problem combinatorial hence chal-
lenging to optimize via conventional optimization methods.?" In 1996, Tibishirani

20 Recently there has been some exciting progress in improving computation efficiency of the
variable selection problem (1.2.14) via mixed-integer programming [BKM16].
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proposed to relax this constraint with the ¢! norm: ||z||; < k. This leads to the
so called lasso regression [Tib96]

min ||y — Az||3 subject to |z < k. (1.2.17)
x

A similar formulation, known as basis pursuit, was proposed in 1998 by [CDS98]
which solves the following program:

min ||z|; subject to y = Ax. (1.2.18)
x

Via convex duality, these problems are equivalent to an unconstrained convez
optimization:

min [y — Az[|3 + Al|z(1, (1.2.19)

with A > 0 a tuning parameter.?! Compared to the greedy stepwise regression
(1.2.15), the global nature of lasso and basis pursuit leads to many favorable
properties, and arguably, they have become the most popular regression meth-
ods since the method of least squares. In this book (Chapter 3), we will develop
theoretical tools that allow us to fully understand the role of ¢! norm minimiza-
tion. These tools will help characterize the precise conditions when the above
programs, or their variants, succeed in recovering the correct sparse coeflicients.
In Chapter 8 we further develop efficient algorithms that can solve these opti-
mization problems in very large scale.

Data Analysis: Principal Component Analysis

In many applications, the observations can be modeled as samples from a mul-
tivariate random vector y = [y1,y2, .., Ym)" € R™. As the dimension m can be
very high and there is often redundancy among these variables y1, 92, ..., Ym,
a central problem in statistics or data analysis is to identify possible strong
correlation among these variables and remove the redundancy.

Statistical Perspective.

Principal component analysis (PCA) is a classical tool for this purpose. It was
first proposed by Pearson in 1901 [Pea01] and later independently by Hotelling in
1933 [Hot33]. The main idea is to project the high-dimensional random vector y
onto much fewer directions, represented by a sequence of mutually orthonormal
vectors {u; € R™}L ,, such that the variances are maximized:

u; = arg max Var(u*y) subject to w'u=1, ul u;Vj<i. (1.2.20)

The vectors u; € R™,i = 1,...,d are called principal directions of y and the
projections w; = u}y are called principal components of y. By construction w;

21 In contrast, the classical ridge regression considers an ¢2 norm regularization on @:
ming ||y — Az||3 + \||z||2, see Exercise 1.8.
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Figure 1.9 Illustration of linear regression on the left versus principal component
analysis on the right. Linear regression minimizes the least squares of ¢, error in
predicting the (one) variable y; Principal component analysis (PCA) minimizes the
least squares of ¢, distance to the estimated low-dimensional principal component w.

will be uncorrelated and they represent directions in which variables in y are
most correlated.

Or equivalently, for a properly chosen d, the original high-dimensional random
vector is best-approximated by the d < m principal components as:

Y = uwi + Ugws + - - + ugwyg + € = Uw + ¢, (1.2.21)

where U = [u1,ug,...,ug) € R™* w = [wy,ws, ..., wg]* € R and the vari-
ance of the residual € € R™ is minimized:

minE[||y — Uwl|3]. (1.2.22)

Notice that both linear regression (1.2.10) and PCA minimize least squares of the
fitting errors by a low-dimensional linear model. Nevertheless, in regression, one

dimension of the data y is preferred and all other variables a1, as, ..., a, are used
to predict it, whereas in PCA, all dimensions y1,¥s, ...,y are treated equally
22

and the principal components reveal their joint (low-dimensional) structure.
Figure 1.9 illustrates the relationship and difference between regression analysis
and principal component analysis.

A classical result in statistics states a solution to PCA:

FacT 1.6 (Principal Component Analysis). For a zero-mean random vector
y € R™, its first d principal directions {u; € R™}L | are the d orthonormal
eigenvectors of the covariance matriz 3, = Elyy*] € R™*™ associated with the
largest d eigenvalues {\;}&_,. Moreover, \; = Var(uly),i =1,2,...,d.

To estimate the principal directions U from samples of y, we may stack the

22 In terms of machine learning language, one may say that (linear) regression analysis is a
supervised learning problem whereas principal component analysis is unsupervised learning.
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samples as columns of a matrix Y = [y, Y, ..., y,] € R™*™. The covariance of
y can be estimated by the sample covariance X, = %YY* € Rm™*™ So if

Y =USV* (1.2.23)

is the singular value decomposition (SVD) of Y, the estimated principal direc-
tions of y will be precisely the leading d singular vectors — the first d columns of
U. For a more detailed characterization of SVD, one may refer to Appendix A.

Low-rank Approximation Perspective.

Singular value decomposition of a matrix was initially developed in the numer-
ical linear algebra literature by Eckart and Young in 1936 [EY36], independent
of PCA.?? The basic idea of singular value decomposition is to approximate a
matrix with a superposition of a few rank-1 matrices (usually expressed in a
bilinear outer product form):

Y = 01w v] + oousvi + - - + oqugqv + E, (1.2.24)

where FE is a matrix of small errors or residuals. In fact, the origin of matrix
approximation by bilinear forms can be traced back as early as in the work of
Beltrami [Bel73] and Jordan [Jor74] in early 1870’s.

To see the connection between SVD and PCA, let us consider the problem of
approximating a given (sampled data) matrix Y € R™*™ by a matrix X € R"™*"
of rank less than d in the least squares sense:

min |Y — X||3 subject to rank(X) < d. (1.2.25)

Fact 1.7 (Low-rank Approximation). Let Y = UXV™ be the SVD of the matriz
Y € R™*". The optimal solution to the above low-rank matriz approximation
problem (1.2.25) is given by

X, =U,S,V7, (1.2.26)

where Ug € R™*4 3, € R¥¥4 gnd V4 € R™¥4 are submatrices associated to
the top d singular vectors and singular values in U, 3, and V', respectively.

While principal components were initially defined exclusively in a statistical
sense [Pea0l, Hot33], one can show that the above SVD-based solution gives
asymptotically unbiased estimates of the true parameters in the case of Gaussian
noise, according to the work of Householder and Young in 1938 [HY38] and
then Gabriel in 1978 [Gab78]. A systematic and complete account of statistical
properties of PCA can be found in the classical book by Jolliffe in 1986 [Jol86].
Generalization of PCA to models of multiple low-dimensional subspaces can be
found in a more recent book by Vidal, Ma, and Sastry [VMS16].

Low-rank approximation by least squares fitting (1.2.25) is a special case for
which we have a simple tractable solution as stated in the Fact 1.7. This is in
general not the case as rank minimization is typically NP-hard. In Chapters 4

23 S0 SVD is also known as the Eckart and Young decomposition [HMHO00].
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and 5 we will study a much broader family of rank minimization problems and
characterize conditions under which they can be solved efficiently.

The Modern Era

As we have seen in previous sections, low-dimensional structures arise ubiqui-
tously in scientific, mathematical, and engineering problems. Many important
instances have been long studied in various fields at different times of the his-
tory. Many good ideas have been proposed and many effective computational
methods have been developed for identifying and exploiting such structures.

From Curses to Blessings of High-Dimensionality

In the classical era, due to limited computing resources, studies?* had typically
focused on formulations which allow closed-form solutions or on methods that
are amenable to “hand computation,” at least when the dimension is moder-
ate (such as PCA, according to Pearson in 1901 [Pea01]). As a result, methods
that rely on heavy numerical methods but conceptually superior formulations
have been severely under studied and often ignored or forgotten. For instance,
as we have seen in the previous section, for both sparse error correction or sparse
regression, ¢! minimization is conceptually the preferred formulation. However,
its significant advantages have never been fully brought to light until very re-
cently, thanks to efficient optimization methods and powerful computers. They
have helped reveal striking properties and phenomena of ¢! minimization, espe-
cially when the dimension becomes high enough. Such empirical observations have
motivated subsequent theoretical analysis and led to a rather complete and com-
prehensive theory featured in this book. This renewed understanding of many
beneficial geometrical and statistical properties of sparse and many other low-
dimensional models in high-dimensional space was celebrated as the “blessings
of dimensionality’ for data science, by Donoho in 2000 [Don00].

Speaking more broadly, in the classical settings, statistical methods and opti-
mization methods were typically applied to data of relatively low dimension or
to problems of relatively small scale. Although many profound (and useful) geo-
metric and statistical properties of low-dimensional structure in high-dimensional
space were long developed and known to mathematicians [Mat02], such proper-
ties had been completely out of reach for computation hence oblivious to the
practice of data analysis till very recently. Around the turn of this century, data
science had entered into a new era, due to the rise of the Internet and social
networks (and many other technological advancements mentioned in the Pref-
ace). There has been an explosively growing demand to solve ever larger scale
problems and compute with ever higher dimensional data. To address such de-
mand, powerful computing platforms and software tools have been developed to

24 especially studies that aim to reach at implementable algorithms or practical schemes.
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solve large-scale optimization problems. Nowadays data scientists and engineers
are fully exposed to both good and bad traits of high-dimensional data. Under-
standing such traits is hence crucial for practitioners and researchers to develop
more efficient and reliable algorithms and systems in the future.

As we are entering the new era of big data computation, many classical results
and methods have become increasingly inadequate for modern data science in
one crucial aspect:

lack of precise account of data complexity and computational complezity.

As our previous survey of the fields and history has shown, many theoretic re-
sults have provided profound understanding and correct guidelines for approach-
ing the problems of interest. However, many of the classical results do not di-
rectly translate to computationally tractable algorithms or solutions. Many of
the statistical and information-theoretic concepts and analyses rely on condi-
tions such as the distributions of interest are generic. These concepts®® often
become ill-defined when the distributions become degenerate (low-dimensional)
or intractable to compute when the ambient space is high. Most theoretical guar-
antees for correctness are asymptotic in nature. Straightforward implementation
of such methods often leads to algorithms whose worst sample complexity or
computational complexity grows exponentially in space or time, hence impracti-
cal for high-dimensional problems. Practitioners often find existing models and
theory ineffective or even irrelevant to their real-world data and problems, hence
resort to brute force, heuristic, and sometimes even ad hoc methods instead.?%
Therefore, to provide practitioners in modern data science truly pertinent
engineering principles and methodologies, we need to develop a new theoretical
platform that can rigorously characterize the precise working conditions of a
proposed method for low-dimensional structures in high-dimensional spaces:

e The theory would reveal the fundamental reasons why many seemingly in-
tractable high-dimensional problems can be solved efficiently without suffering
the curses of dimensionality: because the intrinsic dimension of the data hence
solution is very low relative to the dimension of the ambient state space.

e The platform should also lead to tractable and scalable solutions and algo-
rithms that work in the non-asymptotic regime: giving precise characterization
of the required data complezity®” and computational complexity®® for certain
guaranteed accuracy or probability of success.

Only through the lens of computation can we truly bridge the gap between theory
and practice for high-dimensional data analysis and learning, which is the main
purpose of this book. To a large extent, the main task of Part I of the book is

25 including some of the most basic quantities such as likelihood, entropy, and mutual

information [CT91].

In recent years, the gap between theory and practice has been significantly enlarged by the
empirical success and popularity of deep learning, as we will try to address and resolve in
Chapter 16.

say in the number of samples or measurements, random or designed.

say in the number of evaluations of gradients.
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to characterize precisely the data complexity; that of Part II is to characterize
precisely the computational complexity; and that of Part I1I is to deal with other
non-ideal factors in real data and applications, such as nonlinearity.

Compressive Sensing, Error Correction, and Deep Learning

Compressive Sensing.
In late 1990’s, regression methods such as lasso or basis pursuit:

min ||z|; subject to y = Awx, (1.3.1)
x

have been extensively experimented and practiced in statistics for sparse vari-
able selection. Despite the fact that solving the sparsest solution to an under-
determined linear system y = Axz with A € R™*™ (m < n) is known to be
NP-hard in general, overwhelming empirical evidences show that the correct so-
lution can be recovered effectively and efficiently under fairly broad conditions:
for randomly chosen matrix A, the above ¢! minimization is able to recover a
sparse vector & with support up to a constant fraction of n! This was eventually
proven to be the case in 2006 by David Donoho [Don06b], Emmanuel Candes,
Justin Romberg, and Terence Tao [CRT06b].

In a nutshell, these results suggest that for a k sparse signal  in an n di-
mensional space R, we only need to take approximately O(k) general linear
measurements in order to have all its information. In addition, the signal can be
correctly and efficiently recovered by minimizing the ¢! norm of = (see Chap-
ter 3). One implication of this result is that if « is a signal that has a high
bandwidth but nevertheless sparse in its spectral domain (as shown in Figure
1.3), then one can sample and recover it at a rate much lower than the Nyquist
sampling rate [Tro10,ME10], hence the notion of “compressed sensing’ [Don06a]
or “compressive sampling’ [Can06]. We will give a real application of this new
revelation to wide-band wireless communication in Chapter 11.

Error Correction.
As we have seen in the previous section, historically ¢! minimization:

min|ly — Az], (13.2)

was proposed to correct (sparse) errors e in signal y = Ax + e by Boscovich and
later by Logan. The connection between sparse signal recovery and sparse error
correction reappeared in the seminal paper “Decoding by Linear Programming”’
by Candes and Tao in 2005 [CTO05], in which more general conditions for the
sparse error correction problem were derived. Their work has inspired many
highly striking applications such as robust face recognition [WYGT09] by the
authors, which we will soon see in the next chapter and Chapter 13.

Ever since, the conditions under which ¢! minimization recovers sparse signals
or corrects sparse errors were quickly improved and extended to broader fam-
ily of settings and structures. For instance, both the compressive sensing and
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error correction results for sparse vectors were soon generalized to low-rank ma-
trices [RFP10, CLMW11] (which will be studied in Chapters 4-5) and broader
families of low-dimensional structures (see Chapter 6). Collectively, these results
have started to reshape the foundation of modern data science, especially high-
dimensional data analysis, which we will study systematically in this book.

Deep Learning.

The above models are somewhat idealistic in the sense that the relationships
between the measurements (output) y and the structured data x are linear and
known. In many real-world problems and data, the mapping from  to y can
be nonlinear or unknown and even the low-dimensional structures of the data @
can be nonlinear. In this case, one may choose to compose a sequence of simple
maps to incrementally approximate such a nonlinear and unknown mapping:

{Ze+1 = ¢(A'%%), zo==x, (=0,1,...,L—1,

Y — H(Cz1), (1.3.3)

where A%, C are (unknown) matrices, representing linear mappings, and ¢(-)
is some basic, typically sparsity-promoting, nonlinear activation. The RNN in
(1.1.6) is one such example. This type of models are also widely known as
deep networks. Artificial (deep) neural networks have been proposed since 1940-
50s [MP43,Ros58] and extensively studied in the following decades for a variety
of problems in pattern recognition, functional approximation, and statistical in-
ference etc. (see [AB99] for a systematic introduction to this classic topic).

Due to the availability of big data and advancement in high-performance com-
putation in the past decade, it has been shown in the seminal work of Krizhevsky,
Sutskever, and Hinton [KSH12] in 2012 that this class of models can be learned
efficiently and effectively and give useful representations for large-scale real world
(visual) data. This has led to tremendous empirical successes of deep networks
in a wide variety of applications such as computer vision, speech recognition,
and natural languages [LBH15,GBC16]. Despite explosive technological advance-
ments, the practice of deep networks has constantly been haunted by the lack of
interpretability and understanding of the so-learned “black box” models, hence
lack of rigorous performance guarantees.

Towards the end of the book in Chapter 16, we will see that the role of deep
networks, together with their design principles and crucial properties, can be
clearly explained, rigorously justified, and even derived as a “white box” from
the perspective of learning discriminative low-dimensional representations for
high-dimensional data. Therefore, concepts, principles, and methods covered in
this book also serve as the foundation for a rigorous and deeper understanding
of deep learning, or machine learning in general, in the future.
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\L2a Convex polytope
I' 7777777 } _________ (Gaussian vertices)

Figure 1.10 Two examples of rather counterintuitive high-dimensional phenomena.
Left: almost all area of a high-dimensional sphere is concentrated in an e-strip
around its equator, and actually around any great circle! Right: random samples of a
high-dimensional Gaussian span a highly neighborly convex polytope, which is,
however, impossible to illustrate with any 2D polytope.

High-Dimensional Geometry and Non-Asymptotic Statistics

To fully understand the reason why information about low-dimensional struc-
ture can be encoded by a nearly minimal number of (linear or nonlinear) mea-
surements, and why it can be accurately and efficiently recovered by tractable
methods such as convex and nonconvex optimization, we must resort to funda-
mental mathematical concepts and tools from high-dimensional geometry and
non-asymptotic statistics. These are the tools that have enabled people to char-
acterize the precise conditions under which the proposed methods are expected
to work.

High-dimensional geometry and statistics are full of phenomena that are dia-
bolically counterintuitive. Our geometric intuition developed in the familiar low
(two or three) dimensional space is completely useless for understanding what
normally takes place in a high-dimensional space.?? Actually our intuition may
often be exactly opposite to the truth! Although many seemingly paradoxical
properties of high-dimensional spaces have been long known to mathematicians
and theoretical physicists in certain fields, they have stayed mostly alien to engi-
neers and practitioners till not so long ago. This book aims to introduce some of
the properties that are most pertinent to modern data science and engineering.*’
Here as a prelude, we give two examples of high-dimensional phenomena that, as
we will see later, have a lot to do with explaining the magic of /! minimization.

29 While most people are rather presumptuous about their geometric intuition, be reminded
that it took an Einstein to think correctly about the four-dimensional space and time!

30 For mathematically oriented readers, we recommend the excellent recent books by
Wainwright [Wail9] or Vershynin [Ver18] for a systematic exposition of non-asymptotic
high-dimensional statistics and probability.
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Measure Concentration on a Sphere [Mat02].

Figure 1.10 left shows an e-strip around a great circle of a sphere S”~! in R™.
Here the great circle is the equator with z,, = 0. If we want the strip to cover
majority, say 99%, of the area of the sphere:

Area{x € S"1: —e <z, <e} =0.99- Area(S"!), (1.3.4)

our experience with low-dimensional spheres suggests that € should be large
(close to 1). However, simple calculation shows that, as dimension n increases, €
decreases in the order of n~1/2. That is, the width of the strip 2¢ can be arbitrar-
ily small as n becomes large. Hence almost all area of the sphere concentrates
around the equator, as shown in Figure 1.10 left. If this is not strange enough,
the area also concentrates on the e-strip around any great circle! A rigorous
statement will be given in Theorem 3.6 of Chapter 3. There are many bizarre
implications of this fact and we encourage the readers do some brain exercises
of their own. We here point out one such implication which has something to
do with our later study: if we randomly sample a point on the high-dimensional
sphere, say v € S"~!, then with high probability, this vector will be very close
to any of the equators. That is, the inner product of v with each of the standard
base vectors (the poles) e; € R™ will be:

(v,e;) =0, i=1,2,...,n. (1.3.5)

In other words, v will be simultaneously nearly orthogonal to all the base vectors
e;, or highly incoherent to them, in terminology to be used in this book.

Neighborly Polytopes from Gaussian Samples [DT09, DT10).

Consider an m-dimensional Gaussian random vector a € R™ whose entries are
i.i.d. Gaussian N'(0,1/m). Now take say n = 5 x m 1.i.d. samples of this random
vector and collect them into a matrix: A = [a1,as,...,a,] € R™*™. This gives
us a set of n random sample points in R™. When m is large, say m = 1,000,
then we have n = 5,000 points. Our experience with low (two or three) dimen-
sional Gaussian distributions suggests that many of the samples would be “close
to the center” as the probability density is the highest there. However, as we
will see later, with high probability, these 5,000 random points span a convex
polytope with every point being one of its vertices, as illustrated in Figure 1.10
right. No points would be inside the interior of the polytope at all! If this is not
strange enough, try connecting every pair of the vertices with a line segment.
Then none of the segments will be in the interior either and each is an edge of
the convex polytope! Actually this is also true for any k vertices for k up to
certain large number. These vertices will span a k-face of the polytope. Such
a polytope is called a k-neighborly polytope [DT09]. Neighborly polytopes are a
rare breed in low-dimensional spaces®! but are rather abundant and common in
high-dimensional spaces. They are also very easy to construct (say by random

31 Only the triangle in R? and the tetrahedron in R3.
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sampling). As we will see later in Chapter 3 and Chapter 6, it is precisely such
properties of high-dimensional polytopes that allow ¢! minimization (1.3.1) to
recover any k-sparse vector & from m random measurements Ax, with m not so
much larger than k.

Scalable Optimization: Convex and Nonconvex

The theoretic developments since early 2000’s mentioned above have offered ex-
citing new prospect for practitioners of modern data science. They have pro-
vided theoretical guarantees that a very important family of problems, previously
deemed as computationally prohibitive (NP-hard) to solve, can become tractable
under fairly broad conditions. The studies also provide the mathematical tools
needed to characterize the precise conditions under which this takes place, hence
provide practitioners very pertinent guidelines when such methods are expected
to work.

There is one last hurdle though: just because a problem has become tractable,
say being reduced to a tractable convex program, it does not mean the existing
solutions or algorithms are already practical — meaning efficient enough for high-
dimensional data and large-scale problems in the real world.

Return of First-order Methods.

Convex optimization is a classic topic and has been well developed in the liter-
ature, e.g., see the textbook by Boyd and Vandenberghe [BV04]. For small to
medium size problems, algorithms such as the interior point methods developed
in late 1980’s [Wri87, Meg89, MA89a, MA89b] have proven to be extremely effi-
cient and very much become the gold standard for convex programs. However,
such algorithms rely on second-order information of the objective function, like
the classic Newton’s method. The computational and memory cost of comput-
ing the second-order derivatives, i.e., the Hessian matrix, can quickly become
impractical when the dimension of the problems becomes very large — say the
number of variables is in the millions or billions.??

This has compelled people to use instead first-order optimization methods
primarily for high-dimensional large-scale problems. The strive for ever growing
scalability has shifted the study of optimization to more careful characteriza-
tion of the computational complexity of the proposed algorithms, even within
the family of first-order methods [Nes03, Nem07]. As a result, the acceleration
techniques developed by Nesterov in 1983 [Nes83] have drawn significantly new
attention. In fact, in recent years, almost all ideas that could have helped improve
the convergence rate and reduce computational cost are carefully reexamined and

32 In addition to solving sparse coding problems, this is also the case for modern optimization
methods for training deep neural networks which normally have millions or billions of
parameters to tune. For an example, the latest GPT-3 model from OpenAl for natural
language processing has a total of 175 billion parameters to optimize [B120] and the latest
Switch Transformers model from Google has 1.6 trillion parameters [FZS21].
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further refined, leaving almost no stone unturned. Because of this, we feel it is
necessary to give a renewed account of optimization methods within the new
context of supporting scalable computation: Chapter 8 is for the convex case
and Chapter 9 for the nonconvex case.

Return of Nonconvexr Formulation and Optimization.

When we face a new class of challenging problems, the most natural approach is
trying to reduce them to problems for which we already know a good solution.
This is the case with the sparse and low-rank recovery problems. We are fortunate
that in many cases they can indeed be reduced to convex programs which admit
efficient solutions.

However, first of all, convexification has its theoretical limitations (as we will
elaborate on in Section 6.3 of Chapter 6), and many problems we encounter in
high-dimensional data analysis do not admit meaningful convex relaxation (as
we will study in Chapter 7).

Secondly, models considered in this book (e.g. sparse or low-rank) are idealis-
tic for developing the fundamental concepts and core principles. They typically
assume the low-dimensional data structures are piecewise linear. As we will see
in the application Chapters 12, 15, and 16, real-world data often have nonlin-
ear low-dimensional structures instead. Part of the data modeling and analysis
process hence entails to learn and undo such nonlinear transforms if we want to
apply principles from this book correctly and successfully.

Finally, very often in practice, we can be forced to adopt a nonconvex for-
mulation due to computational constraints or implementation limitations. Let
us consider the example of recovering a low-rank matrix, say X € R**™. When
the dimension n becomes extremely high, it could become impossible to store
the matrix as it is. We may have to represent the matrix as the product of two
unknown low-rank factors:

X =UV*, UEeR™ VeR™, (1.3.6)

with 7 < n, in order to push for better scalability of the implementation. In such
cases, we are forced to deal with the nonlinear nature of the representation or
nonconvex nature of the program head on [CLC19].

Interestingly enough, such somewhat forced choices lead to very nice sur-
prises [SQW15]. It has been well known that unlike convex optimization, it is
very difficult to ensure global optimality or algorithm efficiency for general non-
convex problems. Nevertheless, as we will see in Chapter 7, for many families
of problems that we encounter in high-dimensional data analysis, the problems
have natural symmetric structure. For example, to represent the low-rank ma-
trix X by two factors as in (1.3.6), there is an equivalent class of solutions:
UV* = URR'V™ for any orthogonal matrix R € R"™™" in the orthogonal
group O(r). As a result, the associated nonconvex objective functions have ex-
tremely good local and global geometric properties. These properties make them
amenable to extremely simple and efficient algorithms, such as gradient descent
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Figure 1.11 A Perfect Storm for revolutionary knowledge and technology
advancement: confluence of the availability of massive data, powerful computational
platforms, high-dimensional geometry and statistics, scalable optimization algorithms,
and rich applications in science and technology.

and its variants, detailed in Chapter 9. Under very benign conditions, these algo-
rithms actually can converge to the globally optimal solution with high efficiency
and accuracy [SQW15, MWCC18]|, quite atypical of nonconvex problems!

Although this is still a rather active research area, scalable nonconvex opti-
mization algorithms used to solve such problems have been well developed for
long and their computational complexities have been precisely characterized re-
cently. So in Chapter 9 we give a rather complete and coherent survey of scalable
nonconvex optimization methods as well as guarantees they offer in terms of the
type of critical points converged to and the associated computational complexity.
These algorithms are not only useful in the context of recovering low-dimensional
structures but also essential to many modern large-scale machine learning prob-
lems such as constructing and training deep neural networks, which we will
elaborate on more in the final Chapter 16.

A Perfect Storm

According to Wikipedia, “a perfect storm is an event in which a rare combination
of circumstances drastically aggravates the event.” Then what have taken place
in data science and technology in the last couple of decades can be precisely
characterized as a “perfect storm,” a good one that is. An unexpected combina-
tion of several factors has almost simultaneously advanced and contributed to
a revolution in data science and technology: the massive high-dimensional data,
rich scientific or technological applications, and powerful computational and data
platforms (such as the cloud technology) have set an ideal stage for fundamental
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knowledge in high-dimensional geometry and statistics to be efficiently realized
and exploited through scalable optimization algorithms. The confluence of these
factors, as illustrated in Figure 1.11, has truly brought us into a new era of
scientific discovery and engineering marvel.

Exercises

1.1 (Nyquist-Shannon Sampling Theorem). Prove the Fact 1.5.

1.2 (Conditional Independence of Gaussian Variables). Prove the Fact 1.J for
the case of a joint Gaussian vector with three variables @ = [x1,xo, x3]* in which
x1 and xo are conditionally independent given x3.

1.3. Given a jointly Gaussian random vector x = (x,,xy), prove that the struc-
ture of the covariance matrix of the observable part x, has the structure given in

(1.1.15).
1.4. Derive a closed-form solution to the method of least squares (1.2.7).

1.5 (Maximum Likelihood Estimate with Laplace or Gaussian Noise). Recall that
the probability density function a Laplace distribution L£(u,b) is

p(e) = oo exp (— 221,

and the Gaussian, or normal, distribution, N'(u, o) is

_ (x — p)?

1
p(r) = —5—exp ( Ty )
Given a measurement model y = Ax + €, consider the following two types of
noise:

*

1 Entries of € = [e1,€2,...,Em]* are i.i.d. zero-mean Laplace.

2 Entries of € = [e1,€9,...,6m]" are i.i.d. zero-mean Gaussian.

Derive the log mazimum likelihood function for estimating x under these two
noise models. Discuss their relationships to the £% minimization and €? mini-
mization, respectively.

1.6. Prove the Fact 1.6 for the case d = 1. That is, the principal direction of a
random vector y is the eigenvector associated with the largest eigenvalue of its
covariance matriz 3. Furthermore, prove the Theorem A.29 in Appendiz A.

1.7. Prove the Fact 1.7.

1.8 (Ridge Regression). To solve a system of linear equations y = Ax, especially
when the system is ill-posed (say under-determined) or with (Gaussian) noise
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y = Ax + &, one popular way to estimate x is to consider the so-called ridge
regression:

min [ly — Az[|3 + Allz|3, (1.4.1)

for some A > 0.%% This is also known as Tikhonov regularization.®*

1 Show that the optimal solution x, to the above optimization is given by:
x, = (A*A+ )" 'A%y, (1.4.2)

given that the matriz A* A + M is invertible.
2 Discuss the conditions on the matriz A and X\ so that the matriv A* A + NI
is guaranteed to be invertible.

Ridge regression is arguably the most widely studied and used form of regression
in the classic statistical literature [HTF09]. There are many good properties of
this type of regressions, related to important methods such as the Wiener filter in
signal processing. The reader may refer to the recent book [FLZZ20] for a more
detailed study of ridge regression and many variants.

33 This can be viewed as a Lagrangian formulation of the constrained optimization
considered by Theorem A.25 in Appendix A.

34 Strictly speaking, Tikhonov regularization may consider a more general class of
regularization of the form ||Az||3 for some properly chosen positive definite matrix A.
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Sparse Signal Models

“It is quite probable that our mathematical insights and understandings are often used
to achieve things that could in principle also be achieved computationally — but where
blind computation without much insight may turn out to be so inefficient that it is un-

workable.”
— Roger Penrose, Shadows of the Mind

This book is about modeling and exploiting simple structure in signals, im-
ages, and data. In this chapter, we take our first steps in this direction. We
study a class of models known as sparse models, in which the signal of interest
is a superposition of a few basic signals (called “atoms”) selected from a large
“dictionary.” This basic model arises in a surprisingly large number of applica-
tions. It also illustrates fundamental tradeoffs in modeling and computation that
will recur throughout the book.

Applications of Sparse Signal Modeling

Why do we need signal models at all? We give a pragmatic answer. Many prob-
lems arising in modern signal processing and data analysis are intrinsically ll-
posed. Often, the number of unknowns vastly exceeds the number of observations.
In this situation, prior knowledge is absolutely essential to solving the problem
correctly.

To describe this phenomenon mathematically, consider the simple equation

Y =A =z (2.1.1)
observation unknown

Here, y € R™ is our observation, while & € R" is unknown. The matrix A €
R™*"™ represents the data generation process: the observed data y is a linear
function of the unknown (or hidden) signal @. This is a simple model; however,
we will see that it is rich enough to bear on a vast array of practical applications.
Recovering the unknown x from observation y may appear trivial: we simply
have to solve a linear system of equations! However, many practical applications
raise a substantial challenge: the number of observations, m, can be significantly
smaller than the number of elements n in the signal to be recovered. From linear
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Figure 2.1 Dense vs. Sparse Vectors. Left: a generic dense vector € € R", with
entries being independent standard normal random variables. Center: a sparse
vector, with only a few nonzero entries. Right: a compressible vector, with only a few
significant entries.

algebra,'! we know that when m < n, the system of equations y = Az does not
necessarily have any solution, but if it has any solution at all, then the solution
space has at least dimension n — m. Hence, either there is no solution, or there
are infinitely many solutions. Only one of them is the one we wish to recover!
To make progress, we need to leverage some additional properties of the target
solution.

Sparsity is one such property, which has strong implications on our ability to
solve underdetermined systems. A vector & € R" is considered sparse if only a
few of its elements are nonzero. Figure 2.1 (center) shows an example of such
a vector. Some form of sparsity arises naturally in almost every type of high-
dimensional signal or data that we encounter in practical applications. Below,
we illustrate with a few representative examples.

An Example from Medical Imaging

Figure 2.2 shows a magnetic resonance (MR) image of the brain. This is a digital
image I € RV*Y, Each entry I(v) (here, v € R?) corresponds to the density of
protons at a given spatial location inside the brain. This essentially indicates
where water is in the brain, and can reveal many biological structures that are
important for disease diagnosis and monitoring. To caricature the MRI problem
a bit, our goal is to estimate I, without opening up the brain! This is possible, if
we subject the patient to a large, spatially and temporally varying magnetic field.
The magnetic field causes the protons to oscillate at a frequency that depends on
their locations and energy states. Each proton essentially acts as its own radio
transmitter, and in aggregate they create a signal we can measure.

As we will see from a more detailed derivation of the physical model for MRI

1 Appendix A provides a detailed review of linear algebra and matrix analysis. In particular,
Appendix A.6 reviews the existence and uniqueness of solutions to linear systems, which
we use here to motivate our study of sparse approximation.
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Figure 2.2 A Magnetic Resonance Image. Left: target image of a human brain.
Right: coefficients in the wavelet decomposition I =, 4, x;, and their magnitudes,
sorted in descending order. The large wavelet coefficients concentrate around sharp
edges in the image; wavelet coefficients corresponding to smooth regions are much
smaller. The wavelet coefficients are highly compressible: their magnitude decays
rapidly. Image reprinted with permission from Michael Lustig [Lus13].

in Chapter 10, it turns out that the signal we observe is simply a sample of the
two-dimensional Fourier transform of I:

y:/](v)exp(—i%ru*v)dv. (2.1.2)

Here, i = \/—1 is the imaginary unit, and (-)* denotes the (complex conjugate)
transpose of a vector. The two-dimensional frequency vector u* = [uy,us] € R?
depends on how the magnetic field we applied varies over space. Here, letting F
denote the 2D Fourier transform, the above expression is

y = FI)(w). (2.1.3)

By changing the applied magnetic field, we can vary u, and collect m samples
of the Fourier transform, corresponding to different applied magnetic fields, pa-

rameterized by U = {uy,...,u,,}. We can concatenate all of our observations
into a vector y € C™, given by

Y FlI)(u)

Ym FlI](um)

Here, Fy is simply the operator that obtains the Fourier samples of I, indexed by
U. If you imagine the Fourier transform as acting by matrix multiplication, Fy
is simply the matrix we get if we discard all the rows of F that are not indexed
by U.

One very basic property of the integral (2.1.2), and hence of the operator Fy,
is that it is linear in its input I. This means that for any pair of inputs I and J
and complex scalars «, 3,

Fulal + BJ] = aFy[l] + BFy[J]. (2.1.5)

Because Fy is a linear operator, the problem of finding I from y using the
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observation equation (2.1.4) “just”

equations.

consists of solving a large linear system of

There is a substantial catch though. In this system of equations, there are
typically far more unknowns (here n = N?) than observations m. This is nec-
essary: it is generally too time and energy intensive to simply measure all N2
Fourier coefficients. This is even more pressing of a concern in dynamic MRI,
where the object being imaged is changing over time, and so acquisition needs
to be time-efficient. So, in general, we need m to be as small as is just necessary
to guarantee accurate reconstruction — and certainly significantly smaller than
n.

This leaves us with a seemingly impossible situation: we have nm unknowns
and m < n equations. Unless we can make some additional assumptions on
the structure of I, the problem is ill-posed. Fortunately, real signals are not
completely unstructured.? Figure 2.2 (right) shows a wavelet transform of I.
The wavelet transform expresses I as a superposition of a collection of basis
functions ¥ = {4py,..., Y2}

N2
I = P, X ;. (2.1.6)
lmage i—1 i-th basis signal i-th coefficient
Here, z1,...,zn2 € R are coefficients of the image I with respect to the basis W.

The entries in Figure 2.2 (right) are the magnitudes |x;| for the N? coefficients
x;. The important point is that many of these coefficients are extremely small.
If let J = {iy,...,ix} denote the k largest coefficients, we can approximate I as

I ~ Iy = Zd)ixi. (2.1.7)

target image -
i€l

superposition of k basis functions

Figure 2.3 visualizes the reconstruction and reconstruction error I — I,. Tt seems
that even if we retain only a relatively small fraction of the coefficients, we
still obtain an accurate approximation, and most of what remains is noise. This
suggests that the sequence x is compressible — it is very close to a sparse vector.

In order to recover I, we can first try to reconstruct the sparse vector x, using

2 Indeed, we can construct a “generic” element Igeneric of RNVXN by choosing its entries at
random — say from a standard Gaussian distribution N'(0, 1). With very high probability,
Igcneric Will simply look like noise. The target magnetic resonance image in Figure 2.2
certainly does not look like noise!
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Figure 2.3 Wavelet Approximation I to I and Approximation Error. Left:
approximation to the image in Figure 2.2 using the most significant 7% of the wavelet
coeflicients. Right: approximation error |I — I |. The error contains mostly noise,
suggesting that most of the important structure of the image is captured in the
wavelet approximation 1.

the observation equation

= Fulll,

observed Fourier coefficients
:,/—"U[’lﬂlxl‘F +'¢N2.73N2 },
=Fuli]or + oo+ Fultbye]one,

= |Fulw] |-+ | Fulpne]| =,
matrix A € RmXNZ7 m < N2.
= Ax. (2.1.8)

After these manipulations, we end up with a system of equations y = Ax. The
vector  contains the coefficients of the target image I in the wavelet basis. The
i-th column of the matrix A contains a subset U of the Fourier coefficients of
the 4-th basis signal 1,. To reconstruct I, we can look for a solution & to this
system, and then set

N2
I =) i (2.1.9)
i=1

Because « has N? entries, but we only have m < N? observations, the system
y = Ax is underdetermined. Nevertheless, because the wavelet coefficients of I
are (nearly) sparse — say, only its k largest coefficients are significant and others
are negligible, the desired solution x to this system is sparse. To reconstruct I
we need to find a sparse solution to an underdetermined system! In Chapter 10,
we will illustrate how to actually apply such a “compressive sampling” scheme
to real MRI images under more realistic conditions.
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An Example from Image Processing

In the previous example, we used the fact that the image I had a good sparse
approximation in terms of a “dictionary” of basic elements 1, ..., 1 ye:

I ¢ = v x, (2.1.10)

r2 Y .
icJ N?% x N? matrix sparse vector
[

where z; = 0 for i ¢ J, and k = |J| < N?. Expressions of this form play
a central role in lossy data compression. Image compression standards such as
JPEG [Wal91] and JPEG 2000 [TMO1] leverage sparse approximations (in the
discrete cosine transform (DCT) [ANR74] and wavelet bases [VK95], respec-
tively). Generally speaking, the sparser the representation is, the more an input
image can be compressed. However, sparse representations of images are not just
useful for compression: they can be used for solving inverse problems, in which
we try to reconstruct I from noisy, corrupted or incomplete observations. We
already saw an example of this in the previous section, in which we used sparsity
in the wavelet domain to reconstruct MR images. To facilitate all of these tasks,
we can seek representations of I that are as sparse as possible, by replacing ¥
with more general dictionaries A. For example, we might consider overcomplete

R™*™ n > m, which consist of several orthonormal bases (e.g.,

dictionaries A €
DCT and wavelets together). The idea is that each individual representation may
capture a particular type of signal well — say, DCT for smooth variations and
wavelets for signals with sharp edges. Together, they can represent a broader
class of signals.

An even more aggressive idea is to simply learn A from data, rather than
designing it by hand. Conceptually this leads to an even more challenging prob-
lem, known as dictionary learning, which we will study later in Chapter 7. This
approach tends to produce better sparsity-accuracy tradeoffs for representing
images I, and is also useful for a wealth of other problems, including denoising,
inpainting, and super-resolution that involve reconstructing I from incomplete
or corrupted observations. Each of these problems leads to an underdetermined
linear system of equations; the goal is to use the prior knowledge that the target
signal I has a compact representation in some dictionary A to make the problem
well-posed. Figure 2.4 shows an example of this for the problem of color image
denoising, from [MES08]. We observe a noisy image

Lioisy =  Tlean + =z (2.1.11)
target image noise
We assume® that patches of the clean image have an accurate sparse approxi-

mation in some dictionary A: if we break Icican into patches ¥ oapns-- - Ypelean

~ A X ;. (2.1.12)

Yiclean atch dictionary '
patch dictionary sparse coefficient vector

3 Of course, this assumption needs to be justified! See Exercise 2.16 and the notes and
references to this chapter. We will also have ample examples in later chapters when we
introduce methods to learn sparsifying dictionaries for real images.
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Figure 2.4 Image Denoising by Sparse Approximation. Left: A noisy input
image. The image is broken into patches y,,...,y,. A dictionary A = [a1 | --- | a,] is
learned such that each input patch can be approximated as y, ~ Ax;, with x; sparse.
Right: dictionary patches ai,...,a,. Center: denoised image, reconstructed from
the approximations §, = Ax;. Figures from [MES08, WMM ™" 10]. Image reprinted
with permission from Julien Mairal.

In denoising, we do not actually observe y, ,..,- Rather, we observe noisy patches

Yi = Yiclean T2i = AXTi+2;, t=1,...,p.

Based on these patches yy,...,y,, we learn a dictionary A such that
Yi ~ A X L = Yi-
i-th image patch learned dictionary sparse coefficient vector denoised patch

The dictionary A and sparse coefficients &; can be learned by solving a nonconvex
optimization problem, which attempts to strike an optimal balance between the
sparsity of the coefficients &i,...,%, and the accuracy of the approximation
Y, ~ A#;. More detail will be given in Chapter 7. We take ¢, = A#; as an
estimate of Y, joan-

Figure 2.4 (left) shows the noisy input image; Figure 2.4 (center) shows a de-
noised image constructed from ¢, ..., ¥,. Figure 2.4 (right) shows the dictionary
A learned from the noisy patches. Although the sparse dictionary prior is rela-
tively simple, and does not capture all of the global geometric structure of the im-
age, it leads to surprisingly good performance on many low-level image processing
tasks including image super-resolution [YWHM10] or restoration [MES08]. We
discuss modeling and computational aspects of dictionary learning in detail in
Chapters 7 and 9. For now, the key point is that the problem of reconstructing
the clean image from noisy patches again leads us to an underdetermined linear
system of equations, y, ~ Ax;.

An Example from Face Recognition

Sparsity also arises naturally in problems in which we wish to perform reliable
inference from unreliable measurements. For example, due to sensor errors or
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Figure 2.5 Face Recognition via Sparse Representation. Top: input face image
y is wearing sunglasses; Bottom: input face image y is with 50% pixels arbitrarily
corrupted. Each test image y is approximated as a sparse combination Ba of the
training images, plus a sparse error e due to occlusion. In this example, red
coefficients correspond to images of the correct subject. Results and Figures

from [WYG'09).

malicious tampering, a vector-valued observation y € R™ might be grossly cor-
rupted in a few of its entries:

= Yy, + e. (2.1.13)

observation clean data sparse error
We illustrate this more concretely using an example from automatic face recog-
nition. Imagine that we have a database consisting of a number of subjects. For

€ RWxH and

each subject ¢, we collect grayscale training images I; 1,...,1; n,
vectorize them to form a base matrix B; € R™*" with m = W x H. We can

further concatenate these matrices to form a large training “dictionary”

B=[Bi|By| | B, €R™", n=> n, (2.1.14)

all training images

Suppose our system is confronted with a new image y € R™, taken under
some new lighting condition, and possibly occluded — see Figure 2.5. For now,
we can assume that the input y is well-aligned to the training images (i.e., the
faces occur at the same position in the training and test images).* There is a
beautiful physical argument [BJ03] that shows that in an average case sense,
images of “nice” objects taken under varying lighting conditions lie very close to
low-dimensional linear subspaces of the high-dimensional image space R™.° This
suggests that if we have seen enough training examples, we can approximate the
input sample y as a linear combination of the training samples from the same

4 Relaxing this assumption is essential to building systems that work with unconstrained
input images. We will talk about how to relax this assumption in Chapter 13.

5 We will give a more detailed justification for this fact in Chapter 14 based on a simplified
physical model.
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class:

observed image linear combination of training images from i,-th class

Unfortunately, in practice, this equation is violated in at least two ways: first, we
don’t know the true identity i, ahead of time. Second, nuisance factors such as
occlusion cause the equation to be badly violated on a portion of the image pixels
(those that are occluded). For the first problem, we note that we can still write
down an expression for y as a linear combination of elements of the database B
as a whole: y =~ Bux. To deal with occlusion, we need to introduce an additional
term e, giving

y = Bx+e. (2.1.16)

Because the errors caused by occlusion are large in magnitude, this error e cannot
simply be ignored or treated with techniques designed for small noise. Unfortu-
nately, this means that the system is underdetermined: we have m equations,
but m+mn unknowns & = (x, e). Writing A = [B | I], we again have a very large
underdetermined system

y = Az. (2.1.17)

If we did not have prior information about &, there would be no hope of
recovering it from this observation. Fortunately, both « and e are very structured.
The nonzero values of @ should be concentrated only on those images of the true
subject, i, and so it should be a sparse vector. The nonzero values of the error
e should be concentrated only on those pixels that are occluded or corrupted,
and so it should also be sparse.®

Figure 2.5 shows two examples of a sparse solution to this system of equations
for a given input image y. Notice that the coefficients in the estimated & are
concentrated on images of the correct subject (red) and that the error indeed
corresponds to the physical occlusion. The setting we have described so far is
somewhat idealized — we will discuss both the modeling and system building
aspects of this problem in the application section of this book, see Chapter 13.
For our purposes here, it is enough to note that if we can somehow obtain a
sparse (x, e), it should suffice to identify the subject, despite nuisances such as
illumination, occlusion, and corruption.

6 Of course, the goal is to correct as many errors as possible. One of the surprises of high
dimensions is it is indeed possible to correct large fractions of errors using simple, efficient
algorithms. Understanding precisely how many errors we can correct (and how dense the
vector Z can be before our methods break down) will be a major theoretical thrust of this
book. In Chapter 13, we will give a more precise characterization about how large a
fraction of errors can be corrected for a system of linear equations, similar to those that
arise in the robust face recognition setting.
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Recovering a Sparse Solution

Suppose, as in the above examples, that we know the ground truth signal x, is
sparse. How powerful is this knowledge? Can it render ill-posed problems such as
MR image acquisition or occluded face recognition well-posed? To answer these
questions, we need a formal notion of sparsity. In the next two subsections, we
begin by introducing the concept of a norm of a vector, which generalizes the
concept of length. We then introduce an “¢/° norm”, which counts the number of
nonzero entries in a vector, a basic measure of how dense (or sparse) that vector
is.

Norms on Vector Spaces

A wector space V consists of a collection of elements (vectors), field such as the
real numbers R or complex numbers C (scalars) and operations (adding vectors
and multiplying vectors with scalars) that work in ways that conform to our
intuitions from R3. Appendix A reviews the formal definition of a vector space,
and gives examples. In the above application examples, our signals of interest
consisted of collections of real or complex numbers — e.g., in MR imaging, the
target image I was an element of RV*Y . We can view RV*™ as a vector space,
with scalar field R (written V = (RV*N R)). In the other examples as well, the
signals of interest reside in vector spaces.

A norm on a vector space V gives a way of measuring lengths of vectors, that
conforms in important ways to our intuition from lengths in R3. Formally:

DEFINITION 2.1 (Norm). A norm on a vector space V over R is a function
-1 : V=R that is

1 nonnegatively homogeneous: |ax| = |af||x| for all vectors x € V, scalars
a €R,

2 positive definite: ||| > 0, and ||x|| = 0 if and only if x = 0,

3 subadditive: ||| satisfies the triangle inequality |z + y|| < ||| + ||ly|| for all
z,y eV.

For our purposes, the most important family of norms are the ¢? norms (read
“ell p norm”). We will use norms from this family to derive practical algorithms
for finding sparse solutions to linear systems of equations, and for studying their
properties. If we take V = (R™,R), and p € (0, 00), we can write

1/p
], = (ZI@”) : (2.2.1)

i
The function [z, is a norm for any p > 1.” The most familiar example is the

7 We leave as an exercise for the reader to show that for 0 < p < 1, llzll,, is not a norm in

the strict sense of Definition 2.1.
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#2 norm or “Euclidean norm”

]2 =

which coincides with our usual way of measuring length. Two other cases are of
almost equal importance: p = 1, and p — oo. Setting p = 1 in (2.2.1), we obtain

el = lal, (2.2.2)

K2

which will play a very large role in this book.® Finally, as p becomes larger, the
expression in (2.2.1) accentuates large |z;|. As p — oo, |||, — max; |z;|. We
extend the definition of the P norm to p = oo by defining

le]| oo = miax|xi|. (2.2.3)

To appreciate the distinction between the various ¢ norms, we can visualize

their unit balls B, which consist of all vectors & whose norm is at most one:’

B, = {a: |, < 1} : (2.2.4)

The ¢2 ball is a (solid) sphere, the £ ball is a cube, and the ¢! ball is a kind of
diamond shape, also known as a cross polytope — see Figure 2.6. 19

Notice that for p < p', B, C B,s. This is because when p <p', ||, > ||z,
for all .

REMARK 2.2. This containment becomes even more striking in higher dimen-
sions: in R™, vol(Bs) = 2", while vol(By) = 2" /n! (see e.g., [Mat02]). So, in
n = 2 dimensions vol(B1) = (1/2) x vol(Bs), while in n = 1,000 dimensions
vol(B1) ~ 1072568 x vol(Bso) — a truly negligible fraction!

REMARK 2.3. This may seem to be in contrast to the mathematical fact that
“in finite dimensions, all norms are equivalent” in the sense that they define the
same topology for the space (see, e.g., Appendix A). Formally, this statement
means that in a finite dimensional vector space V, such as R™, for any pair of
norms |||, and ||-||g there exist numbers 0 < a, < oo such that for every
rev,

alzlg < el < Bllzlo- (2.2.5)
So, the norms ||| and [|-||, can be compared in size. However, as the example in

8 Anyone who has traveled in Manhattan should have good appreciation for the distinction
between ¢! and ¢2 — in fact, the ¢ norm is sometimes called the Manhattan norm! This
example illustrates a simple, but important point — the proper choice of norm depends
quite a bit on the properties of the problem and design goals. Unless you can leap tall
buildings in a single bound, measuring distance using the £2 norm would underestimate
how much travel you need to reach your destination.

9 For a ball of radius ¢ in terms of £P norm, we denote it as B, (¢) or - B, = {w [lll, < 5}.

10" To see this in action, you can run Chapter_2_Illustrate_Lp_Balls.m.
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Figure 2.6 The * Balls B, = {:1: |||, < 1} for 0 < p < oco. Forp>1, B, is a

convex set, and ||-||,, is a norm. For p < 1, [|-[|,, is not a norm, in the formal sense.

Remark 2.2 shows, in high dimensions, the unit balls of the various £P norms can
be very different — hence a and 3 can be very far apart. In applications involving
high-dimensional signals, different choices in norm can lead to radically different
solutions.

The ¢° Norm

With the notion of a norm in hand, we are prepared to define a formal notion of
sparsity. For this, we introduce a function, called the “¢° norm” (read “ell zero
norm”), which is simply the number of nonzero entries in a vector :

g = # {i | (i) # 0} (2.2.6)

Loosely speaking, x is sparse whenever |||, is small.

The ¢° norm |-, is not a norm, in the formal sense of Definition 2.1: since for
a #0, |lax||, = ||x||,, it does not have the property of nonnegative homogeneity.
It does have the other two properties, however. In particular, |||, is subadditive:

va, o, e+, < llzlly+ [, - (2.2.7)

This is easily checked by noting that the set of nonzero entries for  + ' is
contained in the union of the set of nonzero entries of  and the set of nonzero
entries of x'.

Although the £° norm is not a norm in the strict sense of Definition 2.1, it is
related to the /P norm and can be viewed as a “continuation” of p from large to
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small. To understand this, note that for every & € R™,

n

lim ||z||? = lim |x(:)|P = To=0 = lzl|o- 2.2.8
tilell = 3l O = Y o = lelh (229

In this sense, the £° norm can be considered to be generated from the ¢/ norms,
by taking p (infinitesimally) small. In the context of Figure 2.6, this can be
understood as follows: in R?, the sparse vectors correspond to the coordinate axes.
As p drops towards zero, the unit ball of the £ norm becomes more concentrated
around the coordinate axes, i.e., around the sparse vectors.

The geometric relationship between the ¢° and ¢P norms is useful for deriving
algorithms, and for understanding why small p tends to favor sparse solutions.
With this said, the formal notation ||z||, has a very simple meaning: it counts
the number of monzero entries in x. In all of the applications discussed above,
our goal is to recover a vector @irye With ||Z¢ruell, small. In this book, we often
use x, as a shorthand for @i ue.

The Sparsest Solution: Minimizing the #° Norm

Suppose we observe y € R™ with y = Ax,, and that our goal is to recover
x,. If we know that x, is sparse, it seems reasonable to form an estimate & by
choosing the sparsest vector x that satisfies the equation y = Ax. That is, we
choose the sparsest x that could have generated our observation. We can write
this as an optimization problem

min llz|lo (2.2.9)
subject to Az =y.

How might we solve this problem numerically? Call

supp (z) = {i | z(:) 0} C {1,...,n} (2.2.10)

the support of the vector @ — this set contains the indices of the nonzero entries.
The ¢° minimization problem (2.2.9) asks us to find a vector x of smallest support
that agrees with the observation y. One approach to finding such an « is to simply
try every possible subset of indices | C {1,...,n} as a candidate support. For
each such set |, we can form a system of equations

Az =y, (2.2.11)

where A; € R™*Il i the column submatrix of A formed by keeping only those
columns indexed by |, and similarly for ; € RI'l. We can attempt to solve (2.2.11)
for . If such an ) exists, we can obtain a solution  to Ax = y by filling in the
remaining entries of & with zeros. This exhaustive search procedure is spelled
out formally as Algorithm 2.1.
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Algorithm 2.1: /°-Minimization by Exhaustive Search

1: Input: a matrix A € R™*™ and a vector y € R™.
2: for k=0,1,2,...,n,
3:  for each | C {1,...,n} of size k,

4 if the system of equations A,z = y has a solution z,
5 set ¢ = z, x)c = 0.

6 return x.

7 end if

8 end for

9: end for
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Figure 2.7 Transitions in /° Recovery. Fraction of correct recoveries across 100
trials, as a function of the sparsity of the target solution @,. The system is of size
5 x 12. In this experiment, £° minimization successfully recovers all z, with k < 4
nonzeros.

EXAMPLE 2.4. Let us examine how the algorithm behaves numerically, using
the code Chapter_2_LO_recovery.m and Chapter_2_LO_transition.m from the
book website. These examples generate random underdetermined linear systems
y = Ax, with y = Ax,, and x, sparse. Apply Algorithm 2.1 (minimize_LO.m)
to recover a vector &, and ask whether & is equal to x, up to machine precision.
Fizing the system parameters (m,n), varying the sparsity k =0,1,..., and per-
forming many random trials, we produce Figure 2.7, which shows that as long as
k is not too large, the algorithm almost always succeeds.

Is there any mathematical explanation for this phenomenon? To understand
why #° minimization succeeds, it is worth first thinking about when it would fail.
Suppose that there is a non-zero k-sparse vector x, € null (A). Then

Az, = 0 = AO. (2.2.12)
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Hence, for this z, # 0, when solving y = Ax, = 0, the /° minimizer is simply
& = 0, and the true x, is not recovered. Put simply: if the null space of A
contains sparse vectors (aside from 0), /° minimization may fail to recover the
desired sparse vector x,.

In fact, the converse statement is also true: when the null space of A does
not contain sparse vectors (aside from 0), ° minimization does recover any suf-
ficiently sparse vector x,. To state the argument simply, let us suppose that
lxollg < k, and assume:

(%) the only & € null (A) with ||6]], < 2k is § = 0.

Let @ denote the solution to the £° minimization problem, so ||Z||, < ||z,l, < k.
If we define the estimation error

6=a—m,, (2.2.13)

then

16llg = 2 — @olly < l[2llg + llwolly < 2k (2.2.14)
So, 4 is a sparse vector. Moreover,
Ab=Ax—-z,)=Az— Az, =y—y = 0. (2.2.15)

So, & is a sparse vector in the null space of A. Property (%) states that the
only sparse vector in null(A) is 0. So, if (x) holds, § = 0, and so & = x,: (°
minimization indeed recovers x,.

Property (x) is a property of the matrix A. The above reasoning suggests a
slogan: the “good” A for recovering sparse vectors x, are those A that have no
sparse vectors in their null space. We can restate property (x) more conveniently
in terms of the columns of A: property (x) holds if and only if every set of 2k
columns of A is linearly independent.

DEFINITION 2.5 (Kruskal Rank [Kru77]). The Kruskal rank of a matric A, writ-
ten as krank(A), is the largest number r such that every subset of r columns of
A is linearly independent.

From the above reasoning, if ||z, ||, is at most half of krank(A), ¢° minimization
will recover x,:
THEOREM 2.6 (£° Recovery). Suppose that y = Ax,, with

[xolly < 5 krank(A). (2.2.16)

Then x, is the unique optimal solution to the £° minimization problem

min llz|, (2.2.17)
subject to Ax =y.
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Notice that Theorem 2.6 agrees with the behavior in Figure 2.7.'" Theorem
2.6 predicts that as long as x, is sufficiently sparse, it will be recovered by ¢°
minimization. The level of allowable sparsity depends on the Kruskal rank of the
matrix A. It is not hard to see that in general,

0 < krank(A) < rank(A). (2.2.18)
For “generic” A, the Kruskal rank is quite large:

PROPOSITION 2.7. Let A € R™" n > m, with A;; independent identically
distributed N'(0,1) random variables. Then, with probability one, krank(A) = m.

Proof Exercise 2.7 guides the interested reader through the proof. O

The intuition is that to have krank(A) < m, there must be some subset
of m columns of A which are linearly dependent, i.e., there is some subset
a;,,Q;,,...,a;, which lies on a linear subspace of dimension m — 1. For a Gaus-
sian random matrix A, the probability that this happens is zero. This is true
of many other random matrices.'> We can interpret this as saying that under
generic circumstances, knowing that the target ax, is sparse turns an ill-posed
problem into a well-posed one. The ¢ minimization problem recovers vectors x,
whose number of nonzeros is as large as 4. This level of sparsity is well beyond
what is needed for most applications.

Computational Complexity of #° Minimization

The theoretical results in the previous section show the power of sparsity: know-
ing that the target solution x, is even moderately sparse can render the problem
of recovering x, well-posed. Unfortunately, Algorithm 2.1 is not very useful in
practice. Its worst-case running time is on the order of n*, where k = ||z,||, is
the number of nonzero entries we wish to recover. For example, at the time of
writing this book, to solve a problem with m = 50, n = 200, and k£ = 10, on
a standard laptop, Algorithm 2.1 would require ~ 140 centuries. This is still a
very small problem by the standard of most modern-day applications!
Exhaustively searching all possible supports I may not seem like a particularly
intelligent strategy for solving the (°-minimization problem (2.2.9). However, no
significantly better algorithm is currently known that can solve this class of
problems efficiently. Is this because we are not clever enough and have not found
the correct (efficient) algorithm yet? Or is it the nature of this class of problems
such that an efficient algorithm simply does not exist? To answer this question

11 Actually, the behavior in Figure 2.7 is slightly better than what Theorem 2.6 predicts —
with probability one the Kruskal rank of A is m, and so the theorem shows that ¢°
minimization succeeds when k£ < % = 2. However, in the experiment, success always

occurs when k < 4. Exercise 2.8 asks you to explain this discrepancy, by proving a

modified version of Theorem 2.6.

For example, krank(A) = m with probability one whenever A is distributed according to

any absolutely continuous measure, i.e., there is a probability density function.

12
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more rigorously, we need to borrow some formal tools and results from complexity
theory.

Complexity Classes and NP-Hardness.

If you don’t have any background in complexity theory, you can loosely think
of the situation as follows. The problem class P consists of problems that we
can solve in time polynomial in the size of the problem. The problem class NP
consists of those problems for which, if we are given a “certificate” describing
the optimal solution, we can check that it is correct in polynomial time. That
is, P contains problems for which finding the right answer is “easy,” while NP
contains problems for which checking the right answer is easy. Anyone who has
ever struggled with a problem for days, only to have a colleague or teacher easily
demonstrate an obviously correct solution can appreciate the difference between
finding the right answer and checking the right answer!

It turns out that amongst the NP problems, there are certain “NP-complete”
problems to which every problem in NP can be reduced, in polynomial time,
to each other. So, solving one of these problems efficiently would enable you to
solve every problem in NP efficiently! It is remarkable that this class of problems
exists, and that it is quite large. It includes famous examples such as the Traveling
Salesman Problem and the Multiway Cut Problem.

To understand the phrase “NP-hard,” we have to appreciate one technicality
regarding the above definitions of P and NP: they pertain only to decision
problems, in which the goal is to produce a YES/NO answer. For example, the
decision version of the Traveling Salesman Problem asks: “Is it possible to visit
all of the nodes of a given graph (cities) while traveling a distance at most d,?”
The decision version of the 0 problem asks: “Does the system y = Ax have a
solution with at most k& nonzero entries?”

Often in practice we care much more about optimization problems than deci-
sion problems — we do not just want to know whether a solution exists, we want
to know the way to find it! Strictly speaking, optimization problems cannot be
“NP-complete” — in the formal definition of NP, we only include decision prob-
lems. Nevertheless, we may call an optimization problem NP-hard if an efficient
solution to that problem can be used to efficiently solve NP-complete problems.
For example, the optimization version of the Traveling Salesman Problem asks:
“Find the shortest path that visits all of the nodes in a given graph.” If one
can solve this problem efficiently, one can clearly also solve the decision version
efficiently, just by checking whether the optimal path has length at most d,.

NP-complete problems are considered highly unlikely to be efficiently solvable
(i.e., solvable on standard (model) computers polynomial in time and the size of
the problem).'® This class of problems includes notoriously difficult examples,
such as the Traveling Salesman Problem. Fully appreciating the mathematical
13 This is known as the “P versus NPP” problem, one of the most famous open problems in

mathematics and theoretical computing. The Clay Mathematics Institute is offering a
reward of 1 million dollars to anyone who has a formal proof that P=NP or that P#ZNP.
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Figure 2.8 Exact 3-Set Cover as a Sparse Representation Problem. Left: a
universe S = {1,...,6} and four subsets Uy,...,Us CS. {U1,Us} is an exact 3-set
cover. Right: the same problem as a linear system of equations. The columns of A
are the incidence vectors for the sets U1, Us, Us, Us. The Exact 3-Cover {Uq,Us}
corresponds to a solution « to the system Ax = y with only m/3 = 2 nonzero entries.

content of complexity theory requires formal modeling of computation (Turing
machines, complexity theory for different problem classes, etc.) that is beyond
the scope of this book. For interested readers, we refer to the book [GJ90] for a
formal introduction to this important subject.

NP-Hardness of £°-Minimization.

For our purposes here, we are interested whether the ¢°-minimization problem
(2.2.9) is equivalent (in its complexity) to certain known NP-hard problems.
Indeed, we can show that:

THEOREM 2.8 (Hardness of ¢° Minimization). The ¢-minimization problem
(2.2.9) is NP-hard.

Proof of Theorem 2.8: Hardness results are typically proved by reduction: we
show that if we can solve the problem of interest efficiently, this would allow us
to also efficiently solve some other problem, which is already known to be hard.
For the ¢° minimization problem, we do this by showing that ¢° minimization
can be used to solve certain (hard) set covering problems.

Consider the following problem:

Ezact 3-Set Cover (ESC): Given aset S = {1,...,m} and a collection C = {U1,...,U,}
of subsets U; C S each of which has size |U;| = 3, does there exist a subcollection C' C C
that exactly covers S, i.e., Vi € S there is exactly one U € C" with i € U?

This problem is known to be NP-complete [Kar72, GJ79]. To reduce it to 9
minimization, suppose that we are given an instance of E3C: Form an m x n
matrix A € {0,1}™*" by letting A;; = 1if i € U;, and A;; = 0 otherwise. Set
y =1 € R™ (i.e., an m-dimensional vector of ones). Figure 2.8 illustrates this
construction. We show:

Claim: The system Axz = y has a solution x, with ||&,|jo < m/3 if and only if there
exists an exact 3-set cover.
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(<) Suppose there exists an exact 3-set cover C’. Clearly, |C'| = m/3. Set

. /!
wj{l UecC

0 else

Then ||z|o = m/3, and y = Ax.

(=) Let @, be a solution to y = Ax with at most m/3 nonzero entries. Set
C' = {U; | z,(j) # 0}. We claim C’ is the desired cover. Let | = supp (,).
Since each column of A has exactly 3 nonzero entries, and A, has at most m/3
columns, the matrix A, has at most m nonzero entries. Since A,x, = vy, each
row of A, has at least one nonzero entry. Hence, each row of A has ezxactly one
nonzero entry, and the set C’ gives an exact cover. O

In fact, the truth is even worse than Theorem 2.8 suggests: The £ minimiza-
tion problem remains NP-hard even if we only demand that Ax =~ vy, in an
appropriate sense. It is also NP-hard to find an & whose number of nonzero en-
tries is within a constant factor of the smallest possible! See more discussions in
the Notes Section 2.5. Based on our current understanding of complexity theory,
it is extraordinarily unlikely that anyone will ever discover an efficient algorithm
that solves any interesting variant of the £° minimization problem for all possible
inputs (A, y).

Relaxing the Sparse Recovery Problem

The rather bleak worst-case picture for £°-minimization has not stopped engi-
neers from searching for efficient heuristics for finding sparse solutions to linear
systems.'* There is always some possibility for optimism:

“Although the worst sparse recovery problem may be impossible to solve efficiently,
perhaps my particular instance (or a subclass of instances) of interest is not so hard.”

This optimism is occasionally rewarded in a rather striking fashion. In the next
few chapters, we will see that many sparse recovery problems that matter for
engineering practice are solvable efficiently. Our first step is to find a proper
surrogate for the /2 norm which still encourages sparsity, but can be optimized
efficiently.

Convex Functions

If our goal is efficient optimization, perhaps the most natural class of objective
functions to consider is the convex functions. Smooth convex functions often
appear “bowl shaped” — as in Figure 2.9 (left). Indeed, a necessary and sufficient

14 as it has never stopped nature from learning and exploiting sparse coding.
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Figure 2.9 Convex and Nonconvex Functions. Left: a convex function. Local
descent methods such as gradient descent produce a sequence of points xo, x1, ...
which approach the global minimizer x,. Right: A nonconvex function. For this
particular function, depending on the initial point @, local descent methods may
produce the suboptimal local minimum Z. Motivated by their good properties for
optimization, in the first part of this book, we will seek convex formulations for
recovering sparse (and otherwise structured) signals.

condition for a smooth function f(z) : R — R to be convex is that it exhibits
nonnegative curvature — its second derivative %(x) > 0 at every point z.'°
Iterative methods for optimization seek a minimizer of an objective function
f(z) : R® — R, by starting from some initial point xo,'® and then generating a
new point &1 based on the local shape of the objective function in the vicinity of
xo. For a smooth function f(«), the negative gradient —V f(z) defines the direc-
tion in which the objective function decreases most rapidly. A natural strategy

for choosing «; is to move in this descending direction
L1 = Ty — tVf(il:()), (231)

where ¢ is a step size. Continuing in this manner to produce points xq, 1, T2, . ..,
we obtain the gradient descent method,'” a natural and intuitive algorithm for
minimizing a smooth function f(z). For the function f in Figure 2.9 (left),

assuming we choose the step size ¢t appropriately, the iterates xg,x1,... will
converge to the global minimizer x,. For the nonconvex function to the right,
18

this strategy only guarantees a local minimizer.
Convez functions such as Figure 2.9 (left) have the property that every local

15 For a multi-variate function f(x):R™ — R, we need the Hessian of the function to be
positive semi-definite: V2 f(z) = 0.

16 Tn this book, we will use xg to indicate the initial point of an iterative algorithm, which is
not to be confused with x,, the desired ground truth.

17 Gradient descent, also known as steepest descent, was first introduced by Cauchy in
1847 [Cau47]. Appendix C gives a more detailed account of optimization algorithms,
including gradient descent.

18 More precise conditions for convergence and complexity will be given in Chapters 8 and 9
for convex and nonconvex problems, respectively.
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Figure 2.10 Definition of Convexity. A convex function f : R®™ — R is one which
satisfies the inequality f(az + (1 — a)z’) < af(z)+ (1 —a)f(z') for all a € [0,1] and
x,x’ € R". Geometrically, this means that if we take the points (x, f(x)) and

(z', f(z')) on the graph of f, and then draw a line joining them, the graph of the
function falls below this line segment.

minimizer is a global minimizer.!” Moreover, many convex functions arising in
practice can be optimized efficiently using variants of gradient descent. Indeed,
in Chapter 8, we will see that the particular convex functions that we encounter
in computing with sparse signals (and their generalizations) can be efficiently
optimized, even on a large scale and in high dimensions.

We review the properties of convex functions more formally in Appendix C.

Here, we briefly remind the reader of the general definition of convex functions:?’

DEFINITION 2.9 (Convex Function on R™). A continuous function f : R" — R
is convex if for every pair of points x,x’ € R™ and o € [0, 1],

f(a:c (- a)x’) < af(x)+ (1—a)f(x)). (2.3.2)

This inequality can be visualized as follows. Consider two points (x, f(x)) and
(', f(2')) on the graph of f. If we form the line segment joining these two points,
this line segment lies above the graph of f. Figure 2.10 visualizes this inequality
with an example.

A conver combination of a collection of points x1,...,x is an expression of

19 Tt is worth noting that for many of the problems we will later discuss (e.g., MRI, spectrum
sensing, face recognition), global optimality is very important — there is a true signal that
we are trying to recover, and it is important to build algorithms that can do this reliably.
In our simulated example of 0 minimization, we declared the solution & correct, because
it coincided with the true x, that generated the observation y. This is in contrast to some
applications of optimization (e.g., in finance) where the objective function measures the
goodness of the solution (say the expected rate of return on an investment), and locally
improving the solution is meaningful, or even desirable, if the objective corresponds to
dollars earned/lost!

On the surface, this definition appears much more complicated than simply asking the
second derivative to be positive. The reason for this complication is that we will need to

20
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the form Y7, A\;&;, where the weights ); are nonnegative and Y.%_| \; = 1. For
example, for a € [0, 1], the expression z = ax+ (1 —a)x’ is a convex combination
of the points  and x’. The definition (2.3.2) states that at the point z, the
function f is no larger than the corresponding combination o f(x)+ (1 — ) f(x')
of the function values at the points « and x’.

This property of convex functions generalizes and gives the important Jensen’s
inequality, which states that the value of a convex function f at a convex combi-
nation of points is no greater than the corresponding convex combination of the
function values:

PROPOSITION 2.10 (Jensen’s Inequality). Let f : R" — R be a convex function.
Then for any k, any collection of points x1,...,x, € R™ and any nonnegative
scalars A1, ..., A\ satisfying Zle A =1,

k k
f <Z)‘le> < Z)\zf (x4) - (2.3.3)

i=1

A Convex Surrogate for the £° Norm: the /! Norm

With the good properties of convex functions in mind, let us try to find a convex
“surrogate” for the /° norm. In one dimension, z is a scalar, and ||z, = 1,0 is
simply the indicator function for nonzero z. From Figure 2.11, it is clear that if
we restrict our attention to the interval x € [—1, 1], the largest convex function
which does not exceed ||-||, on this interval is simply the absolute value |z|. In the
language of convex analysis, |x| is the convex envelope of the function ||z, over
the set [—1, 1]. This means that |z| is the largest convex function f which satisfies
f(x) < ||lz||, for every x € [—1,1], i.e., it is the largest convex underestimator of
||lz||, over this set. Thus, in one dimension, we might consider the absolute value
of x as a plausible replacement for ||z||,.

For higher-dimensional  (i.e., z € R"), the ¢° norm is*!

lzllo = Z La(iys£0- (2.3.4)
i=1

Applying the above reasoning to each of the coordinates x(i), we obtain the ¢!
norm

il = > l= ()] (23.5)

As in the scalar case, this function is the tightest convex underestimator of ||-||,,
over an appropriate set of vectors x:

work with convex functions that are not smooth; the general condition given in Definition
2.9 handles this situation as well.

21 Tn this book, we use (i) to indicate the i-th entry of a vector . Also we often use the
shorthand z; = (i) € R.
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Figure 2.11 A Convex Surrogate for the (° Norm. In black, we plot the graph of
the £° norm of a scalar z, over the interval & € [—1,1]. This function takes on the
value 0 at x = 0, and +1 everywhere else. In purple, and blue, we plot
various convex function examples f(x) which underestimate ||z||, on [—1,1], in the
sense that f(x) < ||z||, for all z € [-1,1]. In red, we plot the function f(z) = |z|.
This is the largest convex function which underestimates ||z||, on [-1,1]. We call |z|
the convex envelope of ||z||, on [—1,1].

THEOREM 2.11. The function |-||, is the convex envelope of ||-||,, over the set
B = {x| |||, <1} of vectors whose elements all have magnitude at most
one.

Proof Let f be a convex function satisfying f(-) < ||-[|, on Bs. We prove that
f(-) < |I-l; on B as well. Consider the cube C = [0,1]". Its vertices are the
vectors o € {0,1}". Any x € C can be written as a convex combination of these
vertices:

T = Z Ai0i. (2.3.6)
Because f(-) < |||y, f(o3) < [|oilly = |loi|l,- Because f is convex,
flx)=f (Z_)\iﬂi) < Z Xif (o) [Jensen’s inequality]

< Z)‘i loilly, = Z)‘i loill [o; are binary]
=l (23.7)

Hence, f(-) < |‘||; on the intersection of B, with the nonnegative orthant.
Repeating the argument for each of the orthants, we obtain that f(-) < |-||; on
B, and hence ||-||; is the convex envelope of ||-||, over B. O

So, at least in the sense of convex envelopes, the £' norm provides a good
replacement for the /° norm. Replacing the /° norm in (2.2.9) with the ¢! norm,
we obtain a convex ¢! minimization problem,

min [l |l (2.3.8)
subject to Ax =y.
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In contrast to the £ problem, this problem can be solved efficiently.

A Simple Test of ¢! Minimization

Theorem 2.11 is a strong initial motivation for considering £* minimization (2.3.8)
for recovering a sparse solution — it says that in a certain sense, the ¢! norm is
the canonical convex surrogate for the /0 norm. Some care is in order, though.
Theorem 2.11 does not say anything at all about the correctness of (2.3.8) —
whether the solution to (2.3.8) is actually the desired sparse vector x,.

The easiest way to get some insight into this question is to do an experiment!
For this, we will need to solve the problem (2.3.8) computationally and see how
well it works. How do we solve the optimization problem (2.3.8)7 Appendix D
gives a quick introduction to some general optimization techniques that may help
us solve problems of this kind. More specifically, since the objective function is
convex, the geometry of a convex function in Figure 2.12 (left) suggests that we
should do quite well just using local information about the slope of the objective
function. Indeed, if our objective function were differentiable, this would very
naturally suggest the classical gradient descent method for solving problems of
the form

min f(x). (2.3.9)

This algorithm starts at some initial point xy, and then generates a sequence
of points (xg,®1,...,xk,...) by iteratively moving in the direction of greatest
decrease of f(-):

Lr+1 = Tk — thf(mk) (2310)

Here, t;, > 0 is a properly chosen step size.
There are two main difficulties that prevent us from directly applying the
gradient descent iteration (2.3.10) to the ¢! minimization problem (2.3.8):

e Nontrivial constraints: Unlike the general unconstrained problem (2.3.9),
in the problem (2.3.8) we are only interested in @ that satisfy Az = y.

¢ Nondifferentiable objective: The objective function in (2.3.8) is not differ-
entiable, and so at certain points the gradient V f(x) does not exist. Figure
2.12 (right) shows this: the function is pointed at zero! Since zero is sparse,
this is precisely one of the points we are most interested in.

Constraints.

One approach to handle the first problem is to replace the gradient descent iter-
ation with projected gradient descent. This algorithm aims at general problems
of the form

min f(x) (2.3.11)
subject to x € C,
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Figure 2.12 Subgradients of Convex Functions. Left: for a differentiable convex
function, the best linear approximation at any point x¢ is a global lower bound on the
function. Right: for a nondifferentiable function, we say that g is a subgradient of f
at ©o (and write g € df(xo) if g is the slope of a linear function that takes on the
value f(xo) at xo, and globally lower bounds f.

where C is some constraint set. This algorithm is exactly the same as gradient
descent, except that at each iteration it projects the result @y — ¢,V f(xy) onto
the set C. The projection of a point z onto the set C is simply the nearest point
to z in C:

Pclz] = argmin 1 |z — z|2 = h(x). (2.3.12)

xecC
For general C, the projection may not exist, or may not be unique (think about
how this could happen). However, for closed, convex sets, the projection is well-

defined, and satisfies a wealth of useful properties. If A has full row rank, the
projection onto the convex set C = {x | Ax = y} has an especially simple form:

Prajaz—y)[2] = 2 — A" (AA") ' [Az — y]. (2.3.13)

Figure 2.13 visualizes the projection onto this particular C. This formula can be
derived by noting two properties of the projection & = Pc[z]:

1 Feasibility: ¢ € C, i.e., AZ = y.

2 Residual is orthogonal: z — & | null(A). Since z — & = —Vh (&), this

condition can be stated as

—Vh(&) is orthogonal to C at &.

Exercise 2.11 guides the interested reader through the derivation of this ex-
pression. For the general problem (2.3.11), with differentiable objective f, the
projected gradient algorithm simply repeats the iteration

xrp+1 = Pc [1:].c — thf(a:k)] . (2.3.14)
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General C Affine subspace C = {zo} + null(A)
z —Vh(z) =z — @ L null(A)

Figure 2.13 Projection onto Convex Sets. Left: projection onto a general convex
set. Middle: projection onto an affine subspace. Right: projection onto the affine
subspace can be characterized as the point & at which the gradient Vh(&Z) is
orthogonal to null(A).

Nondifferentiability.

The problem of nondifferentiability is slightly trickier. To handle it properly, we
need to generalize the notion of derivative to include functions that are not dif-
ferentiable. For this, we draw inspiration from geometry. Consider Figure 2.12
(left). It displays a convex, differentiable function f(x), as well as a linear ap-
proximation f(z), taken at a point ao:

f(@) = f(zo) + (Vf(mo), ® — x0) . (2.3.15)

The salient point here is that the graph of f lies entirely above the graph of the
approximation f:

f(@) > f(xo) + (Vf(xo),x — xp), VaeR" (2.3.16)

It is not too difficult to prove that this property holds for every convex differen-
tiable function and every point xq, simply by using calculus and the definition
of convexity.

This geometry opens the door for generalizing the notion of the gradient to
nonsmooth functions. For nonsmooth functions such as f(x) = ||z||;, at a point
of nonsmoothness g, the gradient does not exist, but we can still make a linear
under-estimator

fl@) = (o) + (w,z — @), (2.3.17)
as in Figure 2.12 (right). Here, u replaces Vf in the previous expression, and
plays the role of the “slope” of the approximation. We say that w is a subgradient
of f at xg if the linear approximation defined by u is indeed an under-estimator
of f (i.e., it lower bounds f(x) at all points x):

f(x) > f(zo) + (u,z —xp), Ve (2.3.18)

Let us consider our function of interest — the £* norm. For € R (one dimen-
sion), ||z||;, = |=| is simply the absolute value. For 2 < 0, the slope of the graph
of |x| is —1, while for |z| > 0, it is +1. Convince yourself that if we take ¢ # 0,
then the only u satisfying the above definition is u = sign(x).
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Figure 2.14 Subdifferential of the ¢' Norm. In black, f(x) = ||z|;. In blue,
purple, and red, three linear lower bounds of the form g(x) = f(zo) + (u,x — xo),

taken at o = 0, with slope u = —%, %, and %, respectively. It should be clear that

any slope uw € [—1,1] defines a linear lower bound on f(x) around o = 0. So,

9] - 1(0) = [-1,1]. For &y > 0, the only linear lower bound has slope u = 1; for & < 0,
the only linear lower bound has slope u = —1. So, 9| - [(x) = {—1} for < 0 and

0| - |(x) = {1} for > 0. Lemma 2.13 proves this formally, and extends to
higher-dimensional € R™.

However, at 0 the function |z| is “pointy,” namely, nondifferentiable, and some-
thing different happens: at o = 0, every u € [—1, 1] defines a linear approxima-
tion that underestimates f. So, in fact, every u € [—1, 1] is a subgradient. Thus,
at points of nondifferentiability there may exist multiple subgradients. We call
the collection of all subgradients of f at a point x( the subdifferential of f at xg,
and denote it by df(x¢). Formally:

DEFINITION 2.12 (Subgradient and Subdifferential). Let f : R™ — R be a convez
function. A subgradient of f at xg is any w satisfying

f(®) = f(mo) + (u, @ —x0), V. (2.3.19)
The subdifferential of f at xg is the set of all subgradients of f at xq:

Of (xo) = {u |Vx €R", f(x) > f(zo) + (U, — x0) }. (2.3.20)

With these definitions in mind, we might imagine that in the nonsmooth case, a
suitable replacement for the gradient algorithm might be the subgradient method,
which chooses (somehow) g, € 0f(xy), and then proceeds in the direction of
—gi: Tipt+1 = T — lkg,. Incorporating projection onto the feasible set C, we
arrive at the following projected subgradient algorithm??:

LTyl = Pc[mk — tkgk], gy € 8f(a:k) (2.3.21)

22 Projected subgradient methods were first developed by Naum Shor [Sho85] and Boris
Polyak etc. in 1960’s.
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To apply the projected subgradient method, we need an expression for the subdif-
ferential of the ¢* norm. Figure 2.14 visualizes this. In one dimension, ||z||, = |z|;
this function is differentiable away from z = 0. For « > 0, 9| - |(z) = {1}, while
for x < 0, 9] - |(z) = {-1}. At © = 0, |z| is not differentiable, and there are
multiple possible linear lower bounds. Figure 2.14 visualizes three of these lower
bounds. It is not difficult to see that lower bounds at = 0 can have any slope
from —1 to 1; hence, the subdifferential is

|- |(z) =[-1,1], atx=0.
The following lemma extends this observation to higher-dimensional € R™:
LEMMA 2.13 (Subdifferential of |-||;). Let x € R", with | = supp (x),
| () ={v € R" | Piv =sign(x), |lv| <1}. (2.3.22)

Here, P; € R™*™ {s the orthoprojector onto coordinates |:

L foG) el
[Pl’v}(J)—{O Pl (2.3.23)

Proof The subdifferential 0 ||-||; (z) consists of all vectors v that satisfy

n

S @@ = Y o)+ o) @) - (i) (2.3.24)

i=1

for every « and x’. A sufficient condition is that for every index 7 and every
scalar z,

|z] > |x()| +v()(z — z(3)). (2.3.25)

Taking @’ = & + (z — x(i))e; in (2.3.24) shows that (2.3.25) is also necessary.
If (i) = 0, (2.3.25) becomes |z| > wv(i)z, which holds for all z if and only if
|lv(7)| < 1. If (i) # 0, the inequality is satisfied if and only if v(i) = sign (x(7)).
Hence, v € 0||-||; if and only if for all i € |, v(i) = sign («(4)), and for all ¢,
|v(7)| < 1. This conclusion is summarized as (2.3.22). O

The projected subgradient method alternates between subgradient steps, which
move in the direction of —sign(x), and orthogonal projections onto the feasible
set {x | Ax = y} according to equation (2.3.13). We obtain a very simple algo-
rithm that solves (2.3.8), which we spell out in detail as Algorithm 2.2.

REMARK 2.14 (Projected Subgradient and Better Alternatives). In many re-
spects, this is a bad method for solving the ¢' problem. It is correct, but it con-
verges very slowly compared to methods that exploit a certain piece of problem-
specific structure, which we will describe in later chapters. The main virtue of
Algorithm 2.2 is that it is simple and intuitive, and also serves our exposition
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Algorithm 2.2: /'-Minimization by Projected Subgradient

1: Input: a matrix A € R™*™ and a vector y € R™.

2. Compute T' <~ T — A*(AA*)"'A, and & + ATy = A" (AA") 1y
3: xy + 0.

4: t < 0.

5: repeat many times

6: t+—t+1;

7 T, <—:E—|—l"(wt,1 — %Sign(wt,l) );

8: end while

o o o
IS > o0
T T T
I I I

Fraction of successes

<]
o
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!

0 ! ! ! | . . . . .
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Number of nonzero entries k = ||z,

Figure 2.15 Phase Transition in ¢! Minimization. We consider the problem of
R100x200

recovering a sparse vector &, from measurements y = Ax,, where A € is a
Gaussian matrix. We vary the number of nonzero entries k = ||a,||, across
k=0,1,...,200, and plot the fraction of instances where ¢! minimization successfully

recovers &,, over 50 independent experiments for each value of k. Notice that this
probability of success exhibits a (rather sharp) transition from 1 (guaranteed success)
to 0 (guaranteed failure) as k increases. Notice moreover, that for sufficiently
well-structured problems (k small), €' minimization always succeeds.

by introducing or reminding us of subgradients and projection operators.>> The
projected subgradient method for ' minimization can be implemented in just a
few lines of Matlab code. In Chapter 8, we will systematically develop a number
of more advanced optimization methods that can fully utilize the structures in
this problem for better efficiency and scalability.

To see how well does ¢! minimization (as implemented through the projected
subgradient method) perform, run Chapter_2_L1_recovery.m from the book

23 Also, we would like you to have a feel for at least one very simple way for implementing ¢!
minimization in code and to play with it. Our experience is that this helps to think more
concretely about the optimization problem and its applications, rather than leaving it as a
mathematical abstraction.
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website. You may see an interesting phenomenon! Although the method does
not always succeed, it does succeed whenever the target solution x, is sufficiently
sparse! Figure 2.15 illustrates this in a more systematic way. In the figure, we
generate random matrices A of size 200 x 400 and random vectors x, with k
nonzero entries. We vary k from 1 to 200. For each k, we run 50 experiments
and plot the fraction of trials in which ¢! minimization correctly recovers x,, up
to numerical error. Notice that indeed, ¢! minimization succeeds whenever x, is
sufficiently sparse.

Sparse Error Correction via Logan’s Phenomenon

In Section 1.2.2 of the introduction chapter, we have discussed the work of Ben-
jamin Logan, who has shown that ¢! minimization can be used to remove sparse
errors in band-limited signals. To connect its content more closely to our setting
here, let us consider a discretized analogue of the result, in which we consider a
finite dimensional signal y € C". Let F' € C™"*™ be the Discrete Fourier Trans-
form (DFT) basis for C™ (see equation (A.7.13) of Appendix A). That is, we
have:

1 kl
Fkl\/ﬁexp<27rin>, k=0,...,n—1,1=0,...,(n—1).  (2.3.26)

Let fo,.... f(n—1) denote the columns of the DF'T matrix:

F=[fol | foy| eC™m (2.3.27)

Form a submatrix B € C"*(@+1)  corresponding to the d lowest-frequency ele-
ments of this basis and their conjugates®*:

B = [f,d%l |- ] f%] € Ccrx(d+D) (2.3.28)

where we use f_, to indicate the conjugate of f,. Let us imagine that =, =
Bw, € col(B), and

Y=, + e, (2.3.29)

where [|e,||, < k. Our task is to recover x, (which is equivalent to removing e,).
A discrete analogue of the program suggested in Logan’s theorem would be to
solve?®

min |y — |, (2.3.30)
subject to @ € col(B).

24 We use pairs of conjugate bases to represent real signals. One may view the range of B as
the discretized version of the band-limited functions B1(Q2) introduced earlier in Logan’s
Theorem 1.5.

25 For complex vectors, the £ norm is simply the sum of absolute values of the real and
imaginary parts. Or equivalently, we identify a complex vector in C™ as a real vector in
R2m,
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Observation y = x, + e, Est. Bandlimited & Est. Sparse e

Figure 2.16 Logan’s Phenomenon. Left: the superposition y = x, + e, of a
band-limited signal «, and a sparse error e,. Middle: estimate & by ¢ minimization.
Right: estimate & by ¢! minimization. Both estimates are accurate to within relative
error 1076,

This problem is actually very much equivalent to the sparse signal recovery
problem discussed so far. To see this, let A be a matrix whose rows span the left
null space of B — i.e., rank (A) =n —d, and AB = 0. Then Az, = 0, and our
observation equation (2.3.29) is equivalent to

y = Ae,, (2.3.31)

where y = Ay. From this, it is not difficult to argue that the optimization
problem (2.3.30) is equivalent to

min lell, (2.3.32)
subject to Ae=1y,

in the sense that e, is an optimal solution to (2.3.32) if and only if y—e, € col(B)
is an optimal solution to (2.3.30). Figure 2.16 shows an example of this discrete
analogue of Logan’s phenomenon. You can reproduce this result by running
E6886_Lecture2_Demo_Logan.m from the book webpage.

Given the examples we have seen thus far of how sparsity arises in appli-
cation problems, the phenomenon associated with ¢! minimization is certainly
intriguing. In the coming chapters, we will study it first from a mathematical
perspective, to understand why it occurs and what its limitations are; we will
then investigate its implications for practical applications in later chapters.

Summary

Let us briefly recap what we have learned in this chapter. In many modern
data analysis and signal processing applications, we need to solve very large,
underdetermined systems of linear equations:

y=Azx, AcR™" m<n.
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Such problems are inherently ill-posed: they admit infinitely many solutions.

Uniqueness of the Sparse Solution.

To make such problems well-posed, or to make the solution unique, we need
to leverage additional properties of the solution that we wish to recover. One
important property, which arises in many practical applications, is sparsity (or
compressibility). This is a powerful piece of information: although the signals
themselves reside in a very high-dimensional space, they have only a few intrinsic
degrees of freedom — they can be represented as a linear superposition of just
a few atoms from a properly chosen dictionary. As Theorem 2.6 shows, under
fairly general conditions, imposing sparsity on & can indeed make the problem
of solving

min ||x|jo subject to y = Az

well conditioned: As long as the target solution «, is sufficiently sparse w.r.t. the
Kruskal rank of A, the sparsest solution to y = Ax is unique and is the correct
solution.

Tractability of the Sparse Solution via Convex Relazation.
Computationally, however, finding the sparsest solution to a linear system is in
general intractable (i.e., NP-hard, Theorem 2.8). To alleviate the computational
difficulty, we relax the ¢° minimization problem and replace the ¢° norm of x
with its convex envelope, the ¢! norm:

min ||x||; subject to y = Ax.

Projected Subgradient Descent.

We have introduced a very basic subgradient descent algorithm (Algorithm 2.2)
that solves the convex ¢! minimization problem. From the results of the algo-
rithm, we observe a striking phenomenon that ¢' minimization can effectively
recover the sparse solution under fairly broad conditions. We will explain why
this is the case in the next chapter after we carefully characterize exact conditions
under which ¢! minimization gives the correct sparse solution.

Notes

Application Vignettes.

Some of the early applications of sparse representation are in signal processing,
such as medical imaging [LDP07], seismic signals [HH08|, and image processing
[YWHMO08, MES08]. The three applications described in this chapter illustrate
various aspects of sparse modeling and sparse recovery. The medical imaging
application is described in the work of Lustig et. al. [LDP07, LDSP08]. The
denoising results shown in Section 2.1.2 are due to Mairal et. al. [MES08]. The
face recognition formulation in Section 2.1.3 is described in [WYG109]. The
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discussion in this chapter only touches the surface of these problems; we will
revisit medical imaging in Chapter 10 and face recognition in Chapter 13. Please
see these chapters and their references for broader context and related work on
each of these problems. These are just a few of the vast array of applications of
sparse methods; a few of these are highlighted in Part III of the book, such as
Chapters 11-16.

NP Hardness of £° Minimization and Related Problems.

The hardness result for ¢° minimization, Theorem 2.8, is due to Natarajan
[Nat95]; see also Davis, Mallat, and Avellaneda [DMA97]. Results of Amaldi
and Kann [AK95, AK98] and Arora, Babai, Stern, and Sweedyk [ABSS93] show
that ¢° minimization problems are also NP-hard to approximate. Delineating
the boundaries between tractable and intractable instances of sparse approxi-
mation remains an active topic of research: see, e.g., Zhang, Wainwright, and
Jordan [ZWJ14] or Foster, Karloff, and Thaler [FKT15] for more recent devel-
opments. There are hardness results for a number of problems that relate closely
to sparse approximation. These results also have implications for sparse error
correction. There are also hardness results around the problem of matriz spar-
sification in numerical analysis, which seeks to replace a given matrix A with
a sparse matrix A such that range(A) ~ range(A): see McCormick [McC83],
Coleman and Pothen [CP86], and Gottlieb and Neylon [GN16] for discussions
of the hardness of this and related problems. Based on reduction techniques
similar to that classical complexity theory, the most recent work of Brennan
and Bresler [BB20] has systematically studied the gaps between statistical and
computational complexity for a broad family of related problems such as sparse
linear regression and sparse PCA, as well as many problems related to matrices
and tensors that we will study in later chapters.

Exercises

2.1 (Convexity of ¢F Norms). Show that

Il = (X lel?) " (2.6.1)

s convex for p > 1, and nonconvex for 0 < p < 1.
2.2. Show that for 0 <p <1, |||, is not a norm in the sense of Definition 2.1.
2.3 (Relationship between ¢ Norms). Show that for p < g,

lal, >l (262)

for every . For what  is equality obtained (i.e., ||, = [z, )?
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2.4 (Computing the Kruskal Rank). Write a Matlab function that takes as an
input a matric A € R™*™, and outputs the Kruskal rank krank(A). There is no
known way to efficiently compute the Kruskal rank. It is fine if your code takes
time exponential in n. Corroborate the conclusion of Theorem 2.6, by generating
a 4 x 8 Gaussian matriz A, via A = randn(4,8), and computing its Kruskal
rank.

2.5 (A Structured Matrix with Small Kruskal Rank). Consider a 4 x 8 dimen-
sional compler matrix generated as

A=[I|F], (2.6.3)

where I is the 4 x 4 identity matriz, and F is a 4 X 4 Discrete Fourier Transform
(DFT) matrixz: in Matlab, A = [ eye(4), dftmtx(4) 1. Fither using your code
from Ezxercise 2.4, or hand calculations, determine the Kruskal rank of A. You
should find that it is smaller than 4! A general version of this phenomenon can
be observed with the Dirac comb, which is sparse in both time and frequency.

2.6 (The Spark). Results on (° uniqueness are sometimes described in terms of
the spark of a matriz, which is the number of nonzero entries in the sparsest
nonzero element of the null space of A:

spark(A) = d¢()rnj4nd:0 Id]|o-

What is the relationship between spark(A) and krank(A)?

2.7 (Kruskal Rank of Random Matrices). In this exercise we prove that for a
generic mXn matriz A with entries ~iq N(0,1), krank(A) = m with probability
one.

1 Argue that for any m x n matriz A, krank(A) < m.
2 Let A=[ay |- | ay] with a; € R™ as column vectors. Let span denote the
linear span of a collection of vectors. Argue that

Pla. € span(ay,...,an,-1)] =0. (2.6.4)

3 Argue that krank(A) < m if and only if there exist some indices i1,...,im
such that

a;, €span(ai,,...,Q;, —1) (2.6.5)

4 Conclude that krank(A) = m with probability one, by noting that

P[Elil,...,im : a;, €span(a;,,...,a;, 1)]

< Z P [ai, €span(a;,,...,a;, ,)]

U15-05tm

<m"™ x Play, € span(ay,...,am—_1)]

=0

=0.
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2.8 (/° Minimization and Typical Examples). We showed that there is a worst

L o krank(A . .
case phase transition in (0 minimization at wnf() This means that €0 mini-

kv%k(f\). We also know that for

a Gaussian matriz A € R™*" krank(A) = m, with probability one.

mization recovers every x, satisfying ||z.l|, <

Using code for £° minimization provided (or write your own!), please do the fol-
lowing: generate a 5 x 12 Gaussian matriz A = randn(5,12). What is rank(A) ?
Generate a sparse vector x,, with four nonzero entries, via xo = zeros(12,1);

x0(1:4) = randn(4,1). Now, set y = A xo. Solve the (° minimization prob-
lem, to find the sparsest vector x satisfying Ax = y. Is it the same as x,? Check
whether norm(x - xo) is small, where x is the solution produced by your code.

Notice that the worst case theory for (0 predicts that we can only recover
vectors with at most 2 nonzero entries. But we have observed £° succeeding with
4 nonzero entries! This is an example of a typical case performance which is
better than the worst case.

Please explain this! Argue that if x, is a fixed vector supported on some set
| of size < m, then the probability that there exists a subset I # | of size < m
satisfying Ax, € range(Ay) is zero.

Does your argument imply that the worst case theory based on rank can be
improved? Why or why not?

2.9 (Subdifferentials). Compute the subdifferentials for the following functions:

1 The subdifferential for f(x) = |||, with x € R™.
2 The subdifferential for f(X) = 2?21 | Xejll, with X a matriz in R"*".
3 The subdifferential for f(x) = || X||, with X a matriz in R™>™.

2.10 (Implicit Bias of Gradient Descent). Consider the problem of solving an
under-determined system of linear equation y = Ax where A € R™*™ with
m < n. Of course the solution is not unique. Nevertheless, let us solve it by
minimizing the least square error

min /() = |ly — As3,
say using the simplest gradient descent algorithm.:
Tpp1 = xp — oV f(xy).

Show that if we initialize Ty as the origin 0, then when the above gradient descent
algorithm converges, it must converge to the solution x, of the minimal 2-norm.
That is, it converges to the optimal solution of the following problem

min ||x||3  subject to y = Ax.
X

This is a phenomenon widely exploited in the practice of learning deep neural
networks. Although due to over-parameterized, parameters that minimize the cost
function might not be unique, the choice of optimization algorithms with proper
initialization (here gradient descent starting from the origin) introduces implicit
bias for the optimization path and converges to a desirable solution.
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2.11 (Projection onto an Affine Subspace). In deriving the projected subgradient
method for 01 minimization, we used the fact that for an affine subspace

C={x| Az =y}, (2.6.6)

where A is a matriz with full row rank, and y € range(A), the Fuclidean pro-
jection on C is given by

Pclz] = arg min |x — z||§ (2.6.7)
Ax=y
—z—A*(AA*) '[Az —y]. (2.6.8)

Prove that this formula is correct. You may use the following geometric char-
acterization of Pclz]: € = Pcz] if and only if (i) Ax =y and (i) for any &
satisfying AT =y, we have

(z—x,&—x) <0. (2.6.9)
2.12. Projected gradient descent aims to:
min f(x) subject to x € C.
Show an example of when the projection onto set C:

1 does not exist;
2 is not unique.

(Tips: This problem does not have a unique solution, you can either answer
this question by drawing pictures or giving mathematical formula, so use your
creativity!)

2.13 (Sparse Error Correction). In coding theory and statistics, we often en-
counter the following situation: we have an observation z, which should be ex-
pressible as Bx, except that some of the entries are corrupted. We can express
our corrupted observation as

z = Bz + e . (2.6.10)

observation encoded message sparse corruption

Here z € R™ is the observation © € R" is a message of interest; B € R™*" (n > r)
is a tall matriz with full column rank r, and e € R™ represents any corruption of
the message. In many applications, the observation may be subject to corruption
which is large in magnitude, but affects only a few of the observations, i.e., e is
sparse vector. Let A € R"=")%X" be o matriz whose rows span the left null space
of B, i.e., rank(A) =n —r, and AB = 0. Prove that for any k, (2.6.10) has a
solution (x,e) with ||el|, = k if and only if the underdetermined system

Ae = Az (2.6.11)
has a solution e with ||e||, = k. Argue that that the optimization problems

min || Bz — z||, (2.6.12)
x
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and

min [le||; subject to Ae= Az (2.6.13)

are equivalent, in the sense that for every solution & of (2.6.12), € = B& — z is
a solution to (2.6.13); and for every solution & of (2.6.13), there is a solution &
of (2.6.12) such that € = Bx — z.

It is sometimes observed that “sparse representation and sparse error correc-
tion are equivalent.” In what sense is this true?

2.14 (¢* vs. £°° minimization). We have studied the £* minimization problem
min [|z||, subject to Ax =1y (2.6.14)

for recovering sparse x,. We can obtain other convexr optimization problems by
replace ||-||; with ||||,, for p € (1,00]. For what kind of @, would you expect {>°
minimization to outperform 1 minimization (in the sense of recovering x, more
accurately)?

2.15 (Faces and Linear Subspaces). Download face_intro_demo.zip from the
book website. Run load_eyb_recognition to load a collection of images under
varying illumination into memory. The training images (under different lighting)
will be stored in A_train, the identities of the subjects in label_train. Form a
matrix B by selecting those columns of A_train that correspond to Subject 1. We
will use the singular value decomposition to investigate how well-approximated
the columns of B are by a linear subspace.

Compute the singular values of B using sigma = svd(B). How many singular
values v are needed to capture 95% of the energy of B? That is, to ensure that

ia? > .95 x zn:af ? (2.6.15)
i=1 i=1

What about 99% of the energy? Repeat this calculation for several subjects.

2.16 (Sparsity of MR Images). In this exercise, we study the wavelet-domain
sparsity of anatomical MRI data from a real dataset, the BOLD5000 fMRI dataset.
As we saw in the vignette presented in lecture, the signal acquired in MRI settings
is the 2D Fourier transform of the relevant spatial slice of the object being imaged;
the specific mathematical details of a modeling and analysis of this acquisition
process are presented in Chapter 10.

The focus in this exercise is on understanding the data, and in particular the
relationships between its representations in several transform domains (spatial,
2D Fourier frequency, and 2D discrete wavelet). Since, in this setting, the MR
image is sparse in the wavelet domain but acquired in the frequency domain, there
s a question of whether the composite acquisition map will have the properties
necessary for us to perform recovery from underdetermined measurement maps.
We will study such questions in details in later chapters and exercises.


https://bold5000.github.io/

3.1

Convex Methods for Sparse Signal
Recovery

“Algebra is but written geometry; geometry is but drawn algebra.”

— Sophie Germain

In the previous chapter, we saw many problems for which the goal is to find a
sparse solution to an underdetermined linear system of equations y = Ax. This
problem is NP-hard in general. However, we also observed that certain well-
structured instances can be solved efficiently: in experiments, when y = Ax,
and x, was sufficiently sparse, tractable ¢! minimization

min IE2IR (3.0.1)
subject to Az =1y,

exactly recovered x,: €, was the unique optimal solution to this optimization
problem.

The experiments in the previous chapter are inspiring, and perhaps surpris-
ing. In this chapter, we will study this phenomenon mathematically, and try
to precisely characterize the behavior of (3.0.1). The engineering motivation is
simple: we would like to know whether the behavior in the previous chapter is
some lucky instances or should be expected in general, and if it is the latter case,
whether we can use it to build reliable systems.

Why Does ¢! Minimization Succeed? Geometric Intuitions

Before diving into a formal proof that the £* minimization (3.0.1) correctly re-
covers sparse signals, we describe two intuitive, geometric pictures of why this is
the case.

Coefficient Space Picture.
We first visualize the problem in the space R™ of coefficient vectors x. The set
of vectors x that satisfy the constraint Az =y in (3.0.1) is an affine subspace’

S={z| Az =y} = {z,} + null(A). (3.1.1)

L In (3.1.1), the set addition {x,} + null(A) is in the sense of Minkowski, i.e., for sets S and
T,S+T={s+t|seS,tecT}
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Feasible set
Coeflicient S={z,} + null(A)
space R"
£ ball
By = {z ||z, <1}

Figure 3.1 Coefficient-Space Picture. The set of all solutions @ to the equation
Az = y is an affine subspace S of the coefficient space R™. The ¢* ball B; consists of
all coefficient vectors & whose objective function is at most one.

Pl N

N

Figure 3.2 ¢! Minimization in the Coefficient-Space Picture. ¢! minimization
can be visualized geometrically as follows: we squeeze the £* ball down to zero, and
then slowly expand it until it first touches the feasible set S. The point (or points) at
which it first touches S is the £ minimizer .

Figure 3.1 visualizes this set. The ¢! minimization problem (3.0.1) picks, out of
all of the points in the set S, the one (or ones) with smallest #! norm. This can
be visualized as follows. Consider the ¢! ball of radius one

By ={x||lz, <1} CR" (3.1.2)

This contains all the vectors & with objective function at most one. Scaling this
object by ¢t > 0 produces the set of vectors  with objective function at most ¢:

tBi={e|lal, <1} CR (3.13)

If we first scale By down to zero, by setting ¢ = 0, and then slowly expand it,
by increasing ¢, the £! minimizer is obtained when t - B; first touches the affine
subspace S. This contact point is the solution to (3.0.1) — see Figure 3.2. From
the geometry of the ball, it seems that these contact points will tend to be the
vertices or edges of By, which precisely correspond to the sparse vectors!
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1
Coefficient space R™ ¢ ball By

To

Linear embedding A C

Polytope

Observation space R™ & P=A(B1)

y = Az,

observation

Figure 3.3 Observation-Space Picture. The ¢* ball is a convex polytope B; in the
coefficient space R™. The linear map A projects this down to a lower-dimensional set
P = A(B1) in the observation space R™. The vertices v; of P are subsets of the
projections Av; of B;.

Observation Space Picture

We can also visualize ¢! minimization in the space R™ of observation vectors y.
This picture is slightly more complicated, but turns out to be very useful. The
m X n matrix A maps n-dimensional vectors & to m < n dimensional vectors
y. Let us consider how the matrix A acts on the ¢! ball B; C R". Applying A
to each of the vectors & € By, we obtain a lower-dimensional object P = A(B;),
which we visualize in Figure 3.3 (right). The lower-dimensional set P is a convez
polytope. Every vertex v of P is the image Av of some vertex v = +e; of Bj.
More generally, every k-dimensional face of P is the image of some face of B;.

The polytope P consists of all points y’ of the form Az’ for some x’ with
objective function ||z’||, < 1. ¢! minimization corresponds to squeezing B; down
to the origin, and then slowly expanding it until it first touches y. The touching
point is the image A& of the ¢! minimizer — see Figure 3.4.

So, ¢! will correctly recover @, whenever Az, is on the outside of P = A(By).
For example, in Figure 3.3, all of the vertices of By map to the outside of A(B;),
and so ¢! recovers any l-sparse x,. However, certain edges (one-dimensional
faces) of By map to the inside of A(B). £! minimization will not recover these
T,.

From this picture, it may be very surprising that ¢! works as well as it does.
However, as we will see in the remainder of this chapter, the high-dimensional
picture differs significantly from the low-dimensional picture (and our intuition!)
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and
A C exp

y = Az, y= Az

Figure 3.4 ¢! Minimization in the Observation-Space Picture. ¢! minimization
corresponds to scaling B; down to zero, and then slowly expanding it. As B; expands,
so does P = A(B;). The optimal value for the ¢' minimization problem is the first
scalar t such that tP = A(tB1) touches the observation vector y. The first point that
touches y is the image A& of the ¢! minimizer &. This means that ¢* minimization

recovers point ., if and only if Aﬁ lies on the boundary of P.

in ways that are very useful — a “blessing of dimensionality.” In particular, if we
are in m dimensions and n is proportional to m, not only do all of the vertices
of B; map to the outside of A(B1), so do all the one-dimensional faces, and all
of the two-dimensional faces, and so on, all the way up to k-dimensional faces
with k proportional to m!

A First Correctness Result for Incoherent Matrices

With solid empirical evidence and a bit of geometric intuition at hand, our next
task is to develop some rigorous understanding of this phenomenon.

Coherence of a Matrix

What determines whether ¢! minimization can recover a target sparse solution
x,? Our discussion on ¢° minimization isolated two key factors: how structured
the target @, is (i.e., how many nonzero entries) and how nice the map A is (mea-
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1(A) = 0.70711 [1(A) = 0.99488

\/

Figure 3.5 Mutual Coherence for Two Configurations of Columns of A. Left:
well-spread vectors in S%: u(A) ~ 0.707. This is the smallest achievable y for four
vectors in two dimensions. In higher dimensions, the mutual coherence can be much
smaller: for example, a random m x 2m dimensional matrix has coherence on the
order of y/log(m)/m, which diminishes to zero as m increases. Right: p(A) ~ 0.995.
Mutual coherence depends on the closest pair ai, a;, and so in this example it is very
large.

sured there through the Kruskal rank). Moreover, there was a tradeoff between
the two factors: the nicer A is, the denser x, we can recover.

In fact, this qualitative tradeoff carries over to tractable algorithms such as
the /' relaxation as well. However, we need a slightly stronger notion of the
“niceness” of A to guarantee that the tractable relaxation succeeds. Our first
notion measures how “spread out” the columns of A are in the high dimensional
space R™:

DEFINITION 3.1 (Mutual Coherence). For a matriz
A:[al\a2|~~|an} e Rmxn

with nonzero columns, the mutual coherence p(A) is the largest normalized inner
product between two distinct columns:

e
x , . 3.2.1)
<||az-||2 lasll,

A) =
p(A) = ma>

As the mutual coherence only depends on the direction of the column vectors,
for simplicity, we typically assume the columns are normalized to be of unit
length.

The mutual coherence takes values in [0, 1]. If the columns of A are orthogonal,
u(A) is zero. If n > m, the columns of A cannot be orthogonal. The quantity
1(A) captures how close they are to orthogonal, in the worst case sense. Matrices
with small p(A) have columns that are more spread out; we will see that such
matrices tend to be better for sparse recovery, in the sense that ¢! succeeds
in recovering denser x,. Figure 3.5 visualizes the columns A and displays the
coherence, for two examples of A € R2X™,

One intuition for why small p(A) is helpful is the following: suppose that
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y = Az,, with @, sparse, and | the support of x,. Then y = . a;x, (7).
Intuitively speaking, it should be easier to “guess” which columns a; participate
in this linear combination if distinct columns are not too similar to each other.

To connect the mutual coherence more formally to sparse recovery, we will
show that whenever p(A) is small, the Kruskal rank krank(A) is large. Recall
that krank(A) > k if and only if every subset of k columns of A is linearly
independent, i.e., every k-column submatrix A, has full column rank. In fact, if
the coherence u(A) is small, then column submatrices of A not only have full
column rank — they are even well-conditioned, in the sense that their smallest
singular value o,y is not far from their largest singular value o,.x. To see this,
let | C [n] with k = |I|. Write diagonal and off diagonal entries as:

ATA =1+ A. (3.2.2)
Because ||A[ < [[A]l < k|A| < ku(A),? we have
1—kp(A) < omin(A7 A1) < omax(AfA) < 1+ ku(A). (3.2.3)

In particular, if ku(A) < 1, A has full column rank. Combining this observation
with our previous discussion of the Kruskal rank, we obtain:

PRrOPOSITION 3.2 (Coherence Controls Kruskal Rank). For any A € R™*",

1
krank(A) > ——. 3.2.4
(4> o (324)
In particular, if y = Az, and
1
< — 2.
H',BOHO — 2M(A)7 (3 5)

then x, is the unique optimal solution to the €0 minimization problem

min llz|l, (3.2.6)
subject to Ax =y.

Thus, provided j(A) is small enough, ¢° minimization will uniquely recover x,.

Correctness of £} Minimization

The previous result showed that if ;(A) is small, then ¢° minimization recovers
sufficiently sparse x,. The next result shows that under the same hypotheses,
if u(A) is small, the tractable ' minimization heuristic also recovers @,. This
implies that sparse solutions can be reliably obtained using efficient algorithms!
The result is as follows:

2 The first inequality comes because the operator norm is always bounded by the Frobenius
norm: ||A|| = max; 0;(A) and ||A||p = 1/, 02(A). The second inequality arises because
N i |A;;]%. The diagonal entries of A are zero, and so in this case,

IAIZ = X0, 1Ay < k(- 1) A2,
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\ 2 N\ Ol (=)

A*X €|, (zo) Nnull(A)*

Figure 3.6 Geometry of the Proof of /! Recovery. We prove that x, is an
optimal solution to the ¢* minimization problem, by demonstrating that there exists
A such that A*X is in the subdifferential of 9 |-||, (zo). In this picture, there is a
subgradient of the objective which is orthogonal to null(A). This generalizes the
condition for projecting onto an affine subspace (Figure 2.13), in which the gradient
of the approximation error is orthogonal to null(A).

THEOREM 3.3 (¢! Succeeds under Incoherence). Let A be a matriz whose columns
have unit €2 norm, and let pu(A) denote its mutual coherence. Suppose that
y = Ax,, with

1

||£L'o||0 S m (327)

Then x, is the unique optimal solution to the problem

min IE2IR (3.2.8)
subject to y = Awx.

REMARK 3.4. It is possible to improve the condition of Theorem 3.3 slightly, to
allow recovery of x, satisfying

1
e < 5 (14 57 )- (329)

This is the best possible statement of this form: there exist examples of A and
x, with ||x,l, > 1 (1 + ﬁ) for which £* minimization does not recover x,.
Nevertheless, we will see later in this chapter that for certain classes of A of prac-
tical importance, far better guarantees are possible, and that this has important
implications for sensing, error correction, and a number of related problems.

Proof Ideas for {* Recovery.

Before embarking on a rigorous proof of Theorem 3.3, we sketch our approach.
Recall from the previous chapter that for any v € 0 ||-||; (x,) and ' € R™, the
subgradient inequality,

12'[l; > llzoll, + (v, 2" — o) (3.2.10)
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lower bounds the ¢! norm of x’. Notice that if =’ is feasible for (3.2.8), then
y = Az’ and so A(z’ — z,) = 0. Hence, for any A € R™,

(A" N\ 2" —x,) = (A A(z' — x,)) = 0. (3.2.11)

So if we can produce a X such that A*X € 0 ||-||; (x,), plugging into (3.2.10) we
necessarily have

2']l, > Izl (3.2.12)

for every &’ € R™. This implies that x, is an optimal solution. Figure 3.6 visu-
alizes this construction geometrically.

Let | denote the support of @,, and o = sign(w,;) € {£1}". Recall that the
subdifferential 9 ||-||; (z,) consists of those vectors v such that

v =0, (3.2.13)
|vge|l ., < 1. (3.2.14)

Hence, the condition A*X € 9 ||-||; (x,) places two conditions on the vector A*A:

Afx=o0, (3.2.15)
AL, < 1. (3.2.16)

The first condition is a linear system of k equations, in m unknowns A. The
second is a system of n — k inequality constraints. The system of equations
(3.2.15) is underdetermined. Our approach will be to look at the simplest possible
solution to this underdetermined system,

Az = Al(AFA) o (3.2.17)

This putative solution automatically satisfies the equality constraints (3.2.15).
Moreover, A is a superposition of the columns of A. Because p(A) is small,
the columns of Ajc are almost orthogonal to the columns of Ay, and so ||Aj Al
is also small.

Below, we make the above discussion rigorous. The details are slightly more
complicated than the above sketch, because we wish to prove that x, is not just
an optimal solution, but actually the unique optimal solution. We will see that
if we can ensure that A; has full column rank and ||Aj | is strictly smaller
than one, this follows.

Proof of Theorem 3.3 Let | = supp(a,) and o = sign(z,) € {£1}*. Notice
that omin (A7 A4)) > 1 —ku(A), and so under our assumption A, has full column
rank. Suppose that there exists A such that

Afx=o0, (3.2.18)
AR, < 1. (3.2.19)

Consider any «’ which is feasible, i.e., satisfies Az’ = y. Let v € R™ be a vector
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such that vj = o, and vje = sign([z’ — x,)ic). Notice that v € 9|-||; (z,), and so
by the subgradient inequality,

2, > llzolly + (v, 2" — o) . (3.2.20)

Since ' — x, € null(A), (A*\,2’ —x,) = 0, and the above equation implies
that
”-73,”1 > [|zoll; + (v, 2" —x,)

= [lzo|[; + (v — A™A, z' —x,)

= [lzolly + (vie — Al [&" — @0]ie)

> llzolly + ll[2" = @olielly — | A Al [l = @o]iel;

= llzolly + (1 = AL ) I[2" = ®o]iell, - (3.2.21)
Since ||AjA|l < 1, either |||, > [&o|;, or |[[®" — x,]ic]l; = 0. In the latter
case, this means that supp(a’) C |, and x| — x, € null(A;). Since A, has full
column rank, this implies that | = x,, and so ’ = x.

Hence, if we can construct a A satisfying (3.2.18)-(3.2.19), then any alternative

feasible solution &’ has larger ¢'-norm than x,. Let us try to produce such
a A. The first equation (3.2.18) above is an underdetermined linear system of

equations, with k equations and m > k unknowns A. Let us write down one
particular solution to this system of equations:

Az = A(AFA) o, (3.2.22)

By construction, Af A2 = . We are just left to verify (3.2.19), by calculating
HA,’;S\Zz

= |ARA(AFA) o (3.2.23)

Consider a single element of this vector, which has the form (for some j € I°) of

s AlAT A) o < AT, (A7 A) Ty, ol (3:224)

M~ —————

<Vkpu 1 =Vk

1-kup(A)
ku(A)

—_— 3.2.25
= kn(A) (3:2.35)
(3.2.26)

< 1 .
Provided kp(A) < 1/2.

In (3.2.25), we have used that for any invertible M, |M_1H =1/0min(M) and
our previous calculation that owmin(A; A1) > 1—kpu(A) to bound ||(Af A))~* H2 .
This calculation shows that under our assumptions, condition (3.2.19) is verified.

O

Constructing an Incoherent Matrix

In Theorem 3.3, we have shown that if ||z, |, < 1/2u(A), @, is correctly recov-
ered by ¢; minimization. Many extensions and variants of this result are known.
According to this result, matrices with smaller coherence admit better bounds.
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Historically, results of this nature were first proved for special A, which con-
sisted of a concatenation of two orthonormal bases:

A=[®| 9], (3.2.27)

with ® =[¢p; | -+ | ¢,] €0(n), ¥ =1[1p, |---|1,] € O(n). For instance, ® can
be the classic Fourier transform bases and W certain wavelet transform bases. In
this case, it is possible to prove a sharper bound based on the cross-coherence:

max [(bir15)] - (3.2.28)

Another case which is of great interest is when the matrix A has the form
A = ®W, where | C [n], and ® € R 'l is a submatrix of an orthogonal base.
For example, in the MRI problem in the previous chapter, ® would correspond
to the Fourier transform, while ¥ was the basis of sparsity (e.g., wavelets).

As it turns out, incoherence is a generic property for almost all matrices. So
the easiest way to build a matrix A with small p(A) is simply to choose the
matrix at random. The following theorem makes this precise:

THEOREM 3.5. Let A = [ay | -+ | a,] with columns a; ~ uni(S™™!) chosen
independently according to the uniform distribution on the sphere. Then with
probability at least 3/4,

logn

nA) < Oy =22, (3.2.29)

where C > 0 is a numerical constant.

This result is essentially just a calculation. The main tool needed is the follow-
ing result, which observes that a Lipschitz function on the sphere concentrates
sharply about its median:

THEOREM 3.6 (Spherical Measure Concentration). Let u ~ uni(S™™1) be dis-
tributed according to the uniform distribution on the sphere. Let f : S™~1 — R
be an 1-Lipschitz function:

Vu, ', [f(u) = f)] < 1-fu—a,, (3.2.30)
and let med(f) denote any median of the random variable Z = f(u). Then

Plf(u) >med(f)+t] < 2exp <sz52> ) (3.2.31)

P[f(u) <med(f) —t] < 2exp <m;2> . (3.2.32)

This result is the precise reason behind the counterintuitive example about
the sphere shown in Figure 1.10 of the Introduction chapter. We have laid out
some basic facts in measure concentration and their proofs in the Appendix E.
For a more detailed introduction to measure concentration, the reader may refer
to [Led01, Mat02]. For now, we will take this result for granted and use it to
prove our Theorem 3.5.
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Proof of Theorem 3.5: For any fixed v € S™~ !, we have
lv*al - [v*a/|| < [v*(a—a')| < [la—al,. (3.2.33)

So, the function f(a) = |v*a| is 1-Lipschitz. A quick calculation shows that for
a ~ uni(S™1), we have

(3.2.34)

As 22 is convex, E [[v*al]® < E [(v*a)?]. So, we have E [[v*a|] < \/—%

Applying the Markov inequality P[X > a] < % to f with a = med(f),
then any median of f satisfies

med(f) < 2E[f] < T (3.2.35)

Finally applying the measure concentration fact from Theorem 3.6, we have

t t?
P {v*a| > 2\/%} < 2exp <2) : (3.2.36)

Since this holds for every fixed v, it also holds if v is an independent random
vector uniformly distributed on S™~!. So,

2+t t2
P [afaj| > \/%} < 2exp (2) : (3.2.37)

Summing the failure probability over all n(n —1)/2 pairs of distinct (a;,a;), we
have an upper (union) bound on the probability of all failure events:

P [a (i,5) : lata;] > 2\/;] < n(n—1)exp (-t;) (3.2.38)

Setting t = 24/log 2n, the above probability is less than 1/4 and we obtain the
result. O

There are several points about Theorem 3.5 that are worth remarking on here.
First, there is nothing particularly special about the success probability 3/4. By
a slightly different choice of ¢ (which affects the constant C), one can make the
success probability arbitrarily close to 1. Second, there is nothing particularly
special about the uniform distribution on S™~! — many distributions will produce
similar results, although this one is especially convenient to analyze.

Figure 3.7 plots the average mutual coherence of matrices sampled according
to Theorem 3.5, for various values of n and m = n/8. The observations seem to
agree with the predictions of the theorem: the average observed mutual coherence

is very close to 1.75 10%.
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Figure 3.7 How Does Coherence Decay with Dimension? Left: Average mutual
coherence across 50 trials, for A with columns a; ~;iq uniform(Smfl), for various
values of n and m = n/8. The black curve, given for reference, is 1.754/ lc’%. The blue
curve is the Welch lower bound pmin on the smallest achievable mutual coherence for
an m X n matrix (see Theorem 3.7). Right: Average number of nonzeros k& which can
we can guarantee to reconstruct using the observe u(A) and Theorem 3.3 (red). The
blue curve bounds the best possible number of nonzero entries using Theorem 3.3, for
any matrix A of size m X n, using the Welch bound.

Limitations of Incoherence

Theorem 3.3 gives a quantitative tradeoff between niceness of A and sparsity
of x,, which asserts that when @, is sparse enough: |x,||, < 1/2u(A), then
x, is the unique optimal solution to the ¢! minimization problem. This gives a
sufficient condition for the ¢! minimization to be correct.

But how sharp is this result? According to Theorem 3.5, a random matrix

n(A)
plies correct recovery of x, with O(y/m/logn) nonzeros. If we turn this around,
and think of the matrix multiplication  — Ax as a sampling procedure, then

A € R™*™ with high probability has its coherence bounded from above as
< Cy/En S, for a “generic” A, the above recovery guarantee im-

for appropriately distributed random A, we can recover k-sparse x, from

m > C'k*logn (3.2.39)

observations. When k is small, this is substantially better than simply sampling
all n entries of . On the other hand, the measurement burden m = Q(k?) seems
a little too high — to specify a k-sparse x, we only need to specify its k nonzero
entries, ...and yet the theory demands k2 samples!

One might naturally guess that the choice of A as a random matrix was a
poor one — perhaps some delicate deterministic construction can yield a better
performance guarantee, by making u(A) smaller. How small can the coherence
1(A) be? We already noted that if A is a square matrix with orthogonal columns,
u(A) = 0. However, if we fix m and allow the number of columns, n, to grow,
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we are forced to pack more and more vectors a; into a compact set S™~L As
we increase n, the minimum achievable coherence p increases.

As it turns out in this case, no matter what we do, we cannot construct a
matrix whose coherence is significantly smaller than a randomly chosen one: the
coherence of the random matrix A is within C'logn of optimal. The following
theorem makes this precise:

THEOREM 3.7 (Welch Bound). For any matric A = [ay | --- | a,] € R™*™,
m < n, and suppose that the columns a; have unit €2 norm. Then
n—m

n(A) = max[(a;, a;)| >

na: > Vo= (3.2.40)

Proof Let G = A*A € R™" and let Ay > --- > \,, > 0 denote its nonzero
eigenvalues.® Notice that

m n

D Xi(G) = trace (G) = [l = n. (3.2.41)

i=1 i=1

Using this fact, we obtain that

n?  n? & n\2

T _ 2.

— < — +;(AZ(G) m) (3.2.42)
—”—2+§m: A?(GH’LQ—QEA-(G) (3.2.43)
- m — ‘ m2  Tm’" -
=Y N(G) = |Gl (3.2.44)

i=1
:Z\a;*ajf = n+Z|afaj|2 (3.2.45)
] i#£]
2
<n+n(n-—1) (mjx a;*aj|> : (3.2.46)
i3

Simplifying, we obtain the desired result.

In the above sequence of inequalities, we have used in (3.2.44) the fact that for
any symmetric matrix G, HGH; = > Mi(G)?, which follows from the eigenvector
decomposition G = VAV™ and the fact that for any matrix M and orthogonal
matrices P, Q of appropriate size, | M| = [|[PMQ| 5. O

The important thing to notice here is that if we take n proportional to m, i.e.,
n = Bm for some B > 1, then the bound says that for any m x n matrix A,

uA) > Q (\/1%) (3.2.47)

Hence, in the best possible case, Theorem 3.3 guarantees we can recover x, with

3 Because rank (G) < m, it has at most m nonzero eigenvalues.
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about y/m nonzero entries. Or equivalently, no matter how well we choose A, to
guarantee success Theorem 3.3 would demand

m > C"k? (3.2.48)

samples to reconstruct a k-sparse vector, which is only logn factor better than
the previous bound (3.2.39) for a randomly chosen A.

Does this behavior reflect a fundamental limitation of the ¢! relaxation? Or is
our analysis loose? It turns out that for generic matrices, the situation is much
better than the bounds (3.2.39)-(3.2.48) seem to suggest. Again, the easiest way
to see this is to do an experiment! We can try solving problems with constant
aspect ratio (say, m = n/2), and n growing. Try to set k = ||x,||, proportional
to m — say, k = m/4 (a much better scaling than k ~ /m!). Now, try different
aspect ratios m = an and sparsity ratios k = fm. We leave this as an exercise
to the reader. You may notice something intriguing:

In a proportional growth setting m x n, k oc m, £* minimization succeeds with very high
probability whenever the constants of proportionality n/m and k/m are small enough.

This is a very important observation, since it implies that

e more error correction: we can correct constant fractions of errors, using an
efficient algorithm.

e better compressive sampling: we can sense sparse vectors using a number
of measurements that is proportional to the intrinsic “information content” of
the signal — the number of nonzero entries.

However, to have a theory that can explain such observation, we will need a
more refined measure of the goodness of A than the (rather crude) coherence or
incoherence. In addition, we are going to need to sharpen our theoretical tools
too.

Towards Stronger Correctness Results

The Restricted Isometry Property (RIP)

In the previous section, we saw that the ¢! minimization problem

min x|l (3.3.1)
subject to Ax =1y

correctly recovers a sparse x, from observation y = Ax,, provided two condi-
tions are in force:

e x, is structured: k = ||z, [, < n.
e A is “nice”: its coherence y(A) is small.
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The intuition provided by incoherence is qualitatively very suggestive, but it
does not provide a quantitative explanation for the good behavior we have seen
in our experiments so far. How can we strengthen the condition? Suppose that
A has unit norm columns. Then it is easy to calculate that for every two-column
submatrix A = [a; | a;] € R™*2,

1 Ya;

AFA = { S b ] . (3.3.2)
asa; 1

Exercise 3.6 asks you to show that since |afa;| < p(A), this matrix is well

conditioned:

1_,111(14) < Umin(Al*Al) < O-max(ArAl) < 1+M<A) (333)

This property holds simultaneously for every two-column submatrix A;. So, the
property that the columns of A are well-spread implies that the column subma-
trices of A are well-conditioned.

We can generalize both properties by taking the set | to be larger than 2.
Indeed, we can demand that all k-column submatrices of A are well-conditioned:
For every | C {1,...,n} of size k, we have

1—ku(A) < omin(A7 A1) < omax(AfA) < 1+ Eku(A), VIof size < k.
(3.3.4)

This controls the Kruskal rank: if 1—kpu(A) > 0, then krank(A) > k. This implies
that an incoherent matrix with small x4 tends to have large Kruskal rank. Hence
according to Theorem 2.6, any sufficiently sparse x, is the sparsest solution to
the observation equation Az = y.

In (3.3.4), we saw that the coherence p(A) controls the conditioning of the
column submatrices A, — if u(A) is small, every submatrix spanned by just a
few columns of A is well-conditioned:

1-6 < O'min(ArAl) < O’maX(AikA|) < 146, (335)

with § small. This turned out to be critical in our proof of Theorem 3.3. In
fact, we will see that for certain well-structured matrices A, including random
matrices, the bounds in (3.3.5) hold with § far smaller than would be predicted
by (3.3.4) using only the coherence.* They also hold for far larger k& = |I| than
might have been predicted from coherence alone. We will see that this leads
(via different and slightly more complicated arguments), to substantially tighter
guarantees for the performance of both /0 and ¢! minimization.
The bounds in (3.3.5) hold uniformly over sets | of size k if and only if

Va ksparse, (1—0)[lzl; < [[Az[; < (1+6) 3. (3.3.6)

4 For example, if A is a large m x k (k < m) matrix with entries independent N'(0,1/m),
omin(AFA) = (V1 — /k/m)? >1—2y/k/m, and
omac(Af A) = (V1+/k/m)? < 1+3,/k/m. You can check these values numerically; the
aforementioned bounds can be made into rigorous statements using tools for Gaussian
processes.
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That is to say, the mapping « — Ax approximately preserves the norm of sparse
vectors x. Informally, we call such a mapping a restricted isometry: it is (nearly)
an isometry®, if we restrict our attention to the sparse vectors x.

DEFINITION 3.8 (Restricted Isometry Property [CTO05]). The matriz A satisfies
the restricted isometry property (RIP) of order k, with constant § € [0,1), if

V& k-sparse, (1—0)|z)2 < |Az|} < (1+0)]|]3. (3.3.7)

The order-k restricted isometry constant dx(A) is the smallest number § such
that the above inequality holds.

Whenever 5 (A) < 1, every k-column submatrix has full column rank k. This
implies that ¢° recovery succeeds under RIP:

THEOREM 3.9 (£° Recovery under RIP [CRTO06a, Can08]). Suppose that y =
Ax,, with k = ||,y If d21x(A) < 1, then x, is the unique optimal solution to

min llz|, (3.3.8)
subject to Ax =1y.

Proof Suppose on the contrary that there exists ' # x, with |z'[|, < k.
Then x, — 2’ € null(A), and ||z, — «'||, < 2k. This implies that d2;(A) > 1,
contradicting our assumption. O

So, provided the RIP constant of order 2k is bounded away from one, ¢°
minimization successfully recovers x,. If we tighten our demand to dop(A) <
V2 — 1, ¢* minimization succeeds as well:

THEOREM 3.10 (¢! Recovery under RIP). Suppose that y = Ax,, with k =
|ollg- If 021 (A) < V2 — 1, then x, is the unique optimal solution to

min ll{ (3.3.9)
subject to Az =y.

The significance of this result comes from the fact that for “generic” matrices,
the condition dox(A) < v/2 — 1 holds even when k is nearly proportional to m:

THEOREM 3.11 (RIP of Gaussian Matrices [CRT06a, BDDWOS8]). There exists
a numerical constant C > 0 such that if A € R™*™ is a random matriz with
entries independent N (07 %) random variables, with high probability, or(A) < 0,
provided

m > Cklog(n/k)/6%. (3.3.10)

This implies that recovery of k-sparse @ is possible from about m > Cklog(n/k)
random measurements. This is a substantial improvement over our previous
estimate of m ~ k2. In particular, it allows (k,m,n) to scale proportionally
[Don06b, CT05]. This improvement has stimulated a lot of work on efficient
sensing and sampling schemes in various application domains.

5 An isometry is a mapping that preserves the norm of every vector.
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3.3.2

Convex Methods for Sparse Signal Recovery

Restricted Strong Convexity Condition

We have stated the above two theorems without proof. We will prove Theorem
3.10 in several stages. In this section, we introduce two intermediate properties
of the sensing matrix A, which turn out to be very useful in their own right. In
the next section, we prove Theorem 3.10 by proving that when dox(A) < V2 —1,
these int